Alcatel-Lucent 7515 Media Gateway

Release 2.4 build 122

Release Note

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>2009-9-03</td>
<td>Lin Haijun</td>
<td>Jiang Hongyan</td>
</tr>
<tr>
<td>ED</td>
<td>Date</td>
<td>Change Note</td>
<td>Appraisal Authority</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Author</td>
</tr>
</tbody>
</table>

Copyright © Alcatel-Lucent. All rights reserved.
Passing on and copying of this document, use and communication of its contents not permitted without written authorization from Alcatel-Lucent
TABLE OF CONTENTS

1. GENERAL DESCRIPTION 3

2. RELEASE INFORMATION 3

3. REFERENCED DOCUMENTS 4

4. FUNCTIONALITY 4
 4.1 NEW FEATURE IN BUILD 122 4
 4.2 NEW FEATURE IN BUILD 121 4
 4.3 NEW FEATURE IN BUILD 120 4
 4.4 NEW FEATURE IN BUILD 119 4
 4.5 NEW FEATURE IN BUILD 116 4
 4.6 NEW FEATURES IN RELEASE 2.4 4
 4.7 NEW FEATURES OVERVIEW 4

4 IMPROVEMENT SINCE LAST RELEASE 7
 4.1 CORRECTIONS IN BUILD 122 7
 4.2 CORRECTIONS IN BUILD 121 7
 4.3 CORRECTIONS IN BUILD 120 8
 4.4 CORRECTIONS IN BUILD 119 8

5 INSTALLATION AND UPGRADE PROCEDURES 8
 5.1 UPGRADE FROM REL2.3 TO REL2.4 8
 5.2 UPGRADE INBETWEEN REL2.4 9

6 SOFTWARE LICENSING KEYS 10

7 HW REQUIREMENTS 10

8 RESTRICTIONS 11
1. General Description

As one of the key components of Alcatel-Lucent's Next Generation Network portfolio, the Alcatel-Lucent 7515 Media Gateway (MG) provides seamless inter-working of voice and fax connections between the Public Switched Telephone Network (PSTN) and Internet Protocol (IP) networks. By enabling voice services to ride over data networks, the service can maximize the value of current investments while enabling future service rollout to incorporate the latest technologies.

The Alcatel-Lucent 7515 MG combines the reliability and simplicity of voice with the speed and efficiency of data networks. It features an advanced architecture and interface optimized for packet voice applications, together with carrier class reliability, availability and quality.

As a single platform, the Alcatel-Lucent 7515 MG supports multiple media gateway applications and facilitates the evolution of the PSTN towards a Voice over Packet network. Based on its native TDM switching and Voice over Packet capabilities, the Alcatel-Lucent 7515 MG can be used as Trunking GW, Signaling GW.

Using open and standardized signaling and control protocols such as Megaco/H.248 and SIGTRAN, it can be deployed with Alcatel-Lucent softswitch platform as well as integrated into any multi-vendor next generation network.

The 7515 MG release 2.4 follows release 2.3 and provide support of new H248 stack (v2), as well as some important security featues.

2. Release information

Software package (m24B0122)
http://172.24.140.22/online/tec/gw/7515M/swm2.4.htm

Files included in this package are:
- m24B0122.pak
- dspfw_0.axf
- config.txt
- 7515_2.4_B122_Release_Note.pdf
3. Referenced documents

7515 Media Gateway Operation Guide (R2.4) 3FZ044736013_AZCA
7515 Media Gateway Quick Start Guide (R2.4) 3FZ044736006_ACZZA
7515 MG Production Description (R2.4) 3FZ044736015_ACZZA
7515 MG Operations and Maintenance Manual (R2.4) 3FZ044736001_ACZZA
7515 Media Gateway EMS User Manual (R2.4) 3FZ044736020_ACZZA
7515 Media Gateway ECO Declaration (R2.4) 3FZ044736022 ACZZA

4. Functionality

4.1 new feature in build 122
4.1.1 new mib synchro with OMC-P

4.2 new feature in build 121
no new feature, just some corrections.

4.3 new feature in build 120
no new feature, just some corrections.

4.4 new feature in build 119
no new feature, just some corrections.

4.5 new feature in build 116
no new feature, just some corrections.

4.6 new features in release 2.4
4.6.1 H.248.14 (heartbeat)
4.6.2 H.248v2
4.6.3 MG/MGC originated Pending limits
4.6.4 IP Filter (firewall)
4.6.5 IP security
4.6.6 TDM2TDM SPC

4.7 New Features Overview

4.1.1 new mib synchro with OMC-P
The alarm module of media gateway collects the alarm events accruing in the FSB card, and is designed to report to the EM when trap occurs. The EM should also have the ability to get the alarm information initiatively.
A7515 add an interface for the alarm module to support GET\GETNEXT the AAL(Active Alarm List) and AH(Alarm History). Each module in 7515 interacts with the alarm module for its trap messages, then trap transfer work from modules to the alarm module will integrate the traps and will unify them to the unified X733 format.

Also, the mib file have added to support snmpX733AlarmTrap.

UI command:
Main# define snmp trap state all enable --------------------- ①
Main# define snmp trap state 22 {enable/disable} --------------------- ②

The default value only support the new mib added, can support both the old and new mibs by the UI "①", after UI “①”, then UI “②” will only support the old mib.

NOTE: this configure change will not be saved if system reboot.

4.5.1 H.248.14 (heartbeat)
H.248 Inactivity Timer package contains an event that can be implemented by a MGC and by a MG on its root termination. The purpose of the event is to allow the MG to detect periods of silence of messaging from the MGC. Once the period of silence exceeds the threshold provided in the event, the MGC is notified. If the MGC has failed, the event will not receive a reply. If no reply is received, the MG will consider the MGC to have failed and will follow the procedures of 11.5/H.248.1.

UI command:
Main# define mgw mg heartbeat state {enable|disable|MGControl|Forced}
Main# define mgw mg heartbeat value <seconds>
Main# define mgw mg svc-heartbeat {root|heartbeat}
Main# define mgw mg inactiv-timer{enable|disable|Forced}

4.5.2 H.248V2
In consider of capability, H.248v2 contains two kind of support to H248 protocol which has different versions and the work mode of trillium can be customized by user in user interface. Further more, after the trillium has upgraded to v1.5 from v1.3

UI command:
Main# define mgw mg h248-version {1/2}

4.5.3 MG/MGC Originated Pending Limits
If some transactions are complex enough to need very long time to process or something goes wrong in MG/MGC processing these transactions, the trillium will send pending message to MGC/MG to indicate the transaction is been processing. But the problem is the pending messages can’t keep sending until MG/MGC finishes the processing. If there is something wrong with transaction processing and the process may be endless and the pending messages will be endless either.
So, it is necessary to set limits of sending pending messages. This feature resolves this problem.

UI command:
Main# define mgw mg mgPendLimit <Nr of times>
Main# define mgw mg mgcPendLimit <Nr of times>

4.5.4 IP Filter (Firewall)
IP Filter feature in 7515 R2.4 is to modify the default action to drop packet when a packet arrives but cannot match any filter rule.

In the new implementation, if IP filtering is enabled but packet is not matched to any filter, packet will be dropped. We recommend configure the ip filter rules traffic by traffic and reduce the range of source IP addresses to minimize the security risk.

UI Command:
Main# create ip filter <filter-name> <priority> <action> {<protocol>|any} {<src-ip/mask>|any}[:<ports>] {<dst-ip/mask>|any}[:<ports>] [<nexthop-addr>]
Main# remove ip filter <filter-name> [<vpnid>]
Main# define ip filter <filter-name> {enable|disable}
Main# define ip filter state {<filter-name>|all} {enable|disable} [<vpnid>]
Main# view ip filters all
Main# view ip filter cache [<srcip> <dstip>]
Main# view ip filter configuration
Main# view ip filter statistics [<vpnid]
Main# clear ip filter cache
Main# clear ip filter statistics [<vpnid>]
Main# define ip filter port <filter-name> <port> {inbound|outbound|both} [<vpnid>]
Main# clear ip filter port <filter-name> [<vpnid>]

4.5.5 IP Security
7515 MGW should have the basic ability to prevent itself from Signaling/Data DOS attack according to Alcatel-Lucent Security Policy [4].

In 7515 R24, only flooding protection for Protocol will be implemented, when flood attack, this mechanism reduces the system performance. To reduce the CPU occupancy when protecting MGW from flooding attack

UI command:
Main# diag define ip flooding protocol flag {enable|disable}
Main# view ip flooding protocol thresholds \{sctp|udp|tcp|icmp|ip|all\}
Main# view ip flooding protocol statistics \{sctp|udp|tcp|icmp|ip|all\}
Main# clear ip flooding protocol statistics \{sctp|udp|tcp|icmp|ip|all\}
Main# define ip flooding protocol thresholds \{sctp|udp|tcp|icmp|ip|all\}
Main# diag define ip flooding protocol flooding-rate \{sctp|udp|tcp|icmp |ip|all\} <Action>
Main# diag define ip flooding protocol load-factor \{sctp|udp|tcp|icmp|ip|all\}
Main# diag view ip flooding protocol load-factor \{sctp|udp|tcp|icmp|ip|all\}
Main# diag view ip flooding protocol load-info \{sctp|udp|tcp|icmp|ip|all\}

4.5.6 TDM2TDM SPC
1. setup/release Semi Permanent Connections (SPC) between two TDM-ports (native TDM hairpinning without media processing) via UI-commands
2. SPCs must be self healing in case of link up.
3. No service degradation in case of FSB-Takeover (SPC-Mgr data must be synchronized to standby FSB).
4. maximum number of spc is: $2^32 = 64$.

UI command:
Main# create spc tdm2tdm media none <IDENTIFIER> <LPA1> <LPA2>
Main# remove spc <IDENTIFIER>
Main# view spc tdm2tdm

4 Improvement since last release

4.1 Corrections in build 122
GW1_00161356 alarm synchron

4.2 Corrections in build 121
GW1_00155900 when disable lapd link no REL_IND send out
GW1_00154685 IOT: not send SC=905 for MTP2 and LAPD link
GW1_00152576 IUA_IOT: 7515 check TEI parameter
4.3 Corrections in build 120

GW1_00122007 digit value not report if s=0 in digitmap message
GW1_00120742 ring back tone can not be played to PCM side

4.4 Corrections in build 119

GW1_00118740 memory leak when h248+m2ua low traffic
GW1_00105173 H248 unreasonable handoff
GW1_00105070 H248 registration state comes into chaos

5 Installation and Upgrade Procedures

5.1 Upgrade from Rel2.3 to Rel2.4

1. setup tftp server to download software package
2. prepare serial connection to active FSB board via CRAFT port (baud rate is 115200)

Below command can help to know which FSB board is active.

===
My-Chassis:ACT-FSB:1.1(r0)>=10:diag:main# vi ch
--
Ch VB-Sl VB-Type State Function LBI VM-Type
--
1 2 VBSCM UP STANDBY-UP VMSCM
1 1 VBSCM UP ACTIVE-UP * scm VMSCM
--
===

3. backup the system files before upload the new files

*.pak, config.txt and dspfw_0.axf should be backup on two FSB boards by command

main# rename <current-name> <new-name>

For example:
My-Chassis:ACT-FSB:1.1(r0)>=13:diag:main# rename config.txt config.old

4. upload *.pak, config.txt and dspfw_0.axf

upload the file by command

main# tftp get <ip_addr>:rmt-file lcl-file

For example:
My-Chassis:ACT-FSB:1.1(r0)>=16:diag:main# tftp get 10.10.0.61:config.txt

The standby FSB board can only download files from the active one. 7515 assigns different internal ip address to two board, “200.1.1.33” for board 1.1, and “200.1.1.34” for board 1.2. So, if download files from board 1.1 to board 1.2, you can issue:
5. define nvram to boot up system

Main# define nvram pf <pf1> <pf2>

Access to the standby FSB to define nvram, and make sure the two boards use the same *.pak files.

To check whether filename on two boards is right by below command

Main# view nvram

Then reboot system without “save”. After the rebooting complete, use “view version” on both FSB and check if the version is right.

5.2 Upgrade inbetween Rel2.4

1. setup tftp server to download software package
2. prepare serial connection to active FSB board via CRAFT port (baud rate is 115200)

Below command can help to know which FSB board is active.

```
Ch VB-Sl VB-Type State Function LBI VM-Type
--------------------------------------------------------------
1  2 VBSCM UP STANDBY-UP VMSCM
1  1 VBSCM UP ACTIVE-UP *scm VMSCM
```

3. backup the system files before upload the new files

*.pak, config.txt and dspfw_0.axf should be backup on two FSB boards by command

main# rename <current-name> <new-name>

For example:
My-Chassis:ACT-FSB:1.1(r0)>=13:diag:main# rename config.txt config.old

4. upload *.pak, config.txt and dspfw_0.axf

upload the file by command

main# tftp get <ip_addr>:rmt-file lcl-file

For example:
My-Chassis:ACT-FSB:1.1(r0)>=16:diag:main# tftp get 10.10.0.61:config.txt
The standby FSB board can only download files from the active one. 7515 assigns different internal ip address to two board, “200.1.1.33” for board 1.1 and “200.1.1.34” for board 1.2. So, if download files from board 1.1 to board 1.2, you can issue:

My-Chassis:rem-cons:STB-FSB:1.2(r0)>=2:sduc:main# tftp get 200.1.1.33:<file>

5. upgrade system by
 define nvram to boot up system (same as above)
 or
 upgrade system non-hitless *.pak

After the rebooting complete, use “view version” on both FSB and check if the version is right.

6 Software licensing keys

7515 follows a simple license schema based on hardware and software package. The 7515 software package (PAK) contains all software licenses required for field operation.

Corresponding license keys are acquired by purchase of the software package or the hardware boards respectively.

7 HW Requirements

The package is released with the following HW configurations (backward compatible hardware as supported also by software Rel2.3)

<table>
<thead>
<tr>
<th>Description</th>
<th>Mnemonic</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forwarding System Processl Module - C5 Processor Upgrade version of 3FZ30062AAAA</td>
<td>FM-SPM-C5</td>
<td>3FZ30062AAAB (3FZ30062AAAA)</td>
</tr>
<tr>
<td>PSTN Interface w/ 8 E1/T1 and Packet Interface w/2 10/100 mbps routed Fast Ethernet ports</td>
<td>FM-WIM-8E1/2FE</td>
<td>3FZ30063AAAB (3FZ30063AAAA)</td>
</tr>
<tr>
<td>Universal DSP Module - 240 channels G.711</td>
<td>PM-UMS-240</td>
<td>3FZ30064ABAA</td>
</tr>
<tr>
<td>Universal DSP Module - 480 channels G.711</td>
<td>PM-UMS-480</td>
<td>3FZ30064AAAA</td>
</tr>
<tr>
<td>Universal DSP Module - 480 channels G.711, 400 channels G.729</td>
<td>PM-UMS-960</td>
<td>3FZ30064ADAA</td>
</tr>
<tr>
<td>The blank panel for FM-SPM-C5/FM-WIM-8E1/2FE board. When a slot is not filled by a board, it should be covered by this panel to prevent the dust.</td>
<td>CE-Blank-Panel</td>
<td>3FZ40093AAAA</td>
</tr>
<tr>
<td>Front-Left Fan Tray</td>
<td>CE-FAN-Front-Left</td>
<td>3FZ40084AAC</td>
</tr>
<tr>
<td>Front-Right Fan Tray</td>
<td>CE-FAN-Front-Right</td>
<td>3FZ40085AAC</td>
</tr>
<tr>
<td>Rear Fan Tray</td>
<td>CE-FAN-Rear</td>
<td>3FZ40086AAC</td>
</tr>
<tr>
<td>DC Power Tray, 48V, 10A</td>
<td>CE-PSU-DC</td>
<td>3FZ40087AAC</td>
</tr>
<tr>
<td>2U A7515 Shelf - Full configuration (including 1 chassis(3FZ50047ABAC), 3 Fan Tray(3FZ40084,85,86AAC & 1 PowerTray(3FZ40087AAC))</td>
<td>CE-SHF-7515-FL</td>
<td>3FZ50048AAC</td>
</tr>
</tbody>
</table>
Table 7-1 Supported Hardware

<table>
<thead>
<tr>
<th>Optional Elements: Cables</th>
<th>Mnemonic</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable to connect to E1/T1 port of the FM-WIM-8E1/2FE, 3 Metre. Interface: RJ45 to RJ45(need work with Impedence Converter)</td>
<td>CE-CAB-E1/T1-3</td>
<td>3FZ45012ADAA</td>
</tr>
<tr>
<td>Cable to connect to 10/100Mbps Fast Ethernet port of the FM-WIM-8E1/2FE, 6Metre</td>
<td>CE-CAB-FE</td>
<td>3FZ45002AGAA</td>
</tr>
<tr>
<td>Cable to connect to Craft Serial port(RJ45) of the FM-WIM-8E1/2FE. Interface: RJ45 to RS232(female)</td>
<td>CE-CAB-CS</td>
<td>3FZ45003ADAA</td>
</tr>
<tr>
<td>Cable to connect to external clock input interface of the FM-WIM-8E1/2FE(1.544Mbps),0.5 Metre</td>
<td>CE-CAB-BITS</td>
<td>3FZ45004AAFA</td>
</tr>
<tr>
<td>Cable to connect to external clock input interface of the FM-WIM-8E1/2FE(2.048MHz),0.5 Metre</td>
<td>CE-CAB-SSU</td>
<td>3FZ45005AAFA</td>
</tr>
<tr>
<td>Power Cable(3 Metres)</td>
<td>CE-CAB-PW</td>
<td>3FZ45009ADAA</td>
</tr>
</tbody>
</table>

Table 7-2 Optional elements: cables

8 Restrictions

Following feature restrictions are valid:

8.1 COT on RTP termination via ADD command is not supported

TRANSCATION = 1000{
 Context = ${
 ADD=TDM/1/1{… signal(ct/ct)},
 ADD=RTP/1/0/40000{…}
 }

8.2 partly support BCG, the direction parameter is not support

8.3 For Digital Map, Z timer is not supported now.

8.4 RTP Hairpining call flow
The supported call flow to setup RTP Hairpining connection is as follows

 1. ADD RTP2 (no local control mode restriction)
 2. If RTP2 is not SendReceive, MODIFY RTP2 SendReceive
 3.MODIFY RTP1 SendReceive

8.5 FSK
andisp/dwa will be assumed to be an on-hook FSK signal, and only support no pattern mode;
andisp/data will be assumed to be an off-hook FSK signal;
8.6 M2UA:
Following configuration is not supported:
Two AS with Two ASP
AS1 + ASP1:
Same ip addr + 2944
AS2 + ASP2:
same ip addr + 0

8.7 Network failure feature
Enable RTCP per call based not supported just as Quality alert feature.

Methods to detect network failure are:
 a. RTP fraction lost
 b. RTCP packet lost
 c. DSP statistics
a) For voice call:
 - c will be disabled because when remote GW VAD is enabled, network failure
event will be misreported.
 - a & b is active only when global RTCP is enabled.
b) For fax call:
 - only c is valid for this mode.

-End of Document-