
Nokia — Proprietary and confidential.
Use pursuant to applicable agreements.

VIRTUALIZED SERVICE ROUTER

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01

Issue: 01

February 2020

VSR INSTALLATION AND SETUP GUIDE RELEASE 20.2.R1

2

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

Nokia is a registered trademark of Nokia Corporation. Other products and company
names mentioned herein may be trademarks or tradenames of their respective
owners.

The information presented is subject to change without notice. No responsibility is
assumed for inaccuracies contained herein.

© 2020 Nokia.

Contains proprietary/trade secret information which is the property of Nokia and must
not be made available to, or copied or used by anyone outside Nokia without its
written authorization. Not to be used or disclosed except in accordance with
applicable agreements.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Issue: 01 3HE 15837 AAAA TQZZA 01 3

Table of Contents
1 Getting Started..9
1.1 About This Guide...9
1.1.1 Audience..10
1.1.2 VSR and SR Technical Publications ...10
1.2 VSR Installation and Setup..11

2 VSR Overview ...13
2.1 VSR Overview ...13
2.1.1 VSR Concept ..13
2.2 VSR Network Functions ..15
2.2.1 BGP Route Reflector ..15
2.2.2 Broadband Network Gateway ...16
2.2.3 L2TP Network Server ...16
2.2.4 Network Address Translation ...17
2.2.5 MAP-T Border Relay ..17
2.2.6 Provider Edge Router ...17
2.2.7 Data Center Gateway ..18
2.2.8 Security Gateway ...18
2.2.9 Application Assurance ..19
2.2.10 WLAN Gateway ..20
2.2.11 Virtualized Residential Gateway..21
2.3 VSR Deployment Models ..22
2.3.1 Integrated Model..22
2.4 VSR Card and MDA Types..24
2.4.1 Card Types ..24
2.4.2 MDA Types..24
2.5 VSR Architecture ...26
2.5.1 Virtual Forwarding Path ...27
2.5.2 Control and Management Plane..27
2.5.2.1 Allocation of vCPUs for Control and Management Tasks27
2.6 VSR Networking ..28
2.7 VSR Software Packaging ...29

3 NFV Infrastructure Requirements ...31
3.1 Overview..31
3.2 Compute Server Hardware Requirements ..32
3.2.1 CPU and DRAM ..32
3.2.2 Intel QuickAssist Support ..32
3.2.3 Storage..33
3.2.4 NICs...33
3.2.4.1 Using SR-IOV..33
3.2.4.2 Using PCI Passthrough ..39
3.3 Compute Server Software Requirements..41
3.3.1 BIOS Settings ..41
3.3.2 NUMA..43

4

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

3.3.2.1 NUMA Topology ..43
3.3.2.2 Assessing NUMA Layout and Processes ..45
3.3.2.3 Prepare VMs for Using NUMA...46
3.3.3 Hyper-Threading..47
3.3.4 CPU Isolation...48
3.3.5 Host OS and Hypervisor..48
3.3.5.1 Linux KVM Compute Hosts ...48
3.3.5.2 VMware ESXi ...59
3.3.6 Data Center Networking ..59

4 VSR Software Licensing ..61
4.1 Overview..61
4.2 VSR-I License Keys...62
4.3 Feature Licenses ...63
4.4 Checking the License Status ...65

5 Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack ...67

5.1 Introduction ...67
5.2 Deploying and Managing VSR VMs Using Libvirt68
5.2.1 Libvirt Domain XML Structure..69
5.2.1.1 Domain Name and UUID...70
5.2.1.2 Memory..70
5.2.1.3 Guest Memory Backing ...71
5.2.1.4 vCPU ...72
5.2.1.5 Cputune...73
5.2.1.6 Numatune..74
5.2.1.7 CPU...74
5.2.1.8 Sysinfo...76
5.2.1.9 OS ...79
5.2.1.10 Hypervisor Features ..80
5.2.1.11 Clock..81
5.2.1.12 Devices..81
5.2.1.13 Seclabel...92
5.2.2 Example Libvirt Domain XML ..92
5.2.3 Verifying VSR Installation on Linux KVM Hosts ..93
5.2.3.1 Overview..93
5.2.3.2 Verifying Host Details ..94
5.2.3.3 Verifying the Creation of VMs..98
5.2.3.4 Verifying Host Networking ...99
5.2.3.5 Verifying VSR Installation ..100
5.3 Deploying and Managing VSR VMs using OpenStack............................104
5.3.1 OpenStack Overview...104
5.3.2 Basic OpenStack Installation...105
5.3.3 Preparing the OpenStack Environment for VSR VMs106
5.3.3.1 Optimize BIOS and Linux Kernel Settings of Compute Nodes................106
5.3.3.2 Adjust Compute Node Resource Allocation ..106
5.3.3.3 Adjust Nova Scheduler Parameters ..107

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Issue: 01 3HE 15837 AAAA TQZZA 01 5

5.3.3.4 (Optional) Enable SR-IOV on OpenStack Controller and Compute
Nodes ..107

5.3.3.5 (Optional) Create Volume Drives using OpenStack Cinder.....................109
5.3.3.6 Create Nova Flavors Appropriate for VSR VMs109
5.3.3.7 Add VSR Images to OpenStack ..110
5.3.3.8 Create Neutron Networks, Subnets, and Ports111
5.3.3.9 Create Security Groups ...113
5.3.4 Deploying a VSR Instance Using OpenStack CLI114
5.3.4.1 Create VMs..114
5.3.5 Deploying a VSR Instance Using OpenStack HEAT...............................115
5.3.5.1 Introduction to OpenStack HEAT ..115
5.3.5.2 Overview of a VSR HEAT Template..116
5.3.5.3 Create the HEAT Stack ...118

6 Deploying VSR-I on VMware ESXi Hosts..................................121
6.1 VMware Overview ...121
6.2 VMware ESXi Host Setup..122
6.2.1 Optimize BIOS and Host Settings ...122
6.3 Deploying the VSR-I vApp using vCloud Director123
6.3.1 vCD Requirements for OVA Onboarding...125
6.3.1.1 Create Networks..125
6.3.2 vApp Installation Steps Through vCD..125
6.3.2.1 VSR-I OVA Onboarding to the vCD Catalog ...125
6.3.2.2 Deploy the VSR-I vApp..127
6.4 Instantiating a VSR-I using vSphere Web Client135
6.4.1 Connect to the vCenter Server ..135
6.4.2 Create Networks..137
6.4.3 Create the VSR-I VM...150
6.4.4 Customizing the VSR-I VM..160
6.4.4.1 Set Latency Sensitivity ..160
6.4.4.2 Set NUMA Node Affinity ..161
6.4.4.3 Configure the SMBIOS Configuration String ...162
6.4.4.4 Configure CPU Pinning for Deployment on a Hyper-Threaded

Host ...163
6.4.5 Start the VSR-I VM..165

7 Virtual Machine Configuration Parameters167
7.1 VMs Deployed on KVM Compute Hosts..167
7.1.1 Virsh Command Line and Libvirt Domain XML File.................................167
7.1.2 OpenStack...168
7.2 VMs Deployed on a VMware ESXi 6.0 or 6.5 Compute Host using

vSphere ...171
7.3 Intel QuickAssist ..173

8 VSR-I Lifecycle Management Using CBAM175
8.1 Overview..175
8.2 Introduction to CBAM ..176
8.3 Lifecycle Management Actions Supported for VSR-I VNFs178
8.4 VSR-I VNF Package Design..180

6

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

8.4.1 VNFD Metadata and Properties ..181
8.4.2 VNFD External Connection Points ..182
8.4.3 VNFD Deployment Flavors..182
8.4.4 VNFD Instantiation Level...183
8.4.5 VNFD Extensions ..183
8.4.6 VNFD Node Templates ...185
8.5 VSR-I Lifecycle Management Using CBAM ..186
8.5.1 On-board the VSR-I VNF Package..186
8.5.2 Create the VNF..186
8.5.3 Modify the VNF Information...187
8.5.4 Instantiate the VNF..187
8.5.5 Terminate the VNF ..189
8.5.6 Heal the VNFC ..189

9 VSR Troubleshooting ...191
9.1 Overview..191
9.2 Collecting Linux KVM Host Information ...194
9.2.1 Collecting Information at Host Bootup ...194
9.2.1.1 BIOS Settings of the Host Machine ...194
9.2.2 Collecting Information Before Any VSR VMs Are Running195
9.2.2.1 Used and Available Huge Pages (VMs Not Running)195
9.2.3 Collecting Information When the Host OS Is Running, Whether or

Not VSR VMs Are Running ..196
9.2.3.1 Linux OS Distribution and Version...196
9.2.3.2 Linux Kernel Version ...197
9.2.3.3 PCI Slots in the Host Machine...198
9.2.3.4 CPU Mapping to NUMA Nodes ...199
9.2.3.5 NIC Driver and Firmware Details...200
9.2.3.6 Host Interface Details ..204
9.2.3.7 Optical Transceiver Details..204
9.2.4 Collecting Information After VSR VMs Are Running................................206
9.2.4.1 NUMA Information ...206
9.2.4.2 Used and Available Huge Pages (VMs Running)....................................208
9.2.4.3 Kernel Messages...208
9.2.4.4 MTU Information..209
9.2.5 Collecting Information When the VSR Is Running and Under Load209
9.2.5.1 VSR Control Plane CPU Utilization ..209
9.2.5.2 VSR Data Plane CPU Utilization ...210
9.2.5.3 Host Machine CPU Utilization (HTOP) ..211
9.2.5.4 NIC Packet Drops..212
9.2.5.5 OVS Statistics..214
9.2.5.6 Packet Captures ..216
9.2.5.7 Insufficient VM Memory ...216
9.3 Troubleshooting Common Problems...217
9.3.1 vCPUs Not Pinned or Isolated...217
9.3.2 Insufficient CPU Resources...217
9.3.2.1 Control Plane CPU Resources ..218
9.3.2.2 Data Plane CPU Resources ..218
9.3.3 Incorrect Hyper-threading Settings..219

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Issue: 01 3HE 15837 AAAA TQZZA 01 7

9.3.4 Incorrect NIC Driver or Firmware Versions in the Host219
9.3.5 Incorrect MTU Settings..220
9.3.5.1 SR-IOV MTU Settings ...220
9.3.5.2 Linux Bridge MTU Settings..221
9.3.6 NUMA Misalignment..221
9.3.7 Insufficient Packet Buffer Memory...222
9.3.7.1 NIC Packet Drops..222
9.3.8 Insufficient VM Memory ...222

Appendices .. 223

Appendix A: VSR Glossary of Key Terms ...225

8

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Getting Started

Issue: 01 3HE 15837 AAAA TQZZA 01 9

1 Getting Started

1.1 About This Guide

This guide describes how to install and set up the Nokia Virtualized Service Router
(VSR).

The VSR software is designed to run on x86 virtual machines (VMs) deployed on
industry standard Intel servers. The following applications (network functions) are
supported by VSR software:

• Application Assurance (AA)
• BGP Route Reflection (RR)
• Broadband Network Gateway (BNG)
• Data Center Gateway (DCGW)
• L2TP Network Server (LNS)
• MAP-T Border Relay (MAP-T BR)
• Network Address Translation (NAT)
• Provide Edge (PE)
• Security Gateway (SeGW)
• WLAN Gateway (WLAN-GW)
• Virtualized Residential Gateway (vRGW)

Command outputs shown in this guide are examples only; actual outputs may differ
depending on supported functionality and user configuration.

This guide is organized into functional chapters and includes:

• a functional overview of the VSR and a description of the VSR system
architecture

• general requirements for the NFV infrastructure (NFVI) supporting VSR VMs
• procedures to instantiate VSR VMs on KVM compute hosts using libvirt or

OpenStack
• procedures to instantiate VSR VMs on VMware ESXi compute hosts using

vCloud Director or the vSphere Web client
• an overview of lifecycle management of VSR VMs by the CloudBand Application

Manager (CBAM)
• troubleshooting procedures for common VSR problems

Getting Started

10

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

1.1.1 Audience

This guide is intended for network administrators who are responsible for the initial
setup of the VSRs on a standard NFVI. It is assumed that the network administrators
have an understanding of the following:

• x86 hardware architecture
• Linux system installation, configuration, and administration methods
• VMware basics
• OpenStack basics
• basic XML syntax
• SR OS CLI
• networking principles and configurations

1.1.2 VSR and SR Technical Publications

After the installation process of the required VSR product is completed, refer to the
VSR and SR technical publications as listed in the VSR Documentation Suite
Overview Card, part number 3HE 15075 AAAx TQZZA. These documents contain
information about the software configuration and the command line interface (CLI)
that is used to configure network parameters and services.

Note: This guide generically covers Release 20.x.Rx. content and may contain some
content that will be released in later maintenance loads. Not all information described in the
SR OS guides listed in the VSR Documentation Suite Overview is applicable to the VSR.
Please refer to the SR OS 20.x.Rx. Software Release Notes, part number 3HE 16194 000x
TQZZA, for information about features supported in each load of the Release 20.x.Rx.
software.

Note: For information about the virtualized 7750 SR and 7950 XRS simulator (vSIM), refer
to the vSIM Installation and Setup Guide.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Getting Started

Issue: 01 3HE 15837 AAAA TQZZA 01 11

1.2 VSR Installation and Setup

This guide is presented in an overall logical configuration flow. Each section
describes the tasks for a functional area.

Table 1 lists the general tasks and procedures necessary to install and set up a
Nokia Virtualized Service Router (VSR) VM on either a Linux KVM or VMware ESXi
host machine in the recommended order of execution.

Table 1 VSR Installation and Configuration Workflow

Task Description See

Installing the host
machine

Set up and install the host machine,
including the host operating system.

• Host OS and Hypervisor

Installing the virtualization
packages

Install the necessary virtualization
packages on the host machine.

• Linux KVM Compute Hosts
• VMware ESXi

Optimizing BIOS and host
OS

Optimize BIOS and host OS settings
for VSR deployment.

• BIOS Settings
• Kernel Parameters
• Optimize BIOS and Host Settings

Configuring host
networking

Configure host networking (NICs,
network interfaces, vSwitch).

• VSR Networking
• Linux vSwitch Implementations
• Data Center Networking
• Host Devices and PCI Passthrough
• Network Interfaces
• Guest vNIC Mapping in VSR VMs

Downloading the software
image

Download the SR OS software image. • VSR Software Packaging

Obtaining the license keys Obtain the software license keys from
Nokia.

• VSR Software Licensing

VM resource
requirements

Determine resource requirements for
the VM.

• Memory
• Guest Memory Backing
• vCPU

Creating configuration
files

If required, create configuration files
for the VM. The exact format of the
configuration files depends on the
method of installation.

• Deploying VSR on Linux KVM Hosts
Using Libvirt or OpenStack

Getting Started

12

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

Launching the VM Launch the VSR VM. • Deploying VSR on Linux KVM Hosts
Using Libvirt or OpenStack

• Deploying VSR-I on VMware ESXi
Hosts

Verifying the installation Verify the VSR VM installation. • Verifying VSR Installation on Linux
KVM Hosts

Configuring VMs Configure VM parameters as
necessary.

• Virtual Machine Configuration
Parameters

Managing the Lifecycle of
the VM

Customize the VSR-I template
package for a specific NFVI
environment and manage the lifecycle
of a VSR-I instance using CBAM.

• VSR-I Lifecycle Management Using
CBAM

Table 1 VSR Installation and Configuration Workflow (Continued)

Task Description See

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR Overview

Issue: 01 3HE 15837 AAAA TQZZA 01 13

2 VSR Overview

2.1 VSR Overview

The Nokia Virtualized Service Router (VSR) is a carrier grade network function
virtualization (NFV) platform based on the industry-leading SR OS software that
powers the 7750 SR and 7950 XRS routers. NFV enables network functions that
previously depended on custom hardware to be deployed on commodity hardware
using standard IT virtualization technologies. For network operators, the benefits of
NFV include:

• reduced CAPEX by using industry-standard hardware that is potentially easier
to upgrade

• reduced OPEX (space, power, cooling) by consolidation of multiple functions on
fewer physical platforms

• faster and simpler testing and rollout of new services
• more flexibility to scale capacity up or down, as needed
• ability to move or add network functions to a location without necessarily

needing new equipment

2.1.1 VSR Concept

The VSR software is designed for a standard virtualization environment in which the
hypervisor software running on a host machine (compute server) creates and
manages one or more VMs that consume a subset of the host machine resources.
Each VM is an abstraction of a physical machine with its own CPU, memory, storage,
and interconnect devices. Each VSR system forms a Virtual Network Function (VNF)
running an x86-optimized version of the SR OS software, and made up of one or
more VNF components (VNF-C) spanning one or more compute servers.

In virtualization terms, SR OS is the guest operating system of each VSR VM. VSR
VMs can be deployed in combination with other VMs on the same server, including
VMs that run guest operating systems other than SR OS.

VSR Overview

14

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

Figure 1 shows the general concept of a VSR.

Figure 1 VSR Concept

The host machine supporting a VSR VM is a generalized compute x86-based server
such as the Nokia Airframe line of servers.

The host machine must run the Linux KVM or ESXi hypervisor software, which
support all VSR applications and are compatible with the VSR software.

See NFV Infrastructure Requirements for detailed information about the minimum
requirements of the host server and the supported hypervisors for the VSR.

Note: Care must be taken not to over-subscribe host resources; VSR VMs must have
dedicated CPU cores and dedicated vRAM memory to ensure good stability and
performance. In addition, combining VSR VMs with other VMs that have intensive memory
access requirements on the same CPU socket should be generally avoided for performance
and stability reasons.

VSR
TASKS

SR OS

HYPERVISOR

HOST OS

HOST MACHINE

HOST APP

VIRTUAL
CPU

VIRTUAL
DISK

VIRTUAL
MEMORY

VIRTUAL
NIC

APP1 APP3APP2

GUEST O/S

VSR Other VM

VIRTUAL
CPU

VIRTUAL
DISK

VIRTUAL
MEMORY

VIRTUAL
NIC

25308

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR Overview

Issue: 01 3HE 15837 AAAA TQZZA 01 15

2.2 VSR Network Functions

VSR currently supports the following network functions:

• BGP Route Reflector
• Broadband Network Gateway
• L2TP Network Server
• Network Address Translation
• MAP-T Border Relay
• Provider Edge Router
• Data Center Gateway
• Security Gateway
• Application Assurance
• WLAN Gateway
• Virtualized Residential Gateway

The VSR is a single product consisting of a single software image. The NFV
functions described in this section can be deployed in isolation or in combination with
each other on one VSR system. The allowed functions are determined by the
software licenses described in VSR Software Licensing.

2.2.1 BGP Route Reflector

When configured as a BGP Route Reflector (RR), a VSR system supports the
following features:

• IGP protocols
• static routes
• iBGP client-to-client, client-to-nonclient, and nonclient-to-nonclient reflection
• multi-protocol BGP (all address families supported by SR OS)
• route policies
• disable route table install
• convergence optimizations with SMP
• optimal route reflection

When used as a dedicated RR, the VSR must be deployed as an integrated model;
see Integrated Model for more information.

VSR Overview

16

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

2.2.2 Broadband Network Gateway

When configured as a Broadband Network Gateway (BNG), a VSR system supports
the following features:

• routed CO model of Enhanced Subscriber Management (ESM) on numbered
subscriber-interface and group-interface

• dual-stack IPoE subscriber management (DHCPv4/v6, SLAAC)
• dual-stack PPPoE sessions
• Static SAP and MSAP
• 1:1 and N:1 VLANs
• managed routes (IPv4/IPv6)
• subscriber authentication using LUDB and RADIUS
• dynamic QoS overrides
• dynamic filter overrides
• accounting per session/host/SPI
• LAG for subscriber access
• HTTP redirect
• H-QoS for subscriber hosts
• subscriber LI using UDP or GRE encapsulation
• data-triggered SAPs and ESM hosts (stateless redundancy)
• L2TP LAC
• credit control by way of category-maps

2.2.3 L2TP Network Server

When configured as a L2TP Network Server (LNS), a VSR system provides L2TP
tunnel functionality and subscriber management features. The following features are
supported:

• L2TP tunneling
• L2TP tunnel accounting
• IPv4 and IPv6 subscriber management
• subscriber accounting
• VPRN support

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR Overview

Issue: 01 3HE 15837 AAAA TQZZA 01 17

2.2.4 Network Address Translation

When configured for Network Address Translation (NAT), a VSR system supports
key features including:

• LSN44 (deterministic and non-deterministic)
• NAT64
• DS-Lite
• L2-Aware NAT in conjunction with BNG functionality
• UPnP for L2-aware NAT
• LI for NAT

2.2.5 MAP-T Border Relay

When configured as a MAP-T Border Relay, a VSR system supports the following
features:

• hub-and-Spoke model
• hull routing support (IS-IS, BGP, OSPF, RIP)
• upstream MAP-T anti-spoof
• multiple MAP-T domains in the same routing context
• upstream and downstream fragmentation
• MSS adjust and MTU support per domain
• forward/drop statistics collection per domain

- fragmentation statistics
- logging

2.2.6 Provider Edge Router

When configured as a Provider Edge router (PE), a VSR system can deliver Layer-
2 and Layer-3 VPNs, as well as Internet access.

As a PE router, the VSR supports the following features:

• IPv4 and IPv6 routing protocols and routing policies: Static, RIP, RIPng,
OSPFv2, OSPFv3, BGP, MP-BGP, IS-IS

VSR Overview

18

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

• IPv4 and IPv6 multicast protocols: IGMP, MLD, PIM, and MSDP
• Ethernet Virtual Private Wire Services (VPWS)
• Ethernet Virtual Private LAN Services (VPLS), including routed VPLS (R-VPLS)
• IPv4 and IPv6 unicast VPNs (RFC 4364), including inter-AS models A and B
• IPv6 over IPv4 MPLS LSPs (6PE)
• point-to-point MPLS LSPs, signaled using LDP, RSVP, or BGP
• segment routing
• OAM tools: ping, trace, BFD
• IPv4 and IPv6 interface filters (ingress and egress)
• QoS classification
• ingress and egress traffic policing, including support for H-Pol
• egress traffic queuing and scheduling
• traffic mirroring to and from SAP and spoke-SDP interfaces
• Network Group Encryption (NGE) for SDPs, VPRNs, and router interfaces

2.2.7 Data Center Gateway

When configured as a Data Center Gateway (DCGW), a VSR system can
interconnect EVPN-signaled VPNs in the data center to WAN services.

As a DCGW, the VSR supports the following features:

• VLL and VPLS services using BGP-EVPN signaling and VXLAN/IPv4 transport
• VLL and VPLS services using BGP-EVPN signaling and MPLS transport (LDP,

RSVP, MPLSoUDP)
• VLL service using static VXLAN/IPv4 transport
• Nuage VSD integration using XMPP (fully dynamic model and static-dynamic

model)

2.2.8 Security Gateway

When configured as a Security Gateway (SeGW) and with the application of
appropriate software licenses (ASLs), a VSR system supports the following features:

• IKEv1 static/dynamic LAN-to-LAN tunnel with pre-shared key authentication
• IKEv1 remote-access tunnel with plain-xauth-psk authentication

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR Overview

Issue: 01 3HE 15837 AAAA TQZZA 01 19

• IKEv2 static/dynamic LAN-to-LAN tunnel and remote-access tunnel
• IKEv2 tunnel authentication method: psk/psk-radius/cert-auth/cert-radius/eap/

autoeap/auto-eap-radius
• IKEv2 remote-access tunnel internal address assignment methods: RADIUS

local address pool/external DHCPv4/v6 server
• encryption algorithm: DES/3DES/AES
• authentication algorithm: MD5/SHA1/SHA256/SHA384/SHA512
• Diffie-Hellman Group: 1/2/5/14/15
• Perfect Forward Secrecy
• NAT-T support
• IPv4 and IPv6 support
• multi-chassis (using a SAP or network interface to shunt traffic)
• IKEv2 fragmentation

- client lockout
- auto CRL update
- TCP MSS Adjust

2.2.9 Application Assurance

The Application Assurance (AA) SR OS feature set is enabled on the VSR with
appropriate software licenses (ASLs). The AA is offered as an enhancement option
to the VSR roles of PE, BNG, LNS, and SeGW.

When the AA feature set is enabled, the VSR uses AA (on a base PE configuration)
to allow deployment as a standalone transit-AA DPI VNF. The following AA features
are supported by the VSR in the current release:

• AA use cases
- DNS-Ip-Cache
- AA policers (all types)
- AA http-redirect
- http-notification (IBN)
- http-enrichment
- url-filter url-list for local URL filtering

• AA group partition features
- AA radius-accounting
- AA event-log (syslog export)

VSR Overview

20

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

- stateful FW (gtp, gtp-filter, sctp-filter, session-filter)
- AA policy application/AG/ASO/app-filter, signatures
- AA policy charging-groups
- AA transit-ip (IPv4/IPv6)
- AA transit prefix lists

• statistics
- All AA XML and IPfix stats records export

• AA Hi/Lo resource watermark alarms
• AARP - local protection
• AA support on the following services:

- Epipe SAP and spoke-SDP (MPLS+GRE)
- VPLS SAP and spoke-SDP
- IES/VPRN SAP
- IES/VPRN ESM (in BNG or WLGW application)
- IES/VPRN IPSec Private SAP (in PE or SeGW application)
- AA tunnel support (DS-Lite, 6RD/6to4, Teredo, GRE)

• AA signatures configuration-only upgrade without VSR system upgrade

2.2.10 WLAN Gateway

When configured as a WLAN Gateway (WLGW), a VSR system supports the
following features:

• access over soft-GRE, soft-L2TPv3, and L2-AP
• dual-stack sessions (DSM and ESM)
• central and distributed RADIUS-Proxy for EAP
• L2-aware NAT
• HTTP-redirect (vFP and ISA based)
• migrant user support
• data-triggered mobility
• data-triggered UE creation (IPv4 ESM, IPv4/IPv6 DSM)
• L2-wholesale
• control plane triggered mobility
• inter WLAN-GW redundancy

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR Overview

Issue: 01 3HE 15837 AAAA TQZZA 01 21

2.2.11 Virtualized Residential Gateway

When configured as a Virtualized Residential Gateway (vRGW), a VSR system
supports the following features:

• access over Soft-GRE, soft-L2TPv3 and L2-AP using WLAN-GW group
interfaces
- per-home DHCP pool allocation, with support for sticky and static hosts
- implicit and explicit per home (BRG) authentication
- L2-aware NAT with UPnP support and IPv6 SLAAC/IA_NA support
- data-triggered host creation (IPv4)

VSR Overview

22

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

2.3 VSR Deployment Models

The VSR can be deployed only as an integrated model (VSR-I). In releases prior to
Release 19.5.R1, VSR could also be deployed as a distributed model (VSR-D).

2.3.1 Integrated Model

The integrated VSR model uses a single VM to represent a network element. All
functions and processing tasks of a network element, including control, management
and data plane are performed by the resources of the single VM.

An integrated VSR model supports vertical scale-up or scale-down (by adding or
removing VM resources). Increase the scale of an integrated system by adding
virtual CPUs and virtual memory to the VM. However, such changes require the VM
to be shut down and restarted.

It may be necessary to deploy multiple integrated model VSR systems to achieve the
necessary scale or redundancy for a specific application.

From a configuration perspective, an integrated VSR is modeled as a chassis with
one slot. The slot is equipped with the cpm-v card type that maps one-to-one with the
VM. The VSR shows a chassis type of VSR-I.

When a cpm-v card is installed in the VSR-I chassis, it loads the both.tim software
image, which presents the view that the VSR-I system has two slots:

• an “A” slot running control plane and management tasks
• a “1” slot running datapath tasks

In a VSR-I system, Slot “1” has four MDA slots that are numbered 1 through 4. Each
MDA slot can be equipped with any of the supported VSR MDAs described in MDA
Types subject to the following limitations:

• maximum of four 20-port I/O MDAs
• maximum of one virtualized ISA-AA
• maximum of one virtualized ISA-BB
• maximum of one virtualized ISA-tunnel

Figure 2 shows the general concept of a VSR integrated model. In this example, one
server is running a hypervisor that supports three VMs; two of these VMs are
allocated to VSR-I instances and the VMs appear as two distinct systems externally.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR Overview

Issue: 01 3HE 15837 AAAA TQZZA 01 23

Figure 2 VSR Integrated Model

VM 1
VSR-I system N1

Guest O/S = SR OS
vCPUs = 4
vMem = 4GB

VM 2
VSR-I system N2

Guest O/S = SR OS
vCPUs = 6
vMem = 8GB

VM 3

Guest O/S = Other
vCPUs = 1
vMem = 2GB

Hypervisor

Host O/S

Server

25777

VSR Overview

24

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

2.4 VSR Card and MDA Types

This section describes the types of cards and MDAs modeled by the VSR.

2.4.1 Card Types

The VSR supports the cpm-v card type. This is the only allowed card type in a VSR-I
system. When it is installed, the card loads the both.tim image and executes control,
management, and datapath tasks. The cpm-v card provides the VSR-I system with
4 MDA slots in a virtual slot 1. The MDA slots can be configured as described in
Integrated Model.

2.4.2 MDA Types

The following MDA types are supported in a VSR-I system.

• m20-v
The m20-v MDA provides 20 I/O ports. Each port is configurable as a network,
access, or hybrid port from the SR OS perspective.
Each port of the m20-v maps to one vNIC interface of the VSR-I. The default
speed of each m20-v MDA port (from the SR OS guest perspective) is 40 Gb/s;
however, the speed can be changed through config>port>ethernet>speed.
Allowable values are 1 Gb/s, 10 Gb/s, 25 Gb/s, 40 Gb/s, 50 Gb/s and 100 Gb/s.
Auto-negotiation of the speed with the remote end is not supported. The
operational speed affects only the rate of egress traffic on the port, not the rate
of ingress traffic. A maximum of four m20-v MDAs are supported on a VSR-I.

• isa-aa-v
The isa-aa-v MDA adds Application Assurance processing capabilities to the
VSR-I.
A maximum of one isa-aa-v MDA is supported by the VSR-I.

• isa-bb-v
The isa-bb-v MDA adds NAT, LNS, WLGW and other processing capabilities to
the VSR-I.
A maximum of one isa-bb-v MDA is supported by VSR-I.
WLGW features require the isa-bb-v MDA to be configured in the mda/1 slot of
the VSR-I.

• isa-tunnel-v

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR Overview

Issue: 01 3HE 15837 AAAA TQZZA 01 25

The isa-tunnel-v MDA adds IPSec and IP/GRE tunnel termination capabilities to
the VSR.
A maximum of one isa-tunnel-v MDA is supported by the VSR-I.

VSR Overview

26

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

2.5 VSR Architecture

The VSR architecture is similar to the physical Nokia SR-series routers. Table 2
summarizes the similarities and important differences between a physical SR-series
router and a VSR system.

Note: The VSR VMs support both control plane processing and datapath functions; this
behavior is similar to the CPM and IOM functions supported by a single card in some
physical SR routers.

Table 2 Function Comparison between SR-series Routers and VSR

Function in SR-series router Function in VSR

CPMs manage the system in an SR-series
router and run control plane protocols.
SMP distributes the workload over multiple
CPU cores, if available.

The VMs manage the VSR system and run
control plane protocols such as OSPF and
BGP. SMP distributes the workload over
multiple CPU cores, if available.

The CPMs of some SR-series routers use
P-chips or Q-chips, which allow support of
specific features at higher scale or
performance.

The VSR does not have an equivalent of
P-chips or Q-chips. Specific features (for
example, centralized BFD) are supported
with lower scale and performance, or not
supported on the VSR (for example, CPM
filtering, and Ethernet OAM). Refer to the
SR OS 20.x.Rx. Software Release Notes
for a complete list of supported features.

CPMs download configuration and state
information to the IOMs. The messaging is
reliable and uses the fabric.

The VMs download configuration and state
information.

The IOMs support local control plane
(LCP) software tasks to accomplish the
following:

• programming the fastpath (for
example, FIB updates)

• collecting and sending statistics
• controlling ISA applications

The VSR supports LCP software tasks to
accomplish the following:

• programming the fastpath (for
example, FIB updates)

• collecting and sending statistics
• controlling ISA applications

The P network processor and Q queuing
chips of the IOM (or equivalent card type)
handle fastpath forwarding and packet
queuing.

The VSR supports software tasks that
handle fastpath forwarding and packet
queuing. See Virtual Forwarding Path for
information about the VSR software tasks.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR Overview

Issue: 01 3HE 15837 AAAA TQZZA 01 27

2.5.1 Virtual Forwarding Path

The forwarding-related fastpath functions on the hardware-based SR-series routers
are implemented by the P-chip and the Q-chip. The P-chip network processor
handles functions such as filtering, classification, policing, header field lookups, and
manipulation. The Q-chip handles real-time queuing and scheduling decisions. The
P-chip and Q-chip are programmed by the LCP control code that runs on the
general-purpose CPU of the IOM.

Because the VSR does not have a P-chip or Q chip, the forwarding-related fastpath
functions are implemented in software. The virtual forwarding path (vFP) of the VSR
is a rewrite of the P-chip and Q-chip code to take advantage of x86 CPU instructions
and memory architecture. The vFP uses the same programming APIs as the P-chip
and Q-chip to maximize feature portability.

2.5.2 Control and Management Plane

2.5.2.1 Allocation of vCPUs for Control and Management Tasks

The number of vCPUs available for control and management plane tasks (such as
OSPF, BGP, and SNMP) depends on the system configuration.

In a VSR-I system, the number of cores available for both CPM control and IOM
control functions usually defaults to one. In cases where an ISA is installed and the
VM has a total of three or more vCPUs, the default number of control cores is two.

The default number of control cores does not provide sufficient computational power
for some VSR applications. More vCPUs can be reserved for the control plane by
using the control-cpu-cores SMBIOS parameter. See Sysinfo for more information
about control-cpu-cores and other SMBIOS parameters.

Packet forwarding fastpath is implemented
by the P-chip and Q-chip of the IOM, and
the ISA function fastpath is implemented
by software running on the ISA hardware.

The VSR supports ISA-related processing
in-line in the fastpath. In other words, ISA-
related processing is performed as part of
the packet-forwarding pipeline.

Table 2 Function Comparison between SR-series Routers and VSR

Function in SR-series router Function in VSR

VSR Overview

28

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

2.6 VSR Networking

A VSR VM can have one or more virtual NIC ports. Depending on the hypervisor,
each VSR vNIC port can be configured to use one of the following virtualized I/O
technologies:

• SR-IOV, supported with both Linux KVM and VMware ESXi
• PCI passthrough, supported with both Linux KVM and VMware ESXi
• VirtIO, supported with Linux KVM only
• VMXNET3, supported with VMware ESXi only
• E1000, supported with both Linux KVM and VMware ESXi

In the VirtIO, VMXNET3, and E1000 models, the virtual NIC port is internally
connected to a logical interface within the host. The logical host interface may map
directly to a physical NIC port/VLAN or it may connect to a vSwitch within the host. If
a vNIC port is connected to a vSwitch, a physical NIC port/VLAN must be added as
a bridge port of the vSwitch to enable traffic to reach other hosts.

In the SR-IOV and PCI passthrough models, the guest directly connects its virtual
NIC interface to a host PCI device corresponding to an entire physical NIC port or a
slice of a physical NIC port (SR-IOV virtual function). This mostly bypasses the
hypervisor and host OS networking stack and enables very fast data transfer with the
help of Intel Virtualization Technology for Directed I/O (VT-d) or I/O Memory
Management Unit (IOMMU) technology.

The number of virtual NIC ports supported by each VSR VM and the constraints on
the virtualized I/O model for each vNIC port depend on the VSR VM type and
hypervisor.

In a VSR-I, the VM must be assigned a minimum of 1 and a maximum of either 10
vNIC ports (with VMware ESXi) or 16 vNIC ports (with Linux KVM). The first vNIC
port (by lowest PCI bus/device/function address in the guest) must use either VirtIO
or E1000 depending on whether the hypervisor in KVM or VMware ESXi. The
remaining vNIC ports can be any combination of the supported technologies for the
hypervisor.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR Overview

Issue: 01 3HE 15837 AAAA TQZZA 01 29

2.7 VSR Software Packaging

The VSR software is available for download from OLCS as a ZIP file with a name
such as Nokia-VSR-VM-20.x.zip. The ZIP archive file contains two OVA archive files
and a QCOW2 disk image file.

The sros-vsr.ova archive file is used for onboarding a VSR-I VM into a VMware
environment. This OVA contains an OVF descriptor file and a VMDK disk image
containing the VSR software. The OVA file can be used to instantiate a VSR-I VM
using either vCloud Director or the vSphere Web Client interacting with a vCenter
Server.

The sros-vm.qcow2 disk image should be used when creating VSR-I VMs on Linux
KVM machines using libvirt or OpenStack.

Note: Do not use the sros-vm.ova file. This OVA should only be used for vSIM (virtualized
7750 SR and 7950 XRS simulator) deployments. Refer to the vSIM Installation and Setup
Guide for more information.

Note: TIMOS content is created under the cf3:/TIMOS directory. This location cannot be
edited.

https://support.alcatel-lucent.com/portal/web/support

VSR Overview

30

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

NFV Infrastructure Requirements

Issue: 01 3HE 15837 AAAA TQZZA 01 31

3 NFV Infrastructure Requirements

3.1 Overview

This chapter describes the network functions virtualization (NFV) infrastructure that
must be in place to support VSR VMs. The NFV infrastructure includes compute
servers (host machines), storage solutions, networking devices, and the software
that runs on these components to support virtualization.

The NFV infrastructure is typically deployed in a data center and may be managed
by a cloud management platform such as OpenStack, but this is not required.

Note: For recommendations about VSR deployment in an OpenStack environment, see
Deploying VSR on Linux KVM Hosts Using Libvirt or OpenStack.

Information about other cloud management platforms is beyond the scope of this guide.

NFV Infrastructure Requirements

32

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

3.2 Compute Server Hardware Requirements

This section describes the compute server hardware requirements.

3.2.1 CPU and DRAM

Nokia recommends the deployment of VSR VMs using Airframe servers. However,
VSR VMs can be deployed on any server that is powered by one or two of the
following CPU models:

• Intel Xeon E5-26xx-v2 (Intel Ivy Bridge)
• Intel Xeon E5-26xx-v3 (Intel Haswell)
• Intel Xeon E5-26xx-v4 (Intel Broadwell-EP)
• Intel Xeon 5xxx/6xxx/8xxx Gold or Platinum (Intel Skylake-SP)

The server should be equipped with sufficient DRAM memory to meet the memory
requirement of the host and have adequate resources to back the memory of each
guest VM without oversubscription. See Memory and Guest Memory Backing for
more information.

3.2.2 Intel QuickAssist Support

VSR supports IPsec fastpath offloading using Intel QuickAssist (QAT) hardware. The
system automatically detects and utilizes the hardware if it is made available to the
VSR; when enabled, the system uses the QAT hardware for ESP packet encryption
or decryption.

VSR supports following QAT hardware on KVM hypervisor via SR-IOV:

• Intel PCH chipset C627/C628
• Intel QuickAssist Adapter 8970

Using QAT offloading is optional; if QAT is not provisioned, VSR uses CPU for IPsec
fastpath processing.

Note: VSR deployment is not supported on servers powered by AMD or ARM CPUs.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

NFV Infrastructure Requirements

Issue: 01 3HE 15837 AAAA TQZZA 01 33

3.2.3 Storage

Under normal circumstances (without extensive storage of log and accounting files),
each VSR VM needs less than 10 Gbytes of persistent storage in total across all
virtual disks (CF1, CF2 and CF3).

Each virtual disk allocated to a VSR VM must be backed by either a disk image
stored on the local host machine or a network-attached block storage device. Each
virtual disk must be made to appear to the VSR VM as an IDE hard drive.

3.2.4 NICs

When the VSR VM uses a VirtIO, E1000, or VMXNET3 driver for one of its vNIC
interfaces (ports), the abstraction provided by the hypervisor allows any type of
physical NIC to be used to transport the traffic associated with the vNIC interface.

To use the SR-IOV or PCI passthrough models, ensure that the physical NIC is
supported by VSR software for the type of hypervisor that is used. Refer to the SR
OS 20.x.Rx. Software Release Notes for a list of compatible NICs.

3.2.4.1 Using SR-IOV

Single root I/O virtualization (SR-IOV) is a PCI-SIG standard that allows a single root
function (a single physical Ethernet port) to appear as multiple separate physical
devices; each device is associated with its own PCIe function called a Virtual
Function (VF).

In an NFV host, the hypervisor can assign the VFs to VMs so that they appear as
vNIC interfaces to the guests. SR-IOV enables almost bare-metal I/O performance
because data is transferred directly using Direct Memory Access (DMA) between the
NIC hardware and guest memory (with address translation provided by Intel VT-d).

To use SR-IOV, the following prerequisites apply.

• The physical NIC must support SR-IOV.
• Both SR-IOV and Intel VT-d must be enabled in the BIOS (on a Linux KVM host,

use dmesg to check for dmar: kernel messages).

Note: CF3 has a maximum of 1.2 GB, even if the volume size is increased. CF1 or CF2,
which can be of larger sizes, must be used to add more storage.

NFV Infrastructure Requirements

34

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

• The IOMMU must be enabled in the host OS.
On a Linux KVM host, this requires intel_iommu=on and iommu=pt to be
specified as kernel boot parameters (iommu=pt causes the DMA remapping to
be bypassed in the Linux kernel, improving host performance).

• SR-IOV must be activated on Linux Kernel (Intel) or driver levels (Mellanox).

The SR-IOV filtering rules implemented by the NIC depend on the hypervisor, the
physical NIC model, its firmware revision and the version of the host driver software.
All NICs should allow untagged Ethernet frames with a unicast MAC DA matching
the guest vNIC interface MAC address to pass through. However, more advanced
cases may not work. For example, in SR-IOV mode it may not be possible to send
or accept:

• Ethernet frames with a multicast MAC DA
• tagged Ethernet frames with the VLAN tag added or removed by the guest
• Ethernet frames with a MAC DA not matching the guest vNIC interface MAC

address (such as VRRP packets addressed to a virtual MAC address)

If any of these SR-IOV restrictions prove to be too limiting, consider PCI passthrough
as an alternative technology.

3.2.4.1.1 MTU Configuration

For SR-IOV, all capabilities are closely linked to the NIC and driver. The SR-IOV
Virtual Function (VF) inherits the MTU value from the Physical Function (PF)
associated with the NIC port.

When setting the MTU, perform the following steps in the order shown.

Note: When SR-IOV is used with Ethernet NICs, the technology can be very restrictive
about the types of Ethernet frames that can be delivered to the guest on receive or accepted
from the guest on transmit.

Note: If the internal MAC address is changed in a VM, traffic may become unidirectional.

Note: Performing these steps in a different order or changing the MTU on the PF, where the
VFs are already enabled, can result in issues that are difficult to troubleshoot. For example,
traffic flow may become unidirectional, independent of the size of transported packets.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

NFV Infrastructure Requirements

Issue: 01 3HE 15837 AAAA TQZZA 01 35

Step 1. Set the MTU on the PF (NIC).
Step 2. Configure the number of VFs on the PF.
Step 3. Start the VM.

3.2.4.1.2 Trusted Mode

Trusted mode can be enabled to allow a VM to change VF parameters, such as MTU
and VLAN. By default, the VF is in untrusted mode.

Trusted mode of a VF can be configured using the ip link set dev interface-name vf
VF-number trust on command for both Intel and Mellanox cards. Consider that this
command is not persistent.

3.2.4.1.3 Setting up Linux KVM Hosts to Use SR-IOV with Intel NICs

To enable SR-IOV for supported Intel 10GE NICs on a Linux KVM host, perform the
following steps.

1. Use the sysfs tool to set the number of VFs per physical port (PF). For
example, to create 30 VFs on the physical port corresponding to eth1, enter the
following command:
echo 30 > /sys/class/net/eth1/device/sriov_numvfs
The preceding sysfs configuration is not persistent across reboots on most
Linux distributions.

2. To make the configuration persistent, run a script after each reboot. It is beyond
the scope of this guide to describe all the scripting options, but some of the more
common methods include using systemd, crontab, and rc.local, as described
later in this section.

3. Use the lspci command to verify the creation of the VFs.
4. Prevent the host from binding its VF driver to the new VF devices as follows:

- Create or modify the /etc/modprobe.d/blacklist.conf file.
- Add the following lines to the blacklist.conf file:
blacklist ixgbevf

Note: As there is no single script or configuration file where all network options, such as
systemd, crontab, rc.local, or ifcfg-* are configured; these options could be used in a system
at the same time and could conflict. Use as few tools as possible to avoid such conflict.

NFV Infrastructure Requirements

36

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

Using systemd

The following is a sample script with three commands (any commands can be used).
This script is executed for three interfaces.

[root@vsr /]# more /root/activate_sriov.sh
#!/bin/bash
sriovinterfaces='ens6f0 em50 p1p1'
#------------- Tuning for selected interfaces
activate_sriov () {

for i in $sriovinterfaces
do

#------- Configure SR-IOV
echo 4 > "/sys/class/net/$i/device/sriov_numvfs"

#------- Configure Rx/Tx Ring Parameters
ethtool -G $i rx 4096 >/dev/null 2>&1
ethtool -G $i tx 4096 >/dev/null 2>&1
#------- Configure Tx Queue Length
ip link set dev $i txqueuelen 20000

done
}
#------------- __MAIN__
activate_sriov

To use systemd, perform the following steps.

Step 1. Create a new systemd unit file in the /etc/systemd/system
directory.

Step 2. In the [Service] section of the systemd unit file, invoke a bash script that
loops through all the SR-IOV physical NIC ports and executes the echo
<number-of-VFs>/sys/class/net/<physical-port>/device/
sriov_numvfs command.

Step 3. Ensure that the script is executable.
chmod +x /root/activate_sriov.sh

Step 4. Enable the systemd service using the systemctl enable new-service-
name command. An example systemd unit file is shown below.

[root@vsr ~]# more /etc/systemd/system/autostart_nokia.service
[Unit]
Description=Autostart Service
After=network.target
After=libvirtd.service
[Service]
Type=oneshot
User=root
ExecStart=/usr/bin/bash /root/activate_sriov.sh
Restart=no
[Install]
WantedBy=multi-user.target

Step 5. Activate the systemd service.
systemctl enable autostart_nokia.service

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

NFV Infrastructure Requirements

Issue: 01 3HE 15837 AAAA TQZZA 01 37

Created symlink from /etc/systemd/system/multi-user.target.wants/
autostart_nokia.service to /etc/systemd/system/autostart_nokia.service.

Using crontab

Use crontab to execute a bash script at reboot. Add a line that calls a bash script
at each reboot.

Using rc.local

Edit /etc/rc.d/rc.local to call a bash script. The bash script can loop through
all the SR-IOV physical NIC ports and execute the echo <number-of-VFs>/sys/
class/net/<physical-port>/device/sriov_numvfs command.

Using ifcfg-*

These ifcfg-* files can be edited to configure interfaces. These files are found in the
/etc/sysconfig/network-scripts/ directory.

3.2.4.1.4 Setting up Linux KVM Hosts to Use SR-IOV with Mellanox
ConnectX-4 and ConnectX-5 NICs

To support SR-IOV with supported Mellanox ConnectX-4 or ConnectX-5 NICs
installed in a Linux KVM host:

1. If necessary, download the latest MLNX_OFED software package from the
Mellanox website. Run the mlnxofedinstall installation script using an
appropriate set of options as guided by the Mellanox documentation.

2. Load the new driver as instructed by the installation script.

Note: While using the /etc/rc.local script, which is executed at boot time, is a common
solution, it is not recommended. If you open such file on your system, the following message
may be displayed.

It is highly advisable to create own systemd services or udev
rules# to run scripts during boot instead of using this file.

NFV Infrastructure Requirements

38

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

3. Run mlxfwmanager and record the PSID for the installed NIC card. This ID is
needed to search for the appropriate firmware on the Mellanox web site.

4. Download the firmware version recommended by Nokia; refer to the SR OS
20.x.Rx. Software Release Notes. Install the new firmware using a command
similar to the following:
mlxfwmanager_pci -i fw-ConnectX4-rel-12_16_1020-
0NHYP5_0XR0K2_Ax-FlexBoot-3.4.812.bin -u

5. Enable SR-IOV in the NIC firmware.
i. Load Mellanox Software Tools by running the mst start command.
ii. From the output of the preceding command, identify the correct device for

the NIC port that you are configuring.
For example, /dev/mst/mt4115_pciconf0.

iii. Query the status of the identified device:
mlxconfig -d /dev/mst/4115_pciconf0

iv. Enable SR-IOV on this device and set the maximum number of VFs for this
device in firmware by using the mlxconfig command. For example, to set a
maximum of 16 VFs, enter:
mlxconfig -d /dev/mst/4115_pciconf0 set SRIOV_EN=1
NUM_OF_VFS=16

v. To apply the new firmware settings, reset the card without reboot using the
mlxfwreset command. For example:
mlxfwreset --device /dev/mst/mt4115_pciconf0 reset

6. Enable SR-IOV in the MLNX_OFED driver.
i. Set the number of VFs per PF by using the sysfs tool.

For example, use one of the following commands to create VFs on the
physical port:

• echo 16 > /sys/class/infiniband/mlx5_0/device/
sriov_numvfs

This command creates 16 VFs on the physical port corresponding to
mlx5_0.

• echo 1 > /sys/class/net/ens6f0/device/sriov_numvfs
This command creates one VF on the physical port corresponding to
ens6f0.

Note: Consider that the server may need to be rebooted during this step.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

NFV Infrastructure Requirements

Issue: 01 3HE 15837 AAAA TQZZA 01 39

The preceding sysfs configuration is not persistent across reboots on most
Linux distributions; see Setting up Linux KVM Hosts to Use SR-IOV with
Intel NICs, for more information about making the configuration persistent.

ii. Verify the creation of the VFs using the lspci command.
iii. Verify the creation of the VFs using the ip link show command.

7. To bypass some of the SR-IOV restrictions mentioned in Using SR-IOV, it is
highly recommended to enable the “trust” setting for each VF, as shown in the
following examples:
- echo ON >/sys/bus/pci/devices/0000:03:00.0/sriov/1/
trust

- ip link set dev ens6f0 vf 1 trust on
Otherwise, the incoming and outgoing frames may be blocked if they do not
match the MAC address and VLAN ID specified in the configuration of the vNIC
interface.

3.2.4.2 Using PCI Passthrough

PCI passthrough is a virtualization technology that allows a PCI device of the host to
be assigned directly to a VM. When the assigned PCI device is a physical NIC port,
the guest controls the port using its own equivalent of the bare-metal NIC driver. In
“managed” mode, the PCI device is automatically detached from the host OS drivers
when the guest is started, then re-attached when the guest shuts down. Alternatively,
the host OS may be configured to blacklist the PCI devices used by the guest so that
they never get attached to host OS drivers.

With PCI passthrough, the physical port is fully managed by a VM, and the host
(hypervisor) is not involved. The MTU value of the physical port is overwritten after
the VM starts. MTU can be checked in the VM using the show port port-name detail
command.

To use PCI passthrough, the following requirements apply:

• Intel VT-d must be enabled in the BIOS. On a Linux KVM host, use dmesg to
check for dmar: kernel messages.

Note: As the VM controls the hardware, there are no tools to determine statistics on a
hypervisor level and as a result, SR OS debugging commands must be used.

NFV Infrastructure Requirements

40

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

• IOMMU must be enabled in the host OS. On a Linux KVM host, this requires the
intel_iommu=on and iommu=pt to be specified as kernel boot parameters
(iommu=pt causes DMA remapping to be bypassed in the Linux kernel,
improving host performance).

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

NFV Infrastructure Requirements

Issue: 01 3HE 15837 AAAA TQZZA 01 41

3.3 Compute Server Software Requirements

This section describes the requirements for host OS and virtualization software that
runs on compute servers to support VSR VMs.

3.3.1 BIOS Settings

The BIOS of the server is responsible for initializing the system and loading the OS.
Each time the system boots, there is an opportunity for the user to change various
BIOS settings. Some of these settings are important or even critical to the operation
of the VSR VMs on the server.

Important BIOS settings on host machines that support VSR VMs are listed below.
Some of these settings are mandatory and others are recommended for better
performance.

The mandatory settings are:

• SR-IOV must be enabled if you plan to use this technology. The actual BIOS
setting may be called “SR-IOV Global Enable”, depending on your BIOS vendor.

• Intel VT-x must be enabled in all cases
• Intel VT-d must be enabled to use the SR-IOV or PCI passthrough functionality

(see NICs for more information). The actual BIOS setting may be called “I/OAT
DMA Engine” depending on your BIOS vendor.

• x2APIC must be enabled in all cases
• Non-Uniform Memory Access (NUMA) must be enabled if it is applicable to the

host and if it is disabled by default in the BIOS

The following settings are highly recommended on compute hosts intended to have
VSR VM with high packet-per-second forwarding requirements:

• disable the following:
- hardware prefetcher
- IO Non Posted Prefetching

Note: Generic terms are used for the BIOS settings; actual parameter names may differ,
depending on the manufacturer of the server.

NFV Infrastructure Requirements

42

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

This parameter is relevant to Intel Haswell-based hosts and onwards, and
should be disabled on those systems. It is not exposed on all BIOS
versions.

- adjacent cache line prefetching
- PCIe Active State Power Management (ASPM) support; on Linux KVM

hosts, this can be disabled by a kernel boot parameter
- Advanced Configuration and Power Interface (ACPI) states:

• P-State
If enabled, the CPU (all cores on specific NUMA) enters “sleep” mode
in case there is no activity. This mode is similar to C-State but for the
whole NUMA node. In most cases, it saves power in idle times.
However, for performance-oriented systems, when power consumption
is not an issue, it is recommended that P-State is disabled.

• C-State
For energy saving, it is possible to lower the CPU power when it is idle.
Each CPU has several power modes called “C-states” or “C-modes.”
Energy-saving C-states are not suitable in high performance
configurations, therefore, it should be disabled.

- NUMA node interleaving
Enabling Node Interleaving means that memory is interleaved between
memory nodes, and there is no NUMA presentation to the operating
system. For performance reasons, it is recommended to disable
interleaving (and enable NUMA), thus ensuring that memory is always
allocated to the local NUMA node for any given logical processor. See
Hyper-Threading for more details.

• enable Turbo boost
Turbo Mode—(Intel) Turbo Boost Technology (TBT) automatically runs the
processor core faster than the base frequency. The processor must be working
in the power, temperature, and specification limits of the thermal design power
(TDP). Both single and multi-threaded application performance is increased.

• set the Power Management option to either maximum or high performance
• set the CPU Frequency to maximum speed for maximum performance
• set the Memory Speed to maximum speed for maximum performance

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

NFV Infrastructure Requirements

Issue: 01 3HE 15837 AAAA TQZZA 01 43

3.3.2 NUMA

Most server motherboards with multiple physical CPU sockets use a NUMA
architecture. With NUMA, system memory is divided into multiple NUMA nodes,
typically one per CPU socket, to improve performance and system expandability.
When a CPU or I/O device needs to access a memory location, the latency and
memory bandwidth depends on whether the memory is part of the local NUMA node.
Access to non-local memory is slower than access to local memory.

3.3.2.1 NUMA Topology

Figure 3 shows the NUMA topology. This diagram is also applicable to an Intel
Haswell or Broadwell-based system, which supports up to four memory channels per
CPU, and uses the QPI bus for inter-socket communications.

Figure 3 NUMA Topology

Note: If NUMA is not configured correctly, performance issues may arise, including:

• excessive CPU usage
• random CPU spikes

See Numatune for information about correct NUMA configuration on Linux.

See Set NUMA Node Affinity for information about correct NUMA configuration on VMware.

sw0600

NUMA Node 0

Virtual Machine

CPU 0 QPI bus
interconnect

CPU 1

Memory
controller

Memory
controller

Slot 1 Slot 2... Slot 2... Slot 1

NUMA Node 1

Memory channels

Memory slots

Local access Remote access

NFV Infrastructure Requirements

44

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

Several tools and commands are available to help you understand the NUMA
topology of the host machine.

The numactl command can be used to:

• control processes and memory
• identify the number of NUMA nodes per server (for example, 1, 2, 4, and so on)
• view the memory per NUMA
• see the CPU core ID per NUMA, which is information required for a correct VSR

configuration

The numactl command is not present by default, so must be installed using the yum
install or apt install commands.

[root@vsr vsr-ws]# yum install numactl
root@sc-03:~# apt install numactl

The numactl --hardware command shows the memory size of each NUMA node
and the “distance” of the NUMA nodes from each other. The following example
shows command output:

$ numactl --hardware
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 12 13 14 15 16 17
node 0 size: 128910 MB
node 0 free: 669 MB
node 1 cpus: 6 7 8 9 10 11 18 19 20 21 22 23
node 1 size: 129022 MB
node 1 free: 4014 MB
node distances:
node 0 1

0: 10 21
1: 21 10

The virsh capabilities command is another way to view the NUMA topology of the
host. The following output shows an excerpt of the command output:

<topology>
<cells num='2'>

<cell id='0'>
<cpus num='12'>

<cpu id='0'/>
<cpu id='1'/>
<cpu id='2'/>
<cpu id='3'/>

Note: All resources (such as CPU, memory, and NICs) must reside on the same NUMA,
otherwise border violations may occur.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

NFV Infrastructure Requirements

Issue: 01 3HE 15837 AAAA TQZZA 01 45

<cpu id='4'/>
<cpu id='5'/>
<cpu id='12'/>
<cpu id='13'/>
<cpu id='14'/>
<cpu id='15'/>
<cpu id='16'/>
<cpu id='17'/>

</cpus>
</cell>
<cell id='1'>

<cpus num='12'>
<cpu id='6'/>
<cpu id='7'/>
<cpu id='8'/>
<cpu id='9'/>
<cpu id='10'/>
<cpu id='11'/>
<cpu id='18'/>
<cpu id='19'/>
<cpu id='20'/>
<cpu id='21'/>
<cpu id='22'/>
<cpu id='23'/>

</cpus>
</cell>

</cells>
</topology>

The preceding sample output indicates that the host machine has two NUMA nodes
(cells in virsh terminology) and each node is associated with 12 logical CPUs. The
virsh capabilities command output does not indicate the free memory associated
with each NUMA node; use the virsh freecell command to show this information.

To retrieve the affiliation of a network device (for example eth0) with a NUMA node,
show the output of /sys/class/net/eth0/device/numa_node. Alternatively, if you
know the bus number, slot number, and function number of the PCI device (for
example, 82:00.0), you can show the output of /sys/bus/pci/devices/
0000\:82:\00.0/numa_node.

The lstopo and lstopo-no-graphics commands provide another method of
visualizing the NUMA topology of the system. The hwloc package must be installed
to access these commands.

3.3.2.2 Assessing NUMA Layout and Processes

The efficiency of the NUMA layout can be assessed with the numastat command
(which is part of the numactl package).

The numastat command can be used to detect NUMA border violations.

NFV Infrastructure Requirements

46

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

The numastat -c qemu-kvm command (on Red Hat/Centos) is useful to show the
amount of memory each QEMU-KVM process (virtual machine) is using from each
NUMA node.

3.3.2.3 Prepare VMs for Using NUMA

When the details of the host machine NUMA topology are understood, perform the
following steps to improve performance.

Step 1. Ensure that NUMA is enabled in the BIOS. Some versions of BIOS have
this functionality disabled by default. In Figure 4, NUMA is disabled.

Figure 4 Status of NUMA in the BIOS

Step 2. Allocate the vCPUs of the VM from one NUMA node, x. Use the
<cputune> element or the vcpu placement='auto' described in Cputune.

Step 3. Allocate the guest memory (hugepages) of a VM from the same NUMA
node, x. Use the <numatune> element described in Numatune.

Step 4. To use PCI passthrough or SR-IOV for specific network interfaces of the
VM, choose PCI devices that are associated with NUMA node x.

sc0069

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

NFV Infrastructure Requirements

Issue: 01 3HE 15837 AAAA TQZZA 01 47

3.3.3 Hyper-Threading

The hyper-threading feature on Intel CPUs allows each physical CPU core to appear
as two logical processors to the operating system. Hyper-threading works by
interleaving two execution threads on the same core. The two threads (siblings)
share the same L1 or L2 cache, so that one thread executes while the other is waiting
on data.

If a VSR VM is deployed on a host machine with hyper-threading enabled in the
BIOS, then it can optimize its own software task placement to achieve the maximum
performance benefit from the use of hyper-threading. This optimization is dependent
on two conditions:

1. The VSR must be aware that hyper-threading is enabled on the host. The
methods for conveying this status are hypervisor-dependent and are described
in later sections of this guide.

2. The VSR must be aware how its vCPUs map to physical CPU threads. If the
VSR detects that the host has hyper-threading enabled, it always assumes that
its first two vCPUs are siblings of the same pCPU core, that the next two vCPUs
are siblings of some other pCPU core, and so on. In general, this requires CPU
pinning directives in the configuration of the VM. Methods for CPU pinning are
hypervisor-dependent and are explained in later sections of this guide.

If the conditions outlined above cannot be fulfilled, then the performance of a VSR
VM on a hyper-threaded host may actually be worse than the performance on the
same machine with hyper-threading disabled. In fact, in these circumstances, Nokia
strongly recommends that hyper-threading is disabled in the BIOS of the host
machine.

The following techniques can be used to check whether a Linux host machine has
hyper-threading disabled.

1. From the output of the lscpu command, if the Thread(s) per Core field in the
output equals 1, this indicates that hyper-threading is disabled.

2. Show /proc/cpuinfo and check whether the displayed number of siblings is the
same as the displayed number of CPU cores; if they are equal, this indicates that
hyper-threading is disabled.

NFV Infrastructure Requirements

48

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

3.3.4 CPU Isolation

On Linux KVM hosts this can be avoided by using one of two methods: using the
isolcpus kernel boot parameter or systemd CPU affinity.

The isolcpus kernel parameter specifies a list of CPU cores that should be avoided
by the host scheduler, and this should match the list of CPUs to which VSR VMs are
pinned. See Kernel Parameters for more details.

The CPUAffinity setting in /etc/systemd/system.conf specifies the subset of
CPU cores that must be used by systemd for its tasks; this list should not overlap with
the list of CPUs to which VSR VMs are pinned.

On VMware ESXi hosts CPU isolation can be achieved using one of two methods:
by setting the sched.cpu.latencySensitivity property to high or by editing the VMX
file with to include certain vCPU affinity directives. Further details are provided in the
VMware section of this guide.

3.3.5 Host OS and Hypervisor

VSR VMs can be deployed on compute hosts that use either the Linux KVM
hypervisor or the VMware ESXi hypervisor that is part of the VMware vSphere suite.

3.3.5.1 Linux KVM Compute Hosts

The Linux KVM hypervisor is supported for all VSR applications.

The KVM hypervisor requires a Linux operating system. The following Linux host
operating systems are all qualified for use with VSR VMs running Release 16.0.R4
or later SR OS software:

• CentOS 7.0-1406 with 3.10.0-123 kernel
• CentOS 7.2-1511 with 3.10.0-327 kernel
• CentOS 7.4-1708 with 3.10.0-693 kernel
• Centos 7.5-1804 with 3.10.0-862 kernel

Caution: If the host OS schedules its own tasks to the CPU cores assigned to a VSR VM,
VSR performance and stability could be compromised.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

NFV Infrastructure Requirements

Issue: 01 3HE 15837 AAAA TQZZA 01 49

• Red Hat Enterprise Linux 7.1 with 3.10.0-229 kernel
• Red Hat Enterprise Linux 7.2 with 3.10.0-327 kernel
• Red Hat Enterprise Linux 7.4 with 3.10.0-693 kernel
• Red Hat Enterprise Linux 7.5 with 3.10.0-862 kernel
• Ubuntu 14.04 LTS with 3.13 kernel
• Ubuntu 16.04 LTS with 4.4 kernel

VSR VMs can be deployed on compute hosts running the KVM hypervisor using
tools provided by the Linux libvirt software package (see Deploying and Managing
VSR VMs Using Libvirt) or using the OpenStack cloud management software (see
OpenStack Overview for more information).

3.3.5.1.1 Kernel Parameters

When it is started, the Linux kernel accepts certain command-line options or boot
parameters. The Centos, RHEL, and Ubuntu installations include the GNU Grand
Unified Boot loader version 2 (GRUB2) that allows the user to pass boot parameters
to the kernel. The method of specifying and updating the boot parameters depends
on the specific Linux distribution.

RHEL and Centos

When the legacy boot mode is used (non-UEFI) on RHEL and Centos hosts, GRUB2
reads its configuration from the /boot/grub2/grub.cfg file. The grub.cfg file is
generated during installation.

The grub2-mkconfig utility regenerates the grub.cfg file using the template files in
the /etc/grub.d/ directory, and the custom settings in the /etc/default/grub file.

Perform the following steps on RHEL and Centos hosts to pass a series of boot
parameters (param1, param2) to the kernel at the next boot:

1. Add or edit the following line in the /etc/default/grub file to prepare the boot
template:

Note: The grub.cfg file should never be edited directly. Use the grub2-mkconfig utility to
manually regenerate the file.

NFV Infrastructure Requirements

50

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

GRUB_CMDLINE_LINUX=“param1[=value_1][,=value_2]…[,=value_1
0] <space> param2[=value_1][,=value_2]…[,=value_10]
<space>...”

2. Use one of the following commands, depending on the mode of server or Linux
boot:
- for legacy, use grub2-mkconfig -o /boot/grub2/grub.cfg
- for EFI, use grub2-mkconfig -o /boot/efi/EFI/centos/grub.cfg

Ubuntu

Perform the following steps on Ubuntu hosts to pass a series of boot parameters
(param1, param2) to the kernel at the next boot:

1. Add or edit the following line in the /etc/default/grub file to prepare the boot
template:
GRUB_CMDLINE_LINUX=“param1[=value_1][,=value_2]…[,=value_1
0] <space> param2[=value_1][,=value_2]…[,=value_10]
<space>...”

2. Use the sudo update-grub command to convert the template to a boot record.

Recommended Kernel Boot Parameters for VSR Deployment

The following sections describe the recommended kernel boot parameters for:

• SR-IOV and PCI Passthrough
• Huge Pages
• SELinux Extensions
• Spin-lock Loops
• Isolcpus Kernel Boot Parameter
• Kernel Boot Parameter Example

SR-IOV and PCI Passthrough

If the VSR host server will run one or more VSR VMs that use SR-IOV or PCI
passthrough, the GRUB_CMDLINE_LINUX string must include the following kernel
settings:

• pci=realloc

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

NFV Infrastructure Requirements

Issue: 01 3HE 15837 AAAA TQZZA 01 51

This setting enables kernel reallocation of PCI bridge resources if the BIOS
allocations are too small.

• pcie_aspm=off
This setting disables the PCIe Active State Power Management.

• iommu=pt
This setting bypasses DMA remapping in the Linux kernel.

• nopat
This setting disables the page attribute table extensions.

• intel_iommu=on
This setting enables IOMMU on Intel servers.

Huge Pages

The memory of the VMs should be backed by explicit 1 GByte huge pages to
optimize VSR data path performance. The following huge pages mechanisms are
available to a system:

• Explicit HugePages
These huge pages are reported as HugePages_Total in /proc/memory.

• Transparent Huge Pages (THP)
These huge pages are reported as AnonHugePages in /proc/memory.

Due to its required interactions with the hugetlbfs filesystem, applications must be
written to use the Explicit HugePages. However, THP has no such dependencies
because the kernel (khugepaged daemon) automatically aggregates default-sized
pages into huge pages.

Explicit huge pages work best for NFV applications because they are never swapped
to disk and the necessary support is built-in to many hypervisors. See Guest Memory
Backing for information about how to back the memory of a KVM VM using Explicit
HugePages.

Use the following commands to reserve a specified number of 1Gbyte huge pages
at runtime:

• To allocate 20 huge pages of the default size (not persistent):
echo 20 > /proc/sys/vm/nr_hugepages

• To allocate 20 huge pages of the default size (persistent):
sysctl -w vm.nr_hugepages=20

• To allocate four 1Gbyte huge pages from NUMA node 1:

NFV Infrastructure Requirements

52

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

echo 4 > /sys/devices/system/node/node1/hugepages/
hugepages-1048576kB/nr_hugepages

Runtime huge page allocation can sometimes fail because memory has become too
fragmented. For this reason, it is recommended to allocate huge pages at boot time,
by including the following kernel boot parameters in the GRUB_CMDLINE_LINUX
string:

hugepagesz=1G, hugepages=n, default_hugepagesz=1G

SELinux Extensions

For VSR deployment, Security Enhanced Linux (SELinux) must be disabled, or set
to permissive mode. Kernel audit should also be disabled.

Disable the Security Enhanced Linux (SELinux) extensions and the kernel audit
procedures by adding the following settings to the GRUB_CMDLINE_LINUX string:

selinux=0

audit=0

You can also disable SELinux by editing the SELINUX setting in the /etc/selinux/
config file as follows:

SELINUX=disabled

After you have updated the configuration file, reboot the system and use the
sestatus command to verify the change.

Note: Set the value of n carefully; do not set the value so high that all host memory is
allocated in 1 Gbyte huge pages. It is essential to leave enough host memory using the
normal 4 K page size. For example, set n to the amount of memory in GBytes less the
reserved host memory. If a system has 64 GBytes RAM and 8GBytes is reserved host
memory, then n=56 in this example.

Note: In a NUMA system, the number of huge pages requested in the kernel boot option is
the total number across all NUMA nodes. If you specify hugepages=n and there are M
NUMA nodes, then n/M huge pages are allocated from each NUMA node; that is, the
system attempts to allocate an equal number of huge pages from each NUMA node.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

NFV Infrastructure Requirements

Issue: 01 3HE 15837 AAAA TQZZA 01 53

Spin-lock Loops

In some cases, spin-lock issues can cause poor VSR performance. You can address
these issues by using the Pause Loop Exiting (PLE) Intel VT-x feature. When the
PLE feature is used, a VM-Exit is triggered if an excessive number of PAUSE
instructions are issued by a vCPU. In such cases, the PLE infers that the vCPU is
probably waiting on another vCPU to release a lock, and without the VM-Exit, there
is no opportunity for the other vCPU to be scheduled so that it can actually release
the lock.

To exit immediately from a spin-lock loop, add the following setting to the
GRUB_CMDLINE_LINUX string:

kvm_intel.ple_gap=0

Isolcpus Kernel Boot Parameter

The isolcpus kernel boot parameter is one of the supported methods of achieving
CPU isolation on a Linux KVM compute server; see CPU Isolation for more
information. The isolcpus parameter provides a list of CPUs (specified as ranges
and/or comma-separated values) that the host Linux scheduler should bypass when
scheduling tasks to the cores. The only workload on these isolated cores is work-
assigned to run there using CPU pinning (see Cputune). By pinning the vCPUs of the
VSR VMs onto some subset of the host isolated cores, resource contention for these
cores is avoided and VSR performance is maximized.

The following shows an example isolcpus setting in the GRUB_CMDLINE_LINUX
string:

isolcpus=1-13

Unsupported SFPs

Some Intel NICs may, by default, not support non-Intel SFP optics. This situation
may be remedied by adding a kernel boot parameter setting such as the following:

ixgbe.allow_unsupported_sfp=1,1,1,1,1,1,1,1,1,1,1,1

Note: Some driver versions do not support the above parameter; in this case, non-Intel
SFPs do not function correctly. Nokia recommends first testing this parameter in a lab
environment.

NFV Infrastructure Requirements

54

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

Kernel Boot Parameter Example

The following shows an example kernel boot parameter setting for a hyper-threaded
system.

GRUB_CMDLINE_LINUX="pci=realloc pcie_aspm=off iommu=pt
intel_iommu=on nopat hugepagesz=1G default_hugepagesz=1G
hugepages=50 isolcpus=1-9,11-19 selinux=0 audit=0
kvm_intel.ple_gap=0"

3.3.5.1.2 Linux vSwitch Implementations

A virtual switch (vSwitch) is a software implementation of a Layer 2 bridge or Layer
2-3 switch in the host OS software stack. When the host has one or more VMs, the
vNIC interfaces (or some subset) can be logically connected to a vSwitch to enable
the following:

• vNIC-to-vNIC communication within the same host without relying on the NIC or
other switching hardware in the data center

• multiple vNICs to share the same vSwitch “uplink”

The following vSwitch implementation options are available on KVM Linux hosts:

• Linux Bridge
• Open vSwitch
• Open vSwitch with DPDK
• Nuage Networks VRS (refer to the Nuage VSP Installation Guide for more

information)

Linux Bridge

The Linux bridge is a software implementation of an IEEE 802.1D bridge that
forwards Ethernet frames based on learned MACs. It is part of the bridge-utils
package. The Linux bridge datapath is implemented in the kernel (specifically, the
bridge kernel module), and it is controlled by the brctl userspace program.

Note: When configuring the kernel boot parameters, ensure the use of correct values for
the number of huge pages and the number of CPUs to isolate from the host scheduler.
These values may differ from those used in this example.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

NFV Infrastructure Requirements

Issue: 01 3HE 15837 AAAA TQZZA 01 55

On Centos and RHEL hosts, a Linux bridge can be created by adding the ifcfg-brN
(where N is a number) file in the /etc/sysconfig/network-scripts/ directory. The
contents of this file contain the following directives:

• DEVICE=brN (with N correctly substituted)
• TYPE=Bridge (Bridge is case-sensitive)

The following output shows an ifcfg file:

TYPE=Bridge
DEVICE=br0
IPADDR=192.0.2.1
PREFIX=24
GATEWAY=192.0.2.254
DNS1=8.8.8.8
BOOTPROTO=static
ONBOOT=yes
NM_CONTROLLED=no
DELAY=0

To add another interface as a bridge port of brN, add the BRIDGE=brN directive to
the ifcfg network-script file for that other interface.

On Ubuntu hosts, a Linux bridge is created by adding an auto brN stanza followed
by an iface brN stanza to the /etc/network/interfaces file. The iface brN stanza can
include several attributes, including the bridge_ports attribute, which lists the other
interfaces that are ports of the Linux bridge.

The following output shows an /etc/network/interfaces file that creates a bridge br0
with eth0 as a bridge port:

auto lo
iface lo inet loopback
auto br0
iface br0 inet dhcp

bridge_ports eth0
bridge_stp off
bridge_fd 0
bridge_maxwait 0

Note: Use the systemctl restart network command to restart networking after making
changes to network configuration files.

NFV Infrastructure Requirements

56

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

By default, the Linux bridge is VLAN unaware and it does not take VLAN tags into
consideration, nor does it modify them when forwarding the frames. If the bridge is
configured to have VLAN sub-interfaces, frames without a matching VID are dropped
or filtered. If a VLAN sub-interface of a port is added as a bridge port, then frames
with the matching VID are presented to the bridge with the VLAN tag stripped. When
the bridge forwards an untagged frame to this bridge port, a VLAN tag with a
matching VID is automatically added.

The following methods can be used to configure MTU on a Linux bridge.

• If the Linux bridge has a physical port connected to it, ensure that the correct
MTU is assigned to a physical port.

• If the Linux bridge does not have a physical interface connected, add a “dummy”
interface to it.

The following configuration example for dummy interfaces is not persistent after
reboot; a boot script must be prepared to automate it.

i. Create three dummy interfaces to be used by three different Linux bridges using
the modprobe dummy numdummies=3 command.

ii. Verify the MTU of dummy interfaces using the ip link | grep dummy command.
ip link | grep dummy

17: dummy0: <BROADCAST,NOARP> mtu 1500 qdisc noop state DOWN mode DE
FAULT group default qlen 1000

18: dummy1: <BROADCAST,NOARP> mtu 1500 qdisc noop state DOWN mode DE
FAULT group default qlen 1000

19: dummy2: <BROADCAST,NOARP> mtu 1500 qdisc noop state DOWN mode DE
FAULT group default qlen 1000

iii. Change the MTU for all dummy interfaces to a specified value using the ip link
set dev dummy-interface mtu mtu-value command.

ip link set dev dummy0 mtu 9212
ip link set dev dummy1 mtu 9212
ip link set dev dummy2 mtu 9212

iv. Verify the MTU of dummy interfaces using the ip link | grep dummy command.
ip link | grep dummy

17: dummy0: <BROADCAST,NOARP> mtu 9212 qdisc noop state DOWN mode DE
FAULT group default qlen 1000

18: dummy1: <BROADCAST,NOARP> mtu 9212 qdisc noop state DOWN mode DE
FAULT group default qlen 1000

19: dummy2: <BROADCAST,NOARP> mtu 9212 qdisc noop state DOWN mode D
EFAULT group default qlen 1000

v. Add a dummy interface to a Linux bridge using the ip link set dev dummy-
interface master br-test and ip link set dev LB-bridge up commands.

ip link set dev dummy0 master br-test
ip link set dev br-test up

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

NFV Infrastructure Requirements

Issue: 01 3HE 15837 AAAA TQZZA 01 57

vi. Verify the MTU of the Linux bridge using the ip link show LB-bridge command.
ip link show br-test

20: br-test: <NO-
CARRIER,BROADCAST,MULTICAST,UP> mtu 9212 qdisc noqueue state DOWN mode DEFAULT group
default qlen 1000

link/ether de:95:59:17:2e:12 brd ff:ff:ff:ff:ff:ff

This Linux bridge can now be used to serve traffic.

Open vSwitch

Open vSwitch (OVS) is an open-source switching stack for virtualization that offers
significantly more functionality than the Linux bridge. Key features of OVS include the
following:

• programmability via the OpenFlow and OVSDB protocols
• Layer 2 and Layer 3 forwarding (IPv4/IPv6)
• kernel or user-space forwarding (using DPDK)
• flow-caching
• tunneling (GRE, VXLAN, STT, and Geneve)
• QoS and policing
• support for networking protocols including STP, RSTP, BFD, and LACP
• traffic monitoring via NetFlow, sFlow, IPFIX, SPAN, RSPAN, and GRE tunneled

mirrors
• persistency over reboot

OVS is supported by most virtualization platforms, including KVM. OVS and OVS-
DPDK packages are available for Ubuntu, Centos, and RHEL (in addition to other
Linux distributions). OVS is the most popular networking plug-in for OpenStack.

OVS comprises the following three components:

• ovs-vswitchd—a userspace daemon
The ovs-vswitchd daemon uses OpenFlow to interact directly with controllers
and uses the NETLINK protocol to communicate with the kernel module.

• ovsdb-server—a database daemon
The ovsdb-server daemon maintains a persistent database of the switch
configuration. The daemon uses the OVSDB protocol (RFC 7047) to interact
with external controllers and the ovs-vswitchd daemon.

• openvswitch.ko—a kernel module

NFV Infrastructure Requirements

58

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

In a native OVS (non-DPDK) scenario, the first packet of each new flow is directed
to ovs-vswitchd, which decides how that packet (and others in the same flow)
should be forwarded. The forwarding decision is encoded in a flow cache entry
programmed by ovs-vswitchd into the kernel module. When future packets hit the
flow cache entry, they are forwarded entirely by the kernel module and do not need
to be directed to the ovs-vswitchd “slow path”.

Consider the following when configuring OVS:

• By default, OVS operates in MAC learning mode; however, it can program flow
using OpenFlow or Manual flow configuration. As a result, unusual forwarding
decisions may be made by OVS, which can be difficult to debug.

• MTU considerations:
- The tunneling techniques for OVS add additional overhead, and OVS does

not support fragmentation. As a result of additional overhead used by OVS
tunneling techniques, some traffic could be silently dropped along the path.

- MTU can be set using the ovs-vsctl set int OVS-name mtu_request=9212
command.

- MTU must be set before the VMs are started.

Open vSwitch with DPDK

DPDK is an open-source toolkit for fast packet processing. When OVS is compiled
to use DPDK libraries and DPDK NIC drivers, the result is a higher performance
vSwitch, which is referred to as OVS-DPDK (in this document). OVS-DPDK is
considerably faster (7x to 10x) than native OVS due to the following reasons:

• The OVS-DPDK fast path moves from the openvswitch.ko kernel module to a
user-space implementation (the dpif-netdev component of the ovs-vswitchd
daemon).

• OVS-DPDK communicates with VM vNIC ports (that use a VirtIO driver) using
user-space vHost drivers (vhostuser).

• Poll-mode-driver (PMD) threads of the user space ovs-vswitchd process send
and receive packets over the OVS switch ports.

Refer to the SR OS 20.x.Rx. Software Release Notes for information about the
currently supported versions of OVS-DPDK.

Note: Commands may differ depending on the OpenStack version. Refer to OpenStack
documentation for applicable commands to each version.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

NFV Infrastructure Requirements

Issue: 01 3HE 15837 AAAA TQZZA 01 59

3.3.5.2 VMware ESXi

A VSR-I VM supporting any application can be deployed on a VMware ESXi compute
host using VMware vCloud Director (vCD) or the vSphere Web Client interface to a
vSphere vCenter Server. Release 16.0.R4 supports the following deployment
options:

• ESXi 6.0 Update 2, vCD 8.10 and vCenter Server 6.0 (vCloud NFV 1.5)
• ESXi 6.5 Update 1, vCD 8.20 and vCenter Server 6.5 (vCloud NFV 2.0)
• ESXi 6.7 and vCenter Server 6.7

In addition, for the RR application only, a VSR-I can also be deployed on a VMware
ESXi 5.5 compute host, but in this case, only the vSphere Web Client interface is
supported.

The following vSphere features are supported with the VSR-I, regardless of
application or workload:

• Distributed Resource Scheduler (DRS)—but not fully-automated mode
• High Availability
• vSphere standard switch—connected to the guest using an E1000 or VMXNET3

driver
• vSphere distributed switch (vDS)—connected to the guest using an E1000 or

VMXNET3 driver
• SR-IOV and PCI passthrough (NIC model dependent)

The following vSphere features are unsupported:

• DRS fully-automated mode
• vMotion
• Storage vMotion
• Fault Tolerance

3.3.6 Data Center Networking

A typical data center has many racks of servers, each with a TOR switch, such as
the Nuage Networks 7850 VSG. Each compute server is cabled to its TOR switch
(typically nx10GE), and each TOR may be connected (at 40GE or higher speeds)
into a CLOS-type topology of leaf and spine switches. A gateway router, such as the
7750 SR or 7950 XRS, may connect the data center network to the wide-area or
metro network.

NFV Infrastructure Requirements

60

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

The interconnection of TOR, leaf, and spine switches, and DC gateway forms the
underlay network of the data center. Network virtualization using VXLAN or GRE
encapsulation allows per-tenant overlay networks to be created on top of the
common underlay. Overlay networks provide several advantages, including:

• Provide security and isolation between VMs that should not be able to
communicate.

• Allow different tenants to use the same overlapping address space.
• Keep state out of the underlay network, allowing for higher scale.
• Facilitate live migration of VMs so that VMs can retain their current IP addresses

while being moved across IP subnet boundaries in the underlay network.

In the VSR context, overlay networks are well-suited for creating an out-of-band
management network connecting multiple VSRs in the data center to internal
management systems.

Overlay networks are not as well-suited for carrying user plane traffic into and out of
VSR VMs. One complication is the presumed nature of the packets encapsulated by
VXLAN: VXLAN expects untagged Ethernet frames as the payload but much of the
user plane traffic that is sent to a VSR-PE or VSR-BNG could be MPLS encapsulated
if it originates or terminates in the WAN.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR Software Licensing

Issue: 01 3HE 15837 AAAA TQZZA 01 61

4 VSR Software Licensing

4.1 Overview

A software license key must be installed on every VSR system, allowing the system
to load the valid license file at bootup, in order for it to be fully operational. The license
file encodes the allowed capabilities and features of the VSR system. Contact your
Nokia account representative to obtain license files associated with a purchase order
or trial request.

A VSR system can be booted up without a license key but a forced reboot will occur
after 60 minutes and during that time window no system configuration is supported;
the available commands are restricted to a minimum set of operational commands.

The license file for a VSR system can be stored on a local storage device of the VM
or on a remote FTP server. The license file location is configurable as a BOF
parameter or it can be passed as an SMBIOS value. The license file is read at boot
up time. If the license file is used or changed after the system is up, the new license
file can be re-read and re-activated if there is no change to the software version,
system type, or the set of licensed features. The admin system license validate
command reads a license file to determine whether a valid license can be found
inside the referenced file (or inside the BOF referenced license-file if no URL is
provided). The admin system license activate command is used to proceed with
activating the new license.

VSR Software Licensing

62

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

4.2 VSR-I License Keys

When you purchase software licenses for one or more VSR-I systems, your Nokia
account representative will provide you with corresponding VSR-I license key files,
which could be one license file for all the VSR-I systems or a separate license file for
each one.

If you are given a common “wildcard UUID” license file for your VSR-I system, there
is no restriction on the UUIDs of the VSR-I VMs; they can have any value. When each
VSR-I has its own “UUID-locked” license file, all the license records in that license
file are locked to a specific UUID value (readable as cleartext), and this license file is
intended for the specific VSR-I system that runs in a VM with that UUID value.

To associate a VSR-I with its license file, you must correctly set the license-file boot
option (BOF) parameter on the VSR-I. The license-file parameter can be specified
by editing the BOF file (before or after bootup), or by including it in the configuration
data of the VM and passing it to the guest (VSR) as SMBIOS information. The
license-file parameter can reference a file stored on a local disk (for example, CF3:)
or a file stored on an FTP server. See Sysinfo for more information about SMBIOS
parameters.

When the VSR software starts booting and determines that the system type (chassis)
is VSR-I, it attempts to read and parse the referenced license file. If a valid license
key is not found or the one found is corrupt, the system is allowed to complete its
bootup procedures but only a limited number of non-configuration-related commands
are available in this state, and the system is forced to reboot after 60 minutes.

A valid license key for the VSR-I system must meet the following criteria:

• the license is for a VSR (not vSIM)
• the license is for a VSR-I system

VSR-I and VSR-D licenses are not interchangeable.
• the UUID of the VM matches the one encoded in the “UUID-locked” license key

(if applicable)
• the VSR software version (the major release number) matches the one encoded

in the license key
• the license file is not expired

If VSR reports that a valid license record was not found, first ensure that the license
meets the above criteria. If all of the above reasons are ruled out, it is possible that
the license file became corrupted. Re-downloading or re-installing the license-file
may help in this case. To verify access to the license file and view it at the same time,
use the file type license-url command.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR Software Licensing

Issue: 01 3HE 15837 AAAA TQZZA 01 63

4.3 Feature Licenses

In addition to allowing the system to boot into a fully operational state, the license file
also encodes the set of value-added features that have been purchased for use on
the VSR-I systems covered by the license.

Table 3 lists the features enabled by purchasable Application Specific Licenses
(ASLs) in the current release. The table indicates whether some form of CLI
enforcement is currently in place for the associated functionality. If an ASL has CLI
enforcement, an error message will be displayed when you attempt to configure the
associated functionality. In most cases, the command triggering the error (and its
sub-trees) is not added to the configuration of the system.

Table 3 VSR ASL Support

Category ASL Feature ASL Key
Enforcement

Platform Adv DCGW and Svc Chain No

Advanced QoS BW No

BGP Route Reflection No

BNG Yes

Hybrid OpenFlow Switch No

IPSec Yes

IP Tunnels No

Legal Intercept No

LNS Yes

NAT Yes

NGE Yes

Telemetry No

VPN No

vRGW Yes

WLAN Gateway Yes

VSR Software Licensing

64

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

Application Assurance AA Identification Yes

AA Control Yes

AA Policing Yes

AA Stateful Firewall Yes

AA RTP Performance Yes

AA ICAP Control Yes

AA In-Browser Notification Yes

AA Local List URL Filtering Yes

AA Dynamic Experience Management Yes

IPSec IPSec Geo Redundancy Yes

NAT NAT Geo Redundancy Yes

UPnP Yes

L2-Aware NAT Yes

LSN Yes

MAP-T Yes

WLAN GW Multiple SSID Yes

Inter-AP Mobility Yes

WLGW Geo Redundancy Yes

Table 3 VSR ASL Support (Continued)

Category ASL Feature ASL Key
Enforcement

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR Software Licensing

Issue: 01 3HE 15837 AAAA TQZZA 01 65

4.4 Checking the License Status

Once the VSR is operational, check the license status of the system, including the
set of licensed features. At the prompt, type the following:

show system license ↵

The following is sample output for a VSR-I with a valid license:

A:Dut-A# show system license
===
Current License
===
License status : monitoring, valid license record
Time remaining : 137 days 7 hours

License name : sr-regress@list.nokia.com
License uuid : 00000000-0000-0000-0000-000000000000
Machine uuid : 3ffaf6a4-edce-45ab-bde6-c7d1587103f9
License desc : Virtual SR [Integrated] [ALL]
License prod : Virtual-SR
License sros : TiMOS-B-16.0.*
Current date : WED MAY 30 17:33:59 UTC 2018
Issue date : MON APR 16 23:34:58 UTC 2018
Start date : SUN APR 15 00:00:00 UTC 2018
End date : MON OCT 15 00:00:00 UTC 2018

vChassis : VSR-I
vSR CPMs : limit: 1
vSR IOMs : limit: 1

AA_RTU : AA Identification

AA Control
AA Policing
AA Stateful Firewall
AA RTP Performance
AA ICAP Control
AA In-Browser Notification
AA Local List URL Filtering
AA Dynamic Experience Management

IPSEC_RTU : IPSec Geo Redundancy
NAT_RTU : NAT Geo Redundancy

UPnP
L2-Aware NAT
LSN
MAP

VSR_RTU : Legal Intercept
Advanced QoS BW
VPN
BNG
LNS
WLGW
IPSec
vRGW
Adv DCGW and Svc Chain
Hybrid OpenFlow Switch

VSR Software Licensing

66

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

IP Tunnels
NGE

WLGW_RTU : Multiple SSID
Inter-AP Mobility
WLGW Geo Redundancy

===
A:Dut-A#

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

Issue: 01 3HE 15837 AAAA TQZZA 01 67

5 Deploying VSR on Linux KVM Hosts
Using Libvirt or OpenStack

5.1 Introduction

There are several methods commonly used to define the properties of a VSR VM and
start it under the control of the Linux-KVM hypervisor, including:

• specifying the VM parameters in a domain XML file read by virsh, the libvirt
command shell

• using the virt-manager GUI application available as part of the libvirt package
• using the qemu-kvm (RedHat/Centos) or qemu-system-x86_64 (Ubuntu)

commands
• using OpenStack or other cloud management platforms to create the VM

This chapter provides an overview of the first and last methods.

The Linux libvirt package provides the Virtual Shell (virsh) command-line
application to facilitate the administration of VMs. The virsh application provides
commands to create and start a VM using the information contained in a domain XML
file. It also provides commands to shut down a VM, list all the VMs running on a host,
and output specific information about the host or a VM.

OpenStack is open-source cloud management software that performs the role of a
Virtualized Infrastructure Manager (VIM) in the ETSI NFV reference architecture.
The VIM is responsible for controlling and managing the NFVI compute, storage, and
network resources within a data center. The OpenStack software is written in Python
and available freely under an Apache 2.0 license. There are multiple OpenStack
distributions, some of which come with technical support and other services. The
modular architecture of OpenStack allows the installation of different components as
needed. In this chapter, most of the guidelines will apply to the OpenStack Nova
component, which is responsible for compute management.

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

68

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

5.2 Deploying and Managing VSR VMs Using
Libvirt

Libvirt is open source software that provides a set of APIs for creating and managing
VMs on a host machine, independent of the hypervisor. Libvirt uses XML files to
define the properties of VMs and virtual networks. It also provides a convenient virsh
command line tool.

The libvirt domain XML file for a VSR VM defines the important properties of the VM.
Use any text editor to create the domain XML file, then pass the filename as a
parameter of the virsh create command to start up the VSR VM; for example, virsh
create domain1.xml.

Use virsh commands to show information about the VM or change specific
properties. Table 4 lists the basic virsh commands, where VM_name is the value that
you configured for the name element in the XML configuration file. Refer to http://
libvirt.org/virshcmdref.html for more information.

Table 4 Basic virsh Commands

Command Example Result

capabilities |
grep cpu

virsh capabilities | grep cpu ↵ Shows the number of cores on the physical machine

console virsh console VM_name ↵ Connects the serial console of the VM if using the serial
PTY port

define virsh define VM_name.xml ↵ Reads the XML configuration file and creates a domain

destroy virsh destroy VM_name ↵ Stop and power down a VM (domain). The terminated VM
is still available on the host and can be started again. The
system status is “shut off”.

dumpxml virsh dumpxml VM_name ↵ Shows the XML configuration information for the
specified VM, including properties added automatically by
libvirt

list virsh list [--all | --inactive] ↵ The “--all” argument shows all active and inactive VMs
that have been configured and their state
The “--inactive” argument shows all VMs that are defined
but inactive

nodeinfo virsh nodeinfo ↵ Shows the memory and CPU information, including the
number of CPU cores

start virsh start VM_name ↵ Starts the VM domain

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

Issue: 01 3HE 15837 AAAA TQZZA 01 69

Some VM property changes made from the virsh command line do not take
immediate effect because the VSR does not recognize and apply these changes until
the VM is destroyed and restarted. Examples of these changes include:

• modifying the vCPU allocation with the virsh setvcpus command
• modifying the vRAM allocation with the virsh setmem command
• adding or removing a disk with the virsh attach-disk, virsh attach-device,

virsh detach-disk, or virsh detach-device commands
• adding or removing a vNIC with the virsh attach-interface, virsh attach-

device, virsh detach-interface, or virsh detach-device commands

5.2.1 Libvirt Domain XML Structure

The libvirt domain XML file describes the configuration of a VSR VM. The file begins
with a <domain type='kvm'> line and ends with a </domain> line. In XML syntax,
domain is an element and type='kvm' is an attribute of the domain element. VSR
VMs must have the type='kvm' attribute because KVM acceleration is mandatory.
Other domain types, including type='qemu', are not valid.

The libvirt domain XML file structure can conceptually be interpreted as a tree,
where the domain element is the root element and contains all the sub-elements
(child elements) in the file. All sub-elements can contain their own child elements,
and so on. The following domain child elements must be configured for VSR VMs:

• name, Domain Name and UUID
• uuid, see Domain Name and UUID
• memory, see Memory
• memoryBacking, see Guest Memory Backing
• vcpu, see vCPU

undefine virsh undefine VM_name ↵ Deletes a specified VM from the system

vcpuinfo virsh vcpuinfo VM_name ↵ Shows information about each vCPU of the VM

Table 4 Basic virsh Commands (Continued)

Command Example Result

Note: The virsh shutdown and virsh reboot commands do not affect VSR VMs because
the VSR software does not respond to the associated ACPI signals.

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

70

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

• cputune, see Cputune
• numatune, see Numatune
• cpu, see CPU
• sysinfo, see Sysinfo
• os, see OS
• features, see Hypervisor Features
• clock, see Clock
• devices, see Devices
• seclabel, see Seclabel

5.2.1.1 Domain Name and UUID

Use the <name> element to assign each VM a meaningful name. The name should
be composed of alphanumeric characters (spaces should be avoided) and must be
unique within the scope of the host machine. Use the virsh list command to show
the VM name. The following is an example of a <name> element:

<name>vsr-i</name>

Each VM has a globally unique UUID identifier. The UUID format is described in RFC
4122. If you do not include a <uuid> element in the domain XML file, libvirt auto
generates a value that can be displayed after the VM is created using the virsh
dumpxml command. Setting the UUID value explicitly ensures that it matches the
UUID specified in the software license. See VSR Software Licensing, for information
about VSR software licenses. The following is an example of a <uuid> element,
using the correct RFC 4122 syntax:

<uuid>ab9711d2-f725-4e27-8a52-ffe1873c102f</uuid>

5.2.1.2 Memory

The maximum memory (vRAM) allocated to a VM at boot time is defined in the
<memory> element. The 'unit' attribute is used to specify the unit to count the vRAM
size.

Note: The unit value is specified in kibibytes (2^10 bytes) by default. However, all memory
recommendations in this document are expressed in units of gibibytes (2^30 bytes), unless
otherwise stated.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

Issue: 01 3HE 15837 AAAA TQZZA 01 71

To express a memory requirement in gibibytes, include a type='G' (or type='GiB')
attribute, as shown in the following example:

<memory unit='G'>6</memory>

The amount of vRAM needed for a VSR VM depends on the VSR system type, VSR
card type, and the MDAs installed in the system or card. Refer to the SR OS 20.x.Rx.
Software Release Notes for the minimum memory requirement for VSR-I VMs.

5.2.1.3 Guest Memory Backing

Include the <memoryBacking> element to disable Kernel SamePage Merging
(KSM) and to back the vRAM memory of a VM with hugepages. KSM is disabled by
the <nosharepages/> element described in Kernel SamePage Sharing.

Hugepages boost performance by minimizing Translation Lookaside Buffer (TLB)
cache misses when the guest code needs to map a virtual memory address to a
physical memory address. All the vRAM of a VSR-I VM must be backed by 1G
hugepages.

The following shows an example <memoryBacking> configuration suitable for
VSR-I VMs.

<memoryBacking>
<hugepages>

<page size='1' unit='G' nodeset='0'/>
</hugepages>
<nosharepages/>
</memoryBacking>

In the <hugepages> configuration, the page size and unit refer to the size of
hugepages allocated by the host, and nodeset specifies the guest NUMA node to
which the hugepages will be assigned.

This XML block prevents consumption of memory from the non-hugepages block,
which is reserved for Linux tasks. Errors could break a hypervisor, resulting in loss
of remote access to a server.

Note: CPU support for 1G hugepages is indicated by the pdpe1gb cpu flag. Use the cat /
proc/cpuinfo command to show the CPU flags for each CPU in the host.

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

72

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

5.2.1.3.1 Kernel SamePage Sharing

The KSM feature allows KVM VMs to share identical memory pages. When KSM is
enabled and it finds two or more guests with an identical memory page, it reduces
the duplicates to a single page and marks the page for copy-on-write. If the contents
of the page are modified by a guest, a new page is created for that guest.

KSM has a performance overhead and minimal benefit on a host that is running only
one or several VSR VMs. To disable KSM for a VM, include <nosharepages/> as a
child element of the <memoryBacking> element.

5.2.1.4 vCPU

The number of vCPUs allocated to a VM is defined in the <vcpu> element. In the
current release, a minimum of two or three vCPUs can be allocated to a VSR VM,
depending on the supported applications. The maximum number of vCPUs that can
be used by any VSR VM is 56.

The <vcpu> element contains the following attributes:

• cpuset
The cpuset attribute provides a comma-separated list of physical CPU numbers
or ranges, where ^ indicates exclusion. Any vCPU or vhost-net thread
associated with the VM that is not explicitly pinned by the <cputune>
configuration is pinned to one of the physical CPUs allowed by the cpuset
attribute.
When using the cpuset attribute, ensure that all the allowed physical CPUs
belong to one NUMA node; see NUMA for more information.

• current
The current attribute allows fewer than the maximum vCPUs to be allocated to
the VM at boot up. This attribute is not required for VSR VMs because in-service
changes to the vCPU allocation are not allowed.

• placement
The placement attribute accepts a value of either static or auto. Use static
when specifying a cpuset. When auto is used, libvirt ignores the cpuset
attribute and maps vCPUs to physical CPUs in a NUMA-optimized manner
based on input from the numad process. The placement attribute defaults to
the placement mode of <numatune>, or to static if a cpuset is specified.

The following example <vcpu> configuration for a VSR VM allocates four vCPUs.
There are no placement or cpuset attributes in this example because it is assumed
that CPU pinning requirements are handled by the <cputune> element.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

Issue: 01 3HE 15837 AAAA TQZZA 01 73

<vcpu>4</vcpu>

Use <cputune> to meet the CPU pinning requirements of VSR-I VMs. See Cputune
for more information.

5.2.1.5 Cputune

The <cputune> element provides fine-grained control of the physical CPU resources
used by the VM. The <vcpupin> child elements enable individual guest vCPUs to be
mapped to specific physical CPUs using the cpuset attribute. The cpuset attribute
has the same syntax as the <vcpu> cpuset attribute.

The <cputune> element overrides the cpuset policy specified in the <vcpu>
element. See vCPU for more information.

The <emulatorpin> child element allows you to restrict the set of physical CPUs
used by the vhost-net threads associated with the VirtIO interfaces of the VM.

For VSR-I VMs, use <vcpupin> to meet the following CPU pinning guidelines.

CPU Pinning Guidelines
• Each vCPU should be pinned.
• All the vCPUs of a single VM should be pinned to the physical CPUs of a single

NUMA node.
• If hyper-threading is enabled on the host machine, then the first two vCPUs must

be pinned to sibling threads of the same pCPU core, the next two vCPUs must
be pinned to sibling threads of some other pCPU core, and so on.

It is also recommended to include the <emulatorpin> element in <cputune>. The
<emulatorpin> cpuset attribute should be set to an available CPU outside of the
CPU set allocated to the VSR VM.

The following output shows a <cputune> element for a VSR-I with 4 vCPUs, pinned
to four physical CPUs that are associated with NUMA node 1.

<cputune>
<vcpupin vcpu=’0’ cpuset=’6’/>
<vcpupin vcpu=’1’ cpuset=’7’/>
<vcpupin vcpu=’2’ cpuset=’8’/>
<vcpupin vcpu=’3’ cpuset=’9’/>
<emulatorpin cpuset=’5’/>

</cputune>

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

74

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

5.2.1.6 Numatune

Include the <numatune> element to tune the performance of a NUMA host. The
<memory> child element allows you to specify the host NUMA nodes from which to
allocate memory for the VM. The <numatune> element provides the following
optional attributes:

• nodeset
The nodeset attribute allows you to specify a comma-separated list of numbers
or ranges, with ^ indicating exclusion. The numbers refer to host NUMA nodes.

• placement
The placement attribute accepts a value of either static or auto. Use static
when specifying a nodeset. When auto is specified, libvirt ignores the nodeset
attribute and allocates memory in a NUMA-optimized manner based on input
from the numad process.
The placement attribute defaults to the same placement mode of <vcpu>, or to
static if nodeset is specified.

• mode
The mode attribute indicates the allocation policy.
When mode='strict' is specified, libvirt attempts to allocate memory for the VM
from the NUMA nodes allowed by nodeset, but if it cannot do so, the memory
allocation fails.
When mode='preferred' is specified, libvirt attempts to allocate memory for the
VM from the NUMA nodes allowed by nodeset, but if it cannot do so, the
memory is allocated from other NUMA nodes.

The following output shows a <numatune> configuration for a VSR VM that ensures
all memory for the VM will be allocated from NUMA node 1.

<numatune>
<memory mode=’strict’ nodeset=’1’/>

</numatune>

5.2.1.7 CPU

The <cpu> element specifies CPU capabilities and topology presented to the guest.
The mode attribute of <cpu> supports the following values:

• custom
In the custom mode, specify all the capabilities of the CPU that will be presented
to the guest.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

Issue: 01 3HE 15837 AAAA TQZZA 01 75

• host-model
In the host-model mode, the model and features of the host CPU are read by
libvirt just before the VM is started and the guest is presented with almost
identical CPU and features.
If the exact host model cannot be supported by the hypervisor, libvirt falls back
to the next closest supported model that has the same CPU features. This
fallback is permitted by the <model fallback='allow'/> element).

• host-passthrough
In the host-passthrough mode, the guest CPU is represented as exactly the
same as the host CPU, even for features that libvirt does not understand.

The <topology> child element specifies three values for the guest CPU topology: the
number of CPU sockets, the number of CPU cores per socket, and the number of
threads per CPU core.

If the host machine has hyper-threading enabled in the BIOS, then the <topology>
element for a VSR-I VM must be specified as follows:

• the sockets attribute value must be set to “1”
• the cores attribute value must be equal to half the number of vCPUs assigned

to the VSR VM
• the threads attribute value must be set to “2”

The <numa> child element in the <cpu> element creates specific guest NUMA
topology. However, this is not applicable to the VSR because the VSR software is
not NUMA-aware.

The following output shows a <cpu> configuration suitable for a VSR-I VM on a
hyper-threaded host machine. The configuration provides the VSR-I with 12 vCPUs.

<cpu mode=’host-model’>
<model fallback=’allow’/>
<topology sockets=’1’ cores=’6’ threads=’2’/>

</cpu>

Note: The mode='host-model' with <model fallback='allow'/> is recommended for VSR
VMs.

Caution: The number of vCPUs allocated to the VM using the <vcpu> element (see vCPU)
must equal the number of sockets × cores × threads, as specified in the <topology>
element. If they are not equal, then the hypervisor may not create the VM and, even if the
VM is created, no hyper-threading optimizations are applied by VSR.

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

76

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

5.2.1.8 Sysinfo

The <sysinfo> element presents SMBIOS information to the guest. SMBIOS is
divided into three blocks of information (blocks 0 to 2); each block consists of multiple
entries. SMBIOS system block 1 is most important for the VSR. The SMBIOS
system block contains entries for the manufacturer, product, version, serial number,
UUID, SKU number, and family.

SMBIOS provides a convenient way to pass VSR-specific configuration information
from the host to the guest so that it is available to VSR software when it boots. When
a VSR VM is started, the VSR software reads the product entry of the SMBIOS
system block. If the product entry begins with TIMOS: (case insensitive), VSR
recognizes the string that follows as containing important initialization information.
The string following the TIMOS: characters contains one or more attribute-value
pairs formatted as follows:

attribute1=value1 attribute2=value2 attribute3=value3

This pattern continues until all attributes have been specified.

The supported attribute-value pairs and their uses are summarized in Table 5.

Note: For the VSR VM to properly detect the vCPU layout specified by the <topology>
element, the ACPI feature must be enabled in the libvirt domain XML file. See Hypervisor
Features.

Table 5 VSR Boot Parameters in SMBIOS Product Entry

Attribute Name Valid Values Description

address <ip-prefix>/<ip-prefix-
length>@active
where:

• <ip-prefix>: an IPv4 or IPv6
prefix

• <ip-prefix-length>: 1-128

Sets a management IP address.

static-route <ip-prefix>/<ip-prefix-
length>@<next-hop-ip>
where:

• <ip-prefix>: an IPv4 or IPv6
prefix

• <next-hop-ip>: an IPv4 or
IPv6 address

Adds a static route for management connectivity.
Static default routes (0/0) are not supported.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

Issue: 01 3HE 15837 AAAA TQZZA 01 77

license-file <file-url>
where:

• <file-url>:
<cflash-id/><file-path>

or
• ftp://

<login>:<password>@<rem
ote-host/><file-path>

or
• tftp://

<login>:<password>@<rem
ote-host/><file-path>
<cflash-id>: cf1: | cf1-A: | cf1-
B: | cf2: | cf2-A: | cf2-B: | cf3:
| cf3-A: | cf3-B:

Specifies the local disk or remote FTP/TFTP location of
the license file.

primary-config <file-url>
where:

• <file-url>:
<cflash-id/><file-path>

or
• ftp://

<login>:<password>@<rem
ote-host/><file-path>

or
• tftp://

<login>:<password>@<rem
ote-host/><file-path>
<cflash-id>: cf1: | cf1-A: | cf1-
B: | cf2: | cf2-A: | cf2-B: | cf3:
| cf3-A: | cf3-B:

Specifies the local disk or remote FTP/TFTP location of
the primary configuration file.

chassis VSR-I Specifies the logical chassis type. For an integrated
model system, the chassis type is VSR-I.

slot A Specifies the logical slot number of the VSR card
indicated by the card attribute.

card cpm-v Specifies the logical card type. In combination with the
chassis value, the card value indicates the type of VSR
VM.

Table 5 VSR Boot Parameters in SMBIOS Product Entry (Continued)

Attribute Name Valid Values Description

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

78

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

mda/n
n=1..4

m20-v, isa-aa-v, isa-bb-v, isa-
tunnel-v

Specifies the logical MDA types that are logically
equipped in the indicated card.
Up to four MDAs are supported per card, depending on
the chassis or card type combination.

control-cpu-cores 1 to 16 Specifies the number of physical CPU (pCPU) cores to
allocate to the control plane. These pCPU cores are
reserved for control and management tasks. By
default, only one control CPU core is allocated to a VM.
See Allocation of vCPUs for Control and Management
Tasks for more information.

system-base-
mac

hh:hh:hh:hh:hh:hh Specifies the first MAC address in a range of 1024
contiguous values to use as chassis MACs.
The default is the same for all VSRs and should be
changed so that each VSR has a unique, non-
overlapping range.

vsr-deployment-
model

• route-reflector
• queue-scale
• high-packet-touch

Specifies an application profile for the VSR VM so that
optimizations specific to that profile can be applied.
The route-reflector profile is recommended when
deploying the VSR as a control-plane BGP RR. If N is
the number of vCPUs allocated to the VM, then this
SMBIOS directive is equivalent to manually assigning
the control-cpu-cores SMBIOS attribute the value N-
1 (if the host is not hyper-threaded) or N/2-1 (if the host
is hyper-threaded).
The queue-scale profile is recommended when a VSR
is used in a system configured as a virtualized BNG or
other similar system type that requires deep buffering.
In this profile the maximum supported MTU size is
2048 bytes.
The high-packet-touch profile is recommended when
a VSR is used in a system configured as an IPSec
security gateway or for Application Assurance. This
profile has an effect only if the VSR VM detects that it
is running on a hyper-threaded host machine. In this
case, it runs two vFP worker tasks on the same pCPU
core rather than just one vFP worker task per pCPU
core (using just one hyper-thread and leaving the other
idle).

Table 5 VSR Boot Parameters in SMBIOS Product Entry (Continued)

Attribute Name Valid Values Description

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

Issue: 01 3HE 15837 AAAA TQZZA 01 79

The following <sysinfo> output shows a configuration suitable for a VSR-I VM.
Replace the attribute values in the SMBIOS product entry string with values
appropriate for your deployment.

<sysinfo type=’smbios’>
<system>

<entry name='product'>TIMOS:slot=A chassis=VSR-I card=cpm-v mda/1=m20
v control-cpu-cores=2 system-base-mac=de:ad:be:ef:00:01 address=192.0.2.1
24@active primary-config=ftp://user01:pass@10.0.0.1/home/user01/vsr-i
config.cfg license-file=ftp://user01:pass@10.0.0.1/home/user01/license.txt<
entry>

</system>
</sysinfo>

5.2.1.9 OS

The <os> element provides information about the guest OS to the hypervisor. It
contains a <type> element that specifies the guest operating system type. For VSR
VMs, the <type> element must specify hvm, which means that the guest OS is
designed to run on bare metal and requires full virtualization.

The arch attribute of the <type> element specifies the CPU architecture that is
presented to the guest. For VSR VMs, specify arch=x86_64 to allow the VSR
software to take advantage of 64-bit instructions and addressing.

The machine attribute of the <type> element specifies how QEMU should model the
motherboard chipset in the guest system. For VSR VMs, specify machine='pc',
which is an alias for the latest I440FX/PIIX4 architecture supported by the hypervisor
when the VM is created. The I440FX is a (1996 era) motherboard chipset that
combines both Northbridge (memory controller) and Southbridge (IO devices)
functionality.

hyperthreading 1 By setting this attribute value to “1”, the VSR VM is
forced to assume that it is running on a hyper-threaded
host machine. This setting is not required nor advised
on Linux KVM hosts. It should be used only when the
VSR is known to be deployed on a VMware ESXi host
that has hyper-threading enabled. VSR VMs cannot
detect the hyper-threading state of ESXi host
machines, so a manual setting, using this attribute, is
required.

Table 5 VSR Boot Parameters in SMBIOS Product Entry (Continued)

Attribute Name Valid Values Description

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

80

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

If machine='q35' is specified, QEMU-KVM can also emulate a Q35 chipset. Q35 is
a relatively modern (2009 era) chipset design; it separates the Northbridge controller
(MCH) from the Southbridge controller (ICH9) and provides the guest with advanced
capabilities such as IOMMU and PCI-E.

Although the I440FX emulation is the older machine type, it is the more mature and
hardened option and is recommended by Nokia.

The <os> element also contains the <smbios> child element that you must include
in the configuration of VSR VMs. Set the mode attribute to “sysinfo”, which allows
you to pass the information specified in the <sysinfo> element (including the
product entry) to the VSR guest. If you are using configDrive, set the mode attribute
to “emulate”.

The <os> element can also include one or more <boot> child elements. The dev
attribute of each <boot> element specifies a device such as 'hd' (hard drive), 'fd'
(floppy disk), 'cdrom', or 'network', which indicates that the guest should load its OS
from this device. The order of multiple <boot> elements determines the boot order.
For VSR VMs, always boot from the 'hd' device that VSR translates to its CF3 disk.

The following <os> output shows element configuration suitable for VSR VMs of all
types.

<os>
<type arch='x86_64' machine='pc'>hvm</type>
<boot dev='hd'/>
<smbios mode='sysinfo'/>

</os>

5.2.1.10 Hypervisor Features

The <features> element allows certain CPU and machine features to be toggled on
or off.

The <acpi> child element of <features> toggles support of ACPI. The ACPI feature
must be enabled for all VSR VMs. It is critical when the VSR VM runs on any host
machine with a physical CPU having 18 or more cores, and it is important for VSR-I
VMs because it provides the method for the VSR software to learn about the CPU
topology of the KVM host machine so that it can apply hyper-threading optimizations
if needed.

The following output shows the required configuration of the <features> element.

<features>
<acpi/>

</features>

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

Issue: 01 3HE 15837 AAAA TQZZA 01 81

5.2.1.11 Clock

The <clock> element controls specific aspects of timekeeping within the guest. Each
guest must initialize its clock to the correct time-of-day when booting and update its
clock accurately as time passes.

The offset attribute of <clock> controls how the of the time-of-day clock of the guest
is initialized at bootup. For VSR VMs, the offset attribute value should be set to utc,
which enable the host and guest to belong to different time zones, if required.

The VSR and other guests update the time-of-day clock by counting ticks of virtual
timer devices. The hypervisor injects ticks to the guest in a manner that emulates
traditional hardware devices, for example, the Programmable Interrupt Timer (PIT)
and CMOS Real Time Clock (RTC). Each virtual timer presented to the guest is
defined by a <timer> sub-element of <clock>. The name attribute of <timer>
specifies the device name (for example, 'pit', 'rtc' or 'hpet'), the present attribute
indicates whether the timer should be made available to the guest, and the
tickpolicy attribute controls the action taken when the hypervisor (QEMU) discovers
that it has missed a deadline for injecting a tick to the guest. A tickpolicy value set
to 'delay' means the hypervisor should continue to delay ticks at the normal rate, with
a resulting slip in guest time relative to host time. A tickpolicy value set to 'catchup'
means the hypervisor should deliver ticks at a higher rate to compensate for the
missed tick.

The following <clock> output shows element configuration suitable for VSR VMs.

<clock offset='utc'>
<timer name='pit' tickpolicy='delay'/>
<timer name='rtc' tickpolicy='catchup'/>
<time name='hpet' present='no'/>

</clock>

5.2.1.12 Devices

Use the <devices> element to add various devices to the VM, including hard drives,
CD-ROMs, network interfaces, and serial console ports.

The <devices> element requires that the file path of the program used to emulate
the devices must be specified in the <emulator> child element. On Centos and Red
Hat hosts the emulator is a binary called qemu-kvm. On Ubuntu hosts, the emulator
is called qemu-system-x86_64.

VSR VM configuration information is provided about the following device types:

• Disk Devices

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

82

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

• Host Devices and PCI Passthrough
• Network Interfaces
• Guest vNIC Mapping in VSR VMs
• Console and Serial Ports

5.2.1.12.1 Disk Devices

The <disk> child element of the <devices> element allows you to add up to four
disks to a VSR VM.

The type attribute of the <disk> element specifies the underlying source for each
disk. The only supported value for VSR VMs is type='file', which indicates that the
disk is a file residing on the host machine.

The device attribute of the <disk> element configures the representation of the disk
to the guest OS. The supported values for VSR VMs are device='disk' and
device='cdrom'. When device='disk' is specified, QEMU-KVM attaches a hard
drive to the guest VM and VSR interprets this as a Compact Flash (CF) storage
device. When device='cdrom' is specified, QEMU-KVM attaches a CD-ROM to the
guest VM, and VSR mounts it as a read-only configDrive if the volume label is config-
2 (case insensitive).

The optional <driver> child element of the <disk> element provides additional
details about the back-end driver. For VSR VMs, set the name attribute to 'qemu'
and the type attribute to 'qcow2'. These two attributes specify that the disk image
has the QCOW2 format.

When you download the VSR software, the zip file contains a QCOW2 disk image,
which is a file that represents the VSR software on a hard disk; any VSR VM can be
booted from this disk image. QCOW2 is a disk image format for QEMU-KVM VMs
that uses thin provisioning (that is, the file size starts small and increases in size only
as more data is written to disk). It supports snapshots, compression, encryption, and
other features.

Note: A NIC swap may result in Linux interface name changes, MAC address changes and/
or PCI bus address changes.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

Issue: 01 3HE 15837 AAAA TQZZA 01 83

The optional cache attribute of the <driver> element controls the caching
mechanism of the hypervisor. A value set to 'writeback' offers high performance but
risks data loss (for example, if the host crashes but the guest believes the data was
written). For VSR VMs, it is recommended to set cache='none' (no caching) or
cache='writethrough' (writing to cache and to the permanent storage at the same
time).

The mandatory <source> child element of the <disk> element indicates the path (for
disks where type='file') to the QCOW2 file used to represent the disk.

The mandatory <target> child element of the <disk> element controls how the disk
appears to the guest in terms of bus and device. The dev attribute should be set to
a value of 'hda', 'hdb' or 'hdc'. A value of 'hda' is the first IDE hard drive; it maps to
CF3 on VSR-I VMs. A value of 'hdb' is the second IDE hard drive; it maps to CF1 on
VSR-I VMs. A value of 'hdc' is the third IDE hard drive; it maps to CF2 on VSR-I VMs.
The bus attribute of the <target> element should be set to 'virtio' for VSR virtual
disks.

Each VSR VM must be provided with a “hda” hard disk that contains the VSR
software images. Each virtual disk of each VSR VM should have be provided with its
own, independent QCOW2 file.

The following <disk> element configuration output provides a VM with a CF3 device.

<disk type='file' device='disk'>
<driver name='qemu' type='qcow2' cache='none'/>
<source file='/var/lib/libvirt/images/vsr-i.qcow2'/>
<target dev='hda' bus='virtio'/>

</disk>

ConfigDrive

A ConfigDrive is a CD-ROM disk attached to the guest. It contains user-data and
meta-data files that are read by the guest at bootup to initialize settings (for example,
IP address). The ConfigDrive can be built manually (using the genisoimage
command), but it is typically generated automatically by a VIM such as OpenStack.
The following conditions must be true for the VSR to recognize a CD-ROM as a
ConfigDrive:

1. The volume label must be config-2 (case insensitive).

Note: The recommended storage location for QCOW2 disk image files is the /var/lib/
libvirt/images directory; storing disk images in other locations may cause permission
issues.

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

84

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

2. The file system must be ISO9660 or VFAT
3. An /openstack/2013_10_17/user_data file must be present

When a VSR VM detects a ConfigDrive, it reads the user_data file in the openstack/
2013_10_17 directory. If the file contains a string beginning with “TIMOS:” (without
the quotes, case insensitive), the VSR handles the string in the same way it would
handle an identical string in an SMBIOS product entry. ConfigDrive provides an
alternate method of passing the boot parameters to the VSR software when creating
a VSR VM using OpenStack (Nova); see Table 5 for more information about VSR
boot parameters.

The following ConfigDrive configuration shows XML formats for ISO and VFAT.

<disk type='file' device='cdrom'>
<driver name='qemu' type='raw' cache='none'/>
<source file='/<TESTBED>/images/flexibed/<VM_NAME>/configDrive.iso'/>
<target dev='hdd' bus='ide'/>

</disk>
<disk type='file' device='disk'>

<driver name='qemu' type='qcow2' cache='none'/>
<source file='/<TESTBED>/images/flexibed/<VM_NAME>/configDrive.qcow2'/>
<target dev='hdd' bus='virtio'/>

</disk>

5.2.1.12.2 Host Devices and PCI Passthrough

The <hostdev> child element of the <devices> element allows host USB, PCI, and
SCSI devices to be passed through directly to the guest. For VSR VMs, the main
benefit of the <hostdev> element is that it supports PCI passthrough for physical
NIC ports. See Using PCI Passthrough for information about the benefits of PCI
passthrough and the host prerequisites.

For PCI passthrough, the <hostdev> element includes mode='subsystem' and
type='pci' attributes.

In addition, the managed attribute should be set to managed='yes', which ensures
that the PCI device (physical NIC port) is automatically detached from the host before
it is attached to the guest at bootup, and then re-attached to the host when the guest
is powered down. If managed='yes' is not set, you must use the virsh nodedev-
detach and virsh nodedev-reattach commands when the guest is started and
stopped.

For PCI passthrough, the <hostdev> element must contain a <source> sub-
element, that contains an <address> sub-element. Each attribute of the <address>
element (domain, bus, slot, and function) takes a hexadecimal value (preceded by
0x) and together they indicate the exact PCI device (in the host PCI addressing
domain) to pass through to the guest.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

Issue: 01 3HE 15837 AAAA TQZZA 01 85

The <hostdev> element should also contain a <rom> element, with the bar attribute
set to 'off'. The <rom bar='off'/> element prevents QEMU from presenting the option
ROM of the physical NIC to the guest. If the option ROM is not blocked, it can result
in delays and degraded performance in the VSR guest.

The following methods are available to obtain PCI addresses of NIC ports:

1. sudo lshw -class network -businfo
2. ethtool -i <interface-name>
3. readlink -f /sys/class/net/<interface-name>/device

The following <hostdev> configuration shows PCI passthrough of the NIC port
associated with the PCI address 0000:02:01.0.

<hostdev mode=subsystem' type='pci' managed='yes'>
<source>

<address domain='0x0000' bus='0x02' slot='0x01' function='0x0'/>
</source>
<rom bar='off'/>

</hostdev>

5.2.1.12.3 Network Interfaces

The <interface> sub-element of the <devices> element allows you to add up to 16
virtual NIC ports to a VSR VM. The type attribute of <interface> supports several
values, including:

• type=‘direct’
• type=‘bridge’
• type=‘hostdev’
• type=‘network’
• type=‘vhostuser’

The following child elements of <interface> are common to most interface types:

• <mac>: Contains an address attribute that indicates the MAC address of the
guest vNIC port.

• <model>: Contains a type attribute that indicates the NIC model presented to
the guest.
The default value for type is 'virtio', which indicates that the guest should use
its VirtIO driver for the network interface.

• <driver>: Contains several attributes corresponding to tunable driver settings.

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

86

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

The queues attribute, when used in conjunction with the <model type='virtio'/
> element, enables multi-queue VirtIO in the guest.

• <address>: Specifies the guest PCI address of the vNIC interface when the
type='pci' attribute is included.
The other attributes required to specify a PCI address are: domain (0x0000),
bus (0x00-0xff), slot (0x00-0x1f), and function (0x0-0x7).
If the <address> element is not included, the hypervisor assigns an address
automatically as follows: the first interface defined in the libvirt domain XML has
the lowest PCI address, the next one has the next-lowest PCI address, and so
on.
The VSR maps vNIC interfaces to its own set of interfaces based on the order
of the vNIC interfaces, from lowest to highest PCI address; this should be
considered when you change the PCI address of a vNIC interface. See Guest
vNIC Mapping in VSR VMs for information about how the VSR maps vNIC
interfaces.

• <target>: Specifies the name of the Linux tun device representing the vNIC
interface in the host.

type=‘direct’

The <interface> element with type='direct' allows you to create a direct connection
between the guest vNIC port and a host physical NIC port or SR-IOV virtual function.
The interconnection uses a MACVTAP driver in the Linux host. The I/O performance
is significantly less than bare-metal, but live migration can be supported when the
interconnection is used with an SR-IOV virtual function.

Specifying type='hostdev' with an SR-IOV virtual function does not permit live
migration, as described in type=‘hostdev’.

To connect a guest vNIC port to an SR-IOV virtual function using the MACVTAP
driver, include a <source> sub-element with the dev attribute that indicates the
interface name of the host VF interface and mode='passthrough'. The following
configuration shows 'enp133s0f0' as the host VF interface name.

Note: The VSR does not support multi-queue VirtIO.

Note: The <target> element does not need to be configured with VSR VMs.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

Issue: 01 3HE 15837 AAAA TQZZA 01 87

<interface type='direct'>
<source dev='enp133s0f0' mode='passthrough'/>
<model type='virtio'>

</interface>

type=‘bridge’

The <interface> element with type='bridge' specifies that the guest vNIC port
should be connected to a vSwitch or Linux bridge in the host. The interconnection
uses the Vhost-Net back end driver when the <model type='virtio'/> element is
included. The I/O performance of this configuration is significantly less than bare-
metal.

To use a Linux bridge named brX, include a <source> sub-element with a
bridge='brX' attribute, as shown in the following configuration.

<interface type='bridge'>
<source bridge='br0'/>
<model type='virtio'>

</interface>

To use a standard (non-DPDK) OpenvSwitch bridge named brX, include a <source>
sub-element with a bridge='brX' attribute. In addition, include a <virtualport
type='openvswitch'/> element, as shown in the following configuration.

<interface type='bridge'>
<source bridge='br1'/>
<virtualport type='openvswitch'/>
<model type='virtio'>

</interface>

type=‘hostdev’

The <interface> element with type='hostdev' is the recommended method of
connecting a guest vNIC interface to a virtual function of an SR-IOV NIC port (PF).
This method offers bare-metal performance levels and allows network parameters
(such the MAC address or VLAN tag) to be assigned to the VF prior to PCI
assignment to the guest.

Note: To use SR-IOV, the host must have the correct BIOS and kernel boot settings. See
Using SR-IOV for more information.

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

88

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

To connect a guest vNIC port to an SR-IOV virtual function using the <interface
type=hostdev> element, include a <source> sub-element containing an <address
type='pci'> element. The <address> element indicates the host PCI address of the
VF in the form of domain (0x0000), bus (0x00-0xff), slot (0x00-0x1f), and function
(0x0-0x7) attributes. To obtain the PCI addresses of all virtual functions associated
with a physical NIC port, use the following command:

ls -l /sys/class/net/<interface-name>/device/virtfn*

The following configuration shows an <interface type='hostdev'> element that
connects a guest vNIC interface to the VF with host PCI address 0000:81:10.1. The
VF is associated with both a MAC address and a VLAN ID in this example.

<interface type='hostdev' managed='yes'>
<mac address='52:54:00:81:10:01'/>
<source>

<address type='pci' domain='0x0000' bus='0x81' slot='0x10' function='0x1'/>
</source>
<vlan>

<tag id='100'/>
</vlan>

</interface>

type=‘network’

In addition to the XML definition of domains (or VMs), libvirt also supports XML
definition of networks, which are managed the same way as domains. To define
networks, create an XML file for each network, then start each network with a virsh
net-create <filename.xml> command. The virsh net-autostart <network-name>
command ensures that the network is always available at startup. The virsh net-list
command shows all of the available networks. The virsh net-destroy <network-
name> command removes a network.

To attach a guest vNIC interface to a libvirt-defined network, provide the VM an
<interface type='network'> element. The <source> sub-element is required with its
network attribute is set to the name of the libvirt-defined network.

The type='network' interface type is useful when you want to assign an SR-IOV
virtual function to a guest vNIC. However, libvirt should be allowed to choose the
next available VF from a pool instead of binding the guest vNIC to a specific VF with
a specific host PCI address. The pool method makes it simpler to manage the VF
resources in one host and to move guests between hosts. When a guest moves from
one host to another, a hard-coded PCI address may not correspond to an available
VF. Libvirt allows you to define a network that conceptually contains a pool of VF
resources.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

Issue: 01 3HE 15837 AAAA TQZZA 01 89

The following configuration shows a network XML file that assigns all VFs associated
with the eth3 physical function (PF) to a pool.

<network>
<name>eth3-vf-pool</name>
<forward mode='hostdev' managed='yes'>

<pf dev='eth3'/>
</forward>

</network>

The following configuration shows an <interface> used to bind a guest vNIC
interface to any available VF of eth3.

<interface type='network'>
<source network='eth3-vf-pool'/>

</interface>

type=‘vhostuser’

The <interface> element with type='vhostuser' specifies that the guest vNIC port
should be connected to an DPDK-accelerated OVS bridge (an OVS bridge with
datapath_type=netdev). The guest uses a VirtIO driver and the host implements the
back-end Vhost driver in userspace. The I/O performance of this configuration is
significantly better than non-DPDK OVS.

The following output shows an <interface type='vhostuser'>configuration that
binds a guest vNIC interface to a dpdkvhostuser interface 'vhost-user0' of a OVS-
DPDK bridge.

<interface type='vhostuser'>
<source type='unix' path='/usr/local/var/run/openvswitch/vhost
user0' mode='client'/>

<model type='virtio'/>
</interface>

5.2.1.12.4 Guest vNIC Mapping in VSR VMs

This section describes the relationship between a network interface defined in the
libvirt XML for a VSR VM and its use by the VSR software.

Note: The <model type='virtio'/> element is mandatory for a 'vhostuser' interface.
Change the name of the dpdkvhostuser interface and the path to the associated socket, if
they differ in your configuration.

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

90

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

In the current release, each VSR VM supports a maximum of 16 vNIC interfaces. The
VSR software puts the defined interfaces in ascending order of (guest) PCI address,
which is also the order they typically appear (top to bottom) in the domain XML file.

The order of the defined interfaces and the VSR VM type determines the use of each
interface by the VSR software. The VSR interface mapping information is
summarized in Table 6.

Table 6 VSR-I Interface Mapping

Order
(By Guest PCI
Address)

VSR Software Use Supported Interface Types

1 Management port (A/1) type='direct' with <model
type='virtio'/>
type='bridge' with <model
type='virtio'/>

2 MDA port (1/1/1) See Host Devices and PCI
Passthrough and Network
Interfaces for more information
about the following interface
types:

• type=‘direct’
• type=‘bridge’
• type=‘hostdev’
• type=‘network’
• type=‘vhostuser’

3 MDA port (1/1/2) See Host Devices and PCI
Passthrough and Network
Interfaces for more information
about the following interface
types:

• type=‘direct’
• type=‘bridge’
• type=‘hostdev’
• type=‘network’
• type=‘vhostuser’

... - -

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

Issue: 01 3HE 15837 AAAA TQZZA 01 91

5.2.1.12.5 Console and Serial Ports

The <console> sub-element in the <devices> element allows you to add a console
port to a VSR VM. As it does on physical routers, the console port on a VSR VM
provides interactive access to CLI.

There are several methods for creating and accessing a VSR console port. The first
method is to bind the console port to a TCP socket opened by the host. To access
the console, establish a Telnet session with the host, using the port number of the
TCP socket. The following example shows a configuration for this method:

<console type='tcp'>
<source mode='bind' host='0.0.0.0' service='4000'/>
<protocol type='telnet'/>
<target type='virtio' port='0'/>

</console>

The second method is to bind the console port to an emulated serial port. In this case,
the virsh console <domain-name> command is used to access the console. The
following example shows a configuration for this method:

<serial type='pty'>
<source path='/dev/pts/1'/>
<target port='0'/>
<alias name='serial0'/>

</serial>
<console type='pty' tty='/dev/pts/1'>

<source path='/dev/pts/1'/>
<target type='serial' port='0'/>
<alias name='serial0'/>

</console>

16 MDA port (1/1/15) See Network Interfaces for
more information about the
following interface types:

• type=‘direct’
• type=‘bridge’
• type=‘hostdev’
• type=‘network’
• type=‘vhostuser’

Table 6 VSR-I Interface Mapping (Continued)

Order
(By Guest PCI
Address)

VSR Software Use Supported Interface Types

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

92

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

5.2.1.13 Seclabel

The <seclabel> element controls the generation of security labels required by
security drivers such as SELinux or AppArmor. These are not supported with VSR
VMs and therefore you must specify <seclabel type='none'> in the domain XML.

5.2.2 Example Libvirt Domain XML

The following example shows a libvirt domain XML configuration for a VSR-I VM.
Substitute the correct values for your configuration.

<domain type='kvm'>
<name>vsr-i-01</name>
<uuid>ab9711d2-f725-4e27-8a52-ffe1873c102f</uuid>
<memory unit='G'>6</memory>
<memoryBacking>

<hugepages>
<page size='1' unit='G' nodeset='0'/>

</hugepages>
<nosharepages/>

</memoryBacking>
<vcpu>4</vcpu>
<cputune>

<vcpupin vcpu='0' cpuset='6'/>
<vcpupin vcpu='1' cpuset='7'/>
<vcpupin vcpu='2' cpuset='8'/>
<vcpupin vcpu='3' cpuset='9'/>
<emulatorpin cpuset='5'/>

</cputune>
<numatune>

<memory mode='strict' nodeset='1'/>
</numatune>

<cpu mode='host-model'>
<model fallback='allow'/>
<topology sockets='1' cores='4' threads='1'/>

</cpu>
<sysinfo type=’smbios'>

<system>
<entry name='product'>TIMOS:slot=A chassis=VSR-I card=cpm-v mda/1=m20
v control-cpu-cores=2 system-base
mac=de:ad:be:ef:00:01 address=192.0.2.1/24@active primary-config=ftp:
/user01:pass@10.0.0.1/home/user01/vsr-i/config.cfg license-file=ftp:
/user01:pass@10.0.0.1/home/user01/license.txt</entry>

</system>
</sysinfo>
<os>

<type arch='x86_64' machine='pc'>hvm</type>
<boot dev='hd'/>
<smbios mode='sysinfo'/>

</os>
<features>

<acpi/>
</features>

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

Issue: 01 3HE 15837 AAAA TQZZA 01 93

<clock offset='utc'>
<timer name='pit' tickpolicy='delay'/>
<timer name='rtc' tickpolicy='catchup'/>
<time name='hpet' present='no'/>

</clock>
<devices>

<emulator>/usr/bin/qemu-kvm</emulator>
<disk type='file' device='disk'>

<driver name='qemu' type='qcow2' cache='none'/>
<source file='/var/lib/libvirt/images/vsr-i-01.qcow2'/>
<target dev='hda' bus='virtio'/>

</disk>
<interface type='bridge'>

<source bridge='br0'/>
<virtualport type='openvswitch'/>
<model type='virtio'>

</interface>
<interface type='hostdev' managed='yes'>

<mac address='52:54:00:81:10:01'/>
<source>

<address type='pci' domain='0x0000' bus='0x81' slot='0x10' function
='0x1'/>

</source>
<vlan>

<tag id='100'/>
</vlan>

</interface>
<serial type='pty'>

<source path='/dev/pts/1'/>
<target port='0'/>
<alias name='serial0'/>

</serial>
<console type='pty' tty='/dev/pts/1'>

<source path='/dev/pts/1'/>
<target type='serial' port='0'/>
<alias name='serial0'/>

</console>
</devices>
<seclabel type='none/>

</domain>

5.2.3 Verifying VSR Installation on Linux KVM Hosts

5.2.3.1 Overview

This section describes the basic procedures for verifying the VSR VM (VM)
installation on a Linux KVM host. Common problems that you may encounter are
highlighted and possible solutions to resolve these issues are provided.

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

94

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

5.2.3.2 Verifying Host Details

Successful installation of a VSR VM requires the host machine to be set up properly.
Use the commands described in this section to show host information for Linux
systems (running Centos or Red Hat).

5.2.3.2.1 General System Information

To show the Linux kernel version, enter the following:

uname -a ↵

To verify that the Linux kernel is 64-bit, enter the following:

uname -m ↵

The command output should be x86_64.

5.2.3.2.2 Linux Distribution Type

To show the type of Linux distribution and version, enter the following:

lsb_release -a ↵

5.2.3.2.3 PCI Devices

To view all PCI devices, enter the following:

lspci ↵

A partial sample output of the command is as follows:

Note: This section assumes that libvirt tools were used to deploy the VSR.

Note: Depending on your Linux distribution, you may have to install a package such as
redhat-lsb-core to use this command.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

Issue: 01 3HE 15837 AAAA TQZZA 01 95

[user@host ~]# lspci
04:00.0 Ethernet controller: Intel Corporation 82574L Gigabit Network Connection
05:00.0 Ethernet controller: Intel Corporation 82574L Gigabit Network Connection
06:00.0 Ethernet controller: Intel Corporation 82574L Gigabit Network Connection
07:00.0 Ethernet controller: Intel Corporation 82574L Gigabit Network Connection

The first entry indicates that there is a PCI device attached to bus 04, with device ID
00 and function 0 (04:00.0) and that it is an 82574L Gigabit Ethernet controller made
by Intel Corporation.

To view PCI device details, including capabilities such as the maximum bus speed
and the number of lanes (for example x4), enter the following:

lspci -vvv ↵

5.2.3.2.4 CPU Processor Information

To view details about all the CPU processors available to the host, enter the
following:

cat /proc/cpuinfo ↵

When hyper-threading is enabled on Intel CPUs, every hyper-thread appears as a
separate processor, as shown in the following partial sample output:

[user@host ~]# cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 62
model name : Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
stepping : 4
cpu MHz : 2593.614
cache size : 15360 KB
physical id : 0
siblings : 12
core id : 0
cpu cores : 6
apicid : 0
initial apicid : 0
fpu : yes
fpu_exception : yes
cpuid level : 13
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic mtrr pge mca cmov pat pse
6 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm cons
ant_tsc arch_perfmon pebs bts rep_good xtopology nonstop_tsc aperfmperf pni pclmulq
q dtes64 monitor ds_cpl vmx smx est tm2 ssse3 cx16 xtpr pdcm dca sse4_1 sse4_2 x2ap
c popcnt aes xsave avx f16c rdrand lahf_lm ida arat epb xsaveopt pln pts dts tpr_sh
dow vnmi flexpriority ept vpid fsgsbase smep erms
bogomips : 5187.22
clflush size : 64

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

96

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

cache_alignment : 64
address sizes : 46 bits physical, 48 bits virtual
power management:

To run VSR VMs, the cpu family value must be 6 (Intel) and the model should be
greater than or equal to 42 (in most cases). In addition, several CPU flags are critical
for the VSR and must be passed through to the guest. These include:

• x2apic—support for an advanced interrupt controller introduced with Intel
Nehalem processors
Support for the x2APIC is mandatory; the flag must not be emulated

• lm—long mode, indicating a 64-bit CPU, which is necessary to support 64-bit
guests

• vmx—support for Intel virtualization technologies such as VT-d/VT-x

5.2.3.2.5 Host Memory

To view details about the host memory, enter the following:

cat /proc/meminfo ↵

The following is a partial sample output of this command:

[user@host ~]# cat /proc/meminfo
MemTotal: 16406144 kB
MemFree: 9442676 kB
MemAvailable: 11272708 kB
Buffers: 648220 kB
Cached: 1352744 kB
SwapCached: 0 kB
Active: 4898888 kB
Inactive: 1723664 kB

The MemFree value must be at least 4194304 kB if you want to create another VSR
VM on this host.

5.2.3.2.6 Host Capability

To show summary information about the host and its virtualization capabilities, enter
the following:

Note: Similar output can be obtained using the lscpu and lscpu --all --extended
commands.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

Issue: 01 3HE 15837 AAAA TQZZA 01 97

virsh capabilities ↵

The command output must confirm that the system is capable of supporting guests
with the x86_64 architecture (64-bit guests).

5.2.3.2.7 QEMU and libvirt Information

To show libvirt and QEMU version information, enter the following:

virsh version ↵

5.2.3.2.8 Loaded Modules

To list all the kernel modules installed on the host, enter the following:

lsmod ↵

Some key modules are: bridge, kvm, kvm_intel, vhost_net, tun, macvtap and
openvswitch.

5.2.3.2.9 Host Virtualization Setup

To check that dependencies for virtualization are installed correctly on the host, enter
the following:

virt-host-validate ↵

The following is a sample output of the command:

[user@host ~]# virt-host-validate
QEMU: Checking for hardware virtualization : PASS
QEMU: Checking for device /dev/kvm : PASS
QEMU: Checking for device /dev/vhost-net : PASS
QEMU: Checking for device /dev/net/tun : PASS

Note: The libvirt package must be installed to use this command on the host.

Note: The libvirt package must be installed to use this command on the host.

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

98

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

LXC: Checking for Linux >= 2.6.26 : PASS
[user@host ~]#

5.2.3.3 Verifying the Creation of VMs

Before attempting to log in to a VSR system and to check for successful boot of its
VMs, ensure that the VMs have been created as expected on all the host machines.

If libvirt is used, view the list of VMs on a specific host by entering the following
command:

virsh list ↵

The following is a sample output of this command:

[user@host ~]# virsh list --all
Id Name State

--
1 VSR1 running
2 VSR2 running
3 IOM1 running

Because each QEMU-KVM VM is a process with two or more threads, you can also
use a sequence of commands, such as the following, to get more details about a
running VM:

[user@host ~]# ps -ef | grep VSR1
qemu 6304 1 5 Sep10 ? 05:03:50 /usr/libexec/qemu-kvm.real -
name VSR1 -S -machine rhel6.0.0, accel=kvm, usb=off -
cpu SandyBridge, +erms, +smep, +fsgsbase, +rdrand, +f16c, +osxsave, +pcid, +pdcm, +x
tpr, +tm2, +est, +smx, +vmx, +ds_cpl, +monitor, +dtes64, +pbe, +tm, +ht, +ss, + acpi
, + ds, +vme -m 6144 -realtime mlock=off -smp 2, sockets=2, cores=1, threads=1 -
uuid nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn -nographic -no-user-config -nodefaults -
chardev socket, id=charmonitor, path=/var/lib/libvirt/qemu/
VSR1.monitor, server, nowait -mon chardev=charmonitor, id=monitor, mode=control -
rtc base=utc -no-kvm-pit-reinjection -no-shutdown -no-acpi -boot strict=on -
device piix3-usb-uhci, id=usb, bus=pci.0, addr=0x1.0x2 -device virtio-serial-
pci, id=virtio-serial0, bus=pci.0, addr=0x7 -drive file=/path/
disk1.qcow2, if=none, id=drive-virtio-disk0, format=qcow2, cache=none -
device virtio-blk-pci, scsi=off, bus=pci.0, addr=0x8, drive=drive-virtio-
disk0, id=virtio-disk0 -netdev tap, fd=23, id=hostnet0, vhost=on, vhostfd=24 -
device virtio-net-
pci, netdev=hostnet0, id=net0, mac=nn:nn:nn:nn:nn:nn, bus=pci.0, addr=0x3, bootindex
=1 -netdev tap, fd=25, id=hostnet1, vhost=on, vhostfd=26 -device virtio-net-
pci, netdev=hostnet1, id=net1, mac=nn:nn:nn:nn:nn:nn, bus=pci.0, addr=0x4 -
chardev socket, id=charconsole0, host=0.0.0.0, port=2500, telnet, server, nowait -
device virtconsole, chardev=charconsole0, id=console0 -device virtio-balloon-
pci, id=balloon0, bus=pci.0, addr=0x6

[user@host ~]# ps -T 6304
root@vsr_hyp]# ps -T 6304

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

Issue: 01 3HE 15837 AAAA TQZZA 01 99

PID SPID TTY STAT TIME COMMAND
6304 6304 ? Sl 0:19 /usr/libexec/qemu-kvm.real -name VSR1 -S -

machine rhel6.0.0,accel=k
6304 6310 ? Sl 169:47 /usr/libexec/qemu-kvm.real -name VSR1 -S -

machine rhel6.0.0,accel=k
6304 6311 ? Sl 134:52 /usr/libexec/qemu-kvm.real -name VSR1 -S -

machine rhel6.0.0,accel=k

These sample command outputs indicate that the VM called VSR1 is running as
process ID 6304 in the host machine. There are three threads associated with this
process.

Obtain a real-time view of the host system impact of all running VMs by entering the
following commands:

top ↵

htop ↵

The following is a sample output of the command:

[root@vsr_hyp]# top
top - 14:00:10 up 5 days, 4:44, 2 users, load average: 4.09, 4.08, 4.09
Tasks: 184 total, 2 running, 182 sleeping, 0 stopped, 0 zombie
%Cpu(s): 51.2 us, 0.1 sy, 0.0 ni, 48.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem: 16406144 total, 6970448 used, 9435696 free, 649488 buffers
KiB Swap: 0 total, 0 used, 0 free. 1328612 cached Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
6349 qemu 20 0 4860828 2.445g 5912 S 402.1 15.6 24522:22 qemu-

kvm.real
6304 qemu 20 0 6736452 0.981g 5916 S 4.7 6.3 305:44.16 qemu-

kvm.real
6321 qemu 20 0 6736424 0.980g 5916 S 4.3 6.3 280:32.31 qemu-

kvm.real
6308 root 20 0 0 0 0 S 0.3 0.0 4:45.88 vhost-

6304
6324 root 20 0 0 0 0 S 0.3 0.0 1:23.12 vhost-6321

5.2.3.4 Verifying Host Networking

Different methods can be used to provide network connectivity between the VSR
VMs and external destinations.

Table 7 lists some useful commands to help troubleshoot networking at the host
level.

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

100

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

5.2.3.5 Verifying VSR Installation

After verifying that the VSR VMs have been created successfully on the respective
hosts, check the SR OS operating system to verify that it has booted up properly on
each VM and that each VSR system is functional. Access to the VSR guests is often
required to perform these checks. This is the main reason for adding a serial console
port to VSR VMs. With console access, log in to each VSR and perform the checks
described in this section.

5.2.3.5.1 Check the Status of the System BOF

The output of this check depends on the SMBIOS text string you used for the VM and
the saved BOF configuration. At the prompt, type the following:

A:VSR# show bof ↵

The following is a sample output of this command:

Table 7 Host Network Troubleshooting

Command Syntax Description

ip -d link show Shows details of all host network interfaces, including
physical NIC ports and logical interfaces, such as vNIC
interface constructs on the host

ip link set dev <interface-
name> mtu <value>

Explicitly sets the MTU (Maximum Transmit Unit) of a host
interface

ip addr show Shows the IP addresses associated with host network
interfaces
Note: In a virtualization environment, many interfaces will
not have any IP addresses assigned to them

ip route show Shows the IP routing table of the host

tcpdump -i <interface name> Captures packets on the selected interface and outputs
them for analysis

brctl show Shows all the Linux bridges

ovs-vsctl show Shows all the Open vSwitch bridges

ethtool -S <interface name> Shows statistics collected by the physical NIC for a
selected interface

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

Issue: 01 3HE 15837 AAAA TQZZA 01 101

A:Dut-A# show bof
===
BOF (Memory)
===

primary-image cf3:\timos\
primary-config ftp://*:*@[135.121.85.54]/./images/dut-a.cfg
license-file ftp://*:*@[135.121.85.54]/./images/vmLICENSE/timos.vsr-all.txt
address 135.121.82.216/21 active
address 3000::8779:52d8/117 active
static-route 128.251.10.0/24 next-hop 135.121.80.1
static-route 135.0.0.0/8 next-hop 135.121.80.1
static-route 138.0.0.0/8 next-hop 135.121.80.1
static-route 172.20.0.0/14 next-hop 135.121.80.1
static-route 172.31.0.0/16 next-hop 135.121.80.1
static-route 192.168.85.54/32 next-hop 135.121.85.54
autonegotiate
duplex full
speed 100
wait 3
persist off
no li-local-save
no li-separate
console-speed 115200
system-base-mac fa:ac:ff:ff:10:00

===
A:Dut-A#

5.2.3.5.2 Check the Chassis Type

Verify that the VSR VM chassis type is set correctly.

If the chassis type does not match the one encoded in the SMBIOS text string,
assume there is an error in the SMBIOS text string. To view the chassis information,
type the following at the prompt:

A:VSR# show chassis ↵

The following is a sample output of this command:

A:Dut-A# show chassis
===
System Information
===

Name : Dut-A
Type : VSR-I
Chassis Topology : Standalone
Location : (Not Specified)
Coordinates : (Not Specified)

Note: The Chassis Topology field is used to differentiate a 7950 XRS-20 from a 7950
XRS-40, not to differentiate a VSR-I from a VSR-D.

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

102

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

CLLI code :
Number of slots : 2
Oper number of slots : 2
Num of faceplate ports/connectors : 32
Num of physical ports : 32
Base MAC address : fa:ac:ff:ff:10:00
FP Generations : VFP
System Profile : none

===
Chassis Summary
===
Chassis Role Status

1 Standalone up
===
A:Dut-A#

5.2.3.5.3 Check the Card Types Equipped in the System

Verify that correct (virtualized) card types are equipped in the system.

If a card type does not match the one encoded in the SMBIOS text string of the
corresponding VM, assume there is an error in that SMBIOS text string. To view the
card information, type the following at the prompt:

A:VSR# show card ↵

The following is a sample output of this command:

A:Dut-A# show card
===
Card Summary
===
Slot Provisioned Type Admin Operational Comments

Equipped Type (if different) State State

1 iom-v up up
A cpm-v up up/active
===
A:Dut-A#

5.2.3.5.4 Check the VSR System Licenses

Verify that the VSR system has valid licenses. To view the system license
information, type the following at the prompt:

A:VSR# show system license ↵

The following is a sample of the command output:

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

Issue: 01 3HE 15837 AAAA TQZZA 01 103

A:Dut-A# show system license
===
Current License
===
License status : monitoring, valid license record
Time remaining : 90 days 6 hours

License name : sr-regress@list.nokia.com
License uuid : 00000000-0000-0000-0000-000000000000
Machine uuid : 3ffaf6a4-edce-45ab-bde6-c7d1587103f9
License desc : Virtual SR [Integrated] [ALL]
License prod : Virtual-SR
License sros : TiMOS-B-20.#.*
Current date : THU MAY 02 18:51:51 UTC 2019
Issue date : SAT MAR 02 02:08:03 UTC 2019
Start date : FRI MAR 01 00:00:00 UTC 2019
End date : THU AUG 01 00:00:00 UTC 2019

vChassis : VSR-I
vSR CPMs : limit: 1
vSR IOMs : limit: 1

AA_RTU : AA Identification

AA Control
AA Policing
AA Stateful Firewall
AA RTP Performance
AA ICAP Control
AA In-Browser Notification
AA Local List URL Filtering
AA Dynamic Experience Management
AA TCP Optimization
AA Multi-Path TCP Proxy
AA Flow Attributes

IPSEC_RTU : IPSec Geo Redundancy
NAT_RTU : NAT Geo Redundancy

UPnP
L2-Aware NAT
LSN
MAP

VSR_RTU : Legal Intercept
Advanced QoS BW
VPN
BNG
LNS
WLGW
IPSec
vRGW
Adv DCGW and Svc Chain
Hybrid OpenFlow Switch
IP Tunnels
NGE

WLGW_RTU : Multiple SSID
Inter-AP Mobility
Selective Offload
WLGW Geo Redundancy
3G/4G Interworking

===
A:Dut-A#

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

104

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

5.3 Deploying and Managing VSR VMs using
OpenStack

5.3.1 OpenStack Overview

This section provides high-level guidance for the deployment of VSR VMs using
OpenStack.

Before performing the procedures in this chapter, install the recommended server
hardware and server OS, as described in NFV Infrastructure Requirements.

OpenStack is an open-source cloud management software that performs the role of
a Virtualized Infrastructure Manager (VIM) in the ETSI NFV reference architecture.
The VIM is responsible for controlling and managing the NFVI compute, storage, and
network resources within a data center.

The OpenStack software is written in Python and is available freely under an Apache
2.0 license. There are multiple OpenStack distributions, some of which are provided
with technical support and other services. The following OpenStack versions are
supported for VSR deployment:

• RDO OpenStack “Liberty”
• RDO OpenStack “Mitaka”
• RDO OpenStack “Newton”
• RDO OpenStack “Ocata”
• RDO OpenStack “Pike”
• Red Hat OpenStack Platform 8 (OSP8)
• Red Hat OpenStack Platform 9 (OSP9)
• Red Hat OpenStack Platform 10 (OSP10)
• Red Hat OpenStack Platform 11 (OSP 11)
• Red Hat OpenStack Platform 12 (OSP 12)
• Mirantis OpenStack 9.0

Note: This chapter builds on information presented in previous sections of this installation
guide. Review the concepts and procedures described in the preceding chapters before
performing OpenStack deployment.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

Issue: 01 3HE 15837 AAAA TQZZA 01 105

The modular architecture of OpenStack allows the installation of different
components as needed. The components most commonly used with VSR VMs
include:

• keystone—authenticates and authorizes users and administrators
• horizon—provides a GUI dashboard for managing other OpenStack

components
• nova—manages compute resources, determines the placement of VMs, and

supports simplified networking
• neutron—manages network connectivity between VMs; applies security rules,

supports DHCP/static IP addressing, NAT (floating IP), metadata services,
intersubnet routing, and so on

• cinder—manages block storage devices that VMs can use for persistent storage
• glance—manages disk images that can be used to create new VMs
• heat—supports orchestration of composite applications using templates

5.3.2 Basic OpenStack Installation

The OpenStack components that are required in your environment should be
installed according to the instructions provided with the OpenStack distribution.

The remaining steps in this section assume that you have an operational OpenStack
deployment with at least one controller node and at least one compute node,
deployed to physically separate servers.

The controller node runs:

• an SQL server with databases necessary for each OpenStack service
• a message queue service
• the OpenStack Identity (keystone) service
• the OpenStack Image Service (glance)
• control and scheduling actions for the OpenStack Compute (nova) service
• the OpenStack networking (neutron) service and ML2 plug-in

Each compute node runs the Linux KVM hypervisor, the OpenStack Compute (nova)
service, and various OpenStack networking (neutron) agents.

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

106

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

If you plan to use the command line for managing OpenStack infrastructure Nokia
recommends that you set the OpenStack environment values OS_USERNAME,
OS_PASSWORD, OS_TENANT_NAME, and OS_AUTH_URL to the values you
specified during installation. These environment variables can be saved in a
keystonerc_admin file and sourced when necessary.

5.3.3 Preparing the OpenStack Environment for VSR VMs

Perform the procedures described in this section to customize the OpenStack setup
so that it suitable for the deployment of VSR VMs.

5.3.3.1 Optimize BIOS and Linux Kernel Settings of Compute
Nodes

The recommendations presented in BIOS Settings and Linux KVM Compute Hosts
should be followed to ensure that the BIOS settings and Linux kernel settings of each
compute node are appropriate for the VSR VMs that will be deployed to that host.

5.3.3.2 Adjust Compute Node Resource Allocation

The CPU and RAM must not be oversubscribed on any compute node that will be
eligible for hosting VSR VMs.

On each compute node, edit the /etc/nova/nova.conf file to include the
following lines:

• cpu_allocation_ratio = 1.0
• disk_allocation_ratio = 1.0
• ram_allocation_ratio = 1.0

In addition, provide a value for vcpu_pin_set that reserves a list of CPUs for the
guests; the list of CPUs should be isolated from the host as described in CPU
Isolation. For example:

vcpu_pin_set=1-17,19-35

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

Issue: 01 3HE 15837 AAAA TQZZA 01 107

5.3.3.3 Adjust Nova Scheduler Parameters

To adjust the Nova Scheduler Parameters, perform the following steps.

Step 1. On the controller node, edit the /etc/nova/nova.conf configuration
file to ensure that the Nova scheduler takes all necessary constraints into
account.

Step 2. In the configuration file, the following line may be disabled (commented
out). Enable it as follows:
scheduler_available_filters=nova.scheduler.filters.all
_filters

Step 3. Add another line for the available filters, as follows:
scheduler_available_filters=nova.scheduler.filters.pci
_passthrough_filter.PciPassthroughFilter

Step 4. To ensure that VSR VMs are deployed to hosts, update the line for
scheduler_default_filters with additional keywords so that it reads
as follows (note the keyword in bold):
scheduler_default_filters=RetryFilter,AvailabilityZone
Filter,RamFilter,ComputeFilter,ComputeCapabilitiesFilt
er,ImagePropertiesFilter,CoreFilter,PciPassthroughFilt
er,NUMATopologyFilter,AggregateInstanceExtraSpecsFilte
r

5.3.3.4 (Optional) Enable SR-IOV on OpenStack Controller and
Compute Nodes

To use SR-IOV with VSR VMs, enable SR-IOV on the OpenStack controller and also
on each compute node with VSR VMs that will have SR-IOV interfaces. Follow these
steps:

5.3.3.4.1 Enable SR-IOV on OpenStack Controller and Compute Node

Follow the steps to enable SR-IOV on the OpenStack controller and the compute
node.

Step 1. Edit the ML2 plugin file on the OpenStack controller node by editing the
following file:
/etc/neutron/plugins/ml2/ml2_conf.ini

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

108

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

Step 2. Change the mechanism_drivers line to
mechanism_drivers=openvswitch,sriovnicswitch

Step 3. Check the SR-IOV NIC type from the compute node.
Use the following command on the compute node:
#lspci -nn | grep -i "Virtual Function"
Sample output:

09:10.0 Ethernet controller [0200]: Intel Corporation 82599 Ethernet Controller Virt
ual Function [8086:10ed] (rev 01)

In this output, the SR-IOV NIC type is 8086:10ed.
Step 4. On the OpenStack controller node, add the SR-IOV NIC type in the /etc/

neutron/plugins/ml2/ml2_conf_sriov.ini file by adding the
following parameter:
supported_pci_vendor_devs = 8086:10ed

Step 5. Update file /usr/lib/systemd/system/neutron-server.service
to include the SR-IOV service by adding the following to ExecStart:
--config-file /etc/neutron/plugins/ml2/
ml2_conf_sriov.ini

Step 6. Update the /etc/nova/nova.conf file on each compute node with the
PCI whitelist.
For example, the output of virsh nodedev-dumpxml pci_0000_$id
for each SR-IOV PF shows a list of the SR-IOV virtual functions (VF). This
includes a list of the VFs in the PCI whitelist.

pci_passthrough_whitelist={"address":"*:09:10.0","physical_network":"sriovNet1"}
pci_passthrough_whitelist={"address":"*:09:10.1","physical_network":"sriovNet1"}
pci_passthrough_whitelist={"address":"*:09:10.2","physical_network":"sriovNet1"}
pci_passthrough_whitelist={"address":"*:09:10.3","physical_network":"sriovNet1"}
pci_passthrough_whitelist={"address":"*:09:11.0","physical_network":"sriovNet2"}
pci_passthrough_whitelist={"address":"*:09:11.1","physical_network":"sriovNet2"}
pci_passthrough_whitelist={"address":"*:09:11.2","physical_network":"sriovNet2"}
pci_passthrough_whitelist={"address":"*:09:11.3","physical_network":"sriovNet2"}

Step 7. For Liberty, update the MTU value on each compute node in file /etc/
nova/nova.conf, by updating the following parameter:
network_device_mtu=9000
For Mitaka, update the MTU value on each compute node in file /etc/
neutron/neutron.conf, by updating the following parameter:
global_physnet_mtu = 9000

Step 8. Reboot the compute node and check the status of the OpenStack services.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

Issue: 01 3HE 15837 AAAA TQZZA 01 109

5.3.3.5 (Optional) Create Volume Drives using OpenStack Cinder

Up to three Cinder volumes may be attached (as block devices) to a VSR-I. The “hda”
device corresponds to CF3, the “hdb” device corresponds to CF1 and the “hdc”
device corresponds to CF2. If a Cinder volume is created from the QCOW2 disk
image provided by Nokia, the size will be limited to 1189 MB even if the requested
volume size is greater.

Use this procedure to create a volume using OpenStack. The newly created volume
drive is attached to the VSR-I during VSR instantiation.

5.3.3.5.1 Create a Volume Drive using OpenStack Cinder

Use this procedure to create a volume using OpenStack. The newly created volume
drive is attached to the VSR-I during instantiation.

FTP or TFTP server is required on the management network to download the
configuration and license files used by the VSR when it is booting up.

Step 1. Create a volume drive using the OpenStack Cinder module:
cinder create --display_name $NAME $SIZE ↵
Where: SIZE is the volume drive size in GB

Step 2. Create a volume drive diskStorage1 to connect to the VSR.
Base the volume disk dimensions on the amount of storage required.
cinder create --display_name diskStorage1 32 ↵

Step 3. Verify the volume drive creation.
cinder list ↵
Output of the above command should list diskStorage1 as an available
volume drive.

5.3.3.6 Create Nova Flavors Appropriate for VSR VMs

VM flavor is a template that defines the compute resources required by a VM,
including the number of CPU cores to allocate to the VM and the amount of RAM to
allocate to the VM. A Nova flavor can also specify extra-specs.

The flavor used to instantiate a VSR VM must specify:

• an appropriate number of vCPUs; this must be an even number if the VSR VM
is deployed on a hyper-threaded host

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

110

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

• an appropriate amount of vRAM memory; this must be a multiple of 1GB and
must adhere to recommendations given in the SR OS 20.x.Rx. Software
Release Notes

It must also specify (as extra specifications):

• hw:mem_page_size=1GB; this ensures that the guest memory is backed by
1GB huge pages

• hw:numa_mempolicy=strict; this ensures that CPU and memory resources
are allocated from the same NUMA node

• aggregate_instance_extra_specs:pinned=true; this ensures that
VSR VMs are assigned to hosts that support CPU pinning

• hw:cpu_policy=dedicated; this ensures that one host (physical CPU) core/
thread is dedicated to each guest vCPU

• hw:cpu_threads_policy=isolate (if the host machine is not hyper-
threaded) or hw:cpu_threads_policy=prefer (if the host machine is
hyper-threaded)

• hw:cpu_sockets=1
• hw:cpu_cores=N

where N = the number of vCPUs in a non-hyper-threaded host or half the
number of vCPUs in a hyper-threaded host

To verify the created VM flavors, use the following command:

nova flavor-list

5.3.3.7 Add VSR Images to OpenStack

This section describes how to upload a VSR QCOW2 file to OpenStack. Disk images
are managed by the OpenStack Glance service. New VSR VMs are created in
OpenStack using one of the QCOW2 image files in Glance. (You may have multiple
VSR image files in Glance; for example, one for each deployed version of VSR
software).

Step 1. Use the following command to upload an image file:
glance image-create --name $imageName --disk-format
qcow2 --container-format bare $image.qcow2 ↵

Step 2. Verify the uploaded VSR image file as follows:
t# glance image-list ↵

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

Issue: 01 3HE 15837 AAAA TQZZA 01 111

5.3.3.8 Create Neutron Networks, Subnets, and Ports

Neutron networks and ports are needed to bind the vNIC interfaces of a VM to
physical NIC ports so that external communication is possible.

Step 1. Use the following command to create a network:
neutron net-create --tenant-id $tenantId $networkName
--provider:network_type $networkType --
provider:physical_network $physicalNetwork --
provider:segmentation_id $vlanId ↵
where:
- supported values for networkType are vlan and flat
- provider:segmentation_id is not applicable when the networkType is

flat.
- physicalNetwork accepts values defined while installing the OpenStack

node. In this section, we will assume three physical networks:
physnet1, physnet2, and physnet3

Step 2. As necessary, create the networks listed in Table 8. You may choose to
adapt the sample commands.

Step 3. After creating all required Neutron networks, associate a subnet with each
one. Use the following command to create a subnet:
neutron subnet-create --no-gateway --name $subnetName
--allocation-pool start=$startIp,end=$endIp --disable-
dhcp $networkName $CIDR ↵
Table 9 lists subnet configurations examples for the networks.

Table 8 Network Configuration Sample Commands

Network Type Sample Command

OOB management network
(typically flat) shared by one
of more VSR VMs

neutron net-create --tenant-id
$tenantId mgt_network --
provider:network_type flat --
provider:physical_network physnet1 ↵

External network; for
example, tied to port 1/1/1

neutron net-create --tenant-id
$tenantId Ext_Data_Network --
provider:network_type vlan --
provider:physical_network physnet3 --
provider:segmentation_id 4 ↵

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

112

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

Step 4. After creating the subnets, verify them as follows:
neutron subnet-list ↵
The command output should list subnets mgt_subnet,
Int_Ctrl_Subnet, and Ext_Data_Subnet if you followed the above
examples.

Step 5. Create Neutron ports and assign an IP address to the ports using the
following command. The port will be attached as a vNIC interface when the
VM is created.
neutron port-create $networkName --name $name --
fixed_ip ip_address=$ipAddress -binding:vnic-type
$type↵
Table 10 describes sample commands for configuring neutron ports that
connect to the networks.

Table 9 Subnet Configuration Sample Commands

Network Type Sample Command

OOB management network
(typically flat) shared by one
of more VSR VMs

neutron subnet-create --no-gateway --
name mgt_subnet --allocation-pool
start=135.227.248.2,end=135.227.248.22 -
-disable-dhcp mgt_network 135.227.248.0/
21 ↵

External network; for
example, tied to port 1/1/1

neutron subnet-create --no-gateway -
name Ext_Data_Subnet --allocation-pool
start=10.2.2.1,end=10.2.2.1 --disable-
dhcp Ext_Data_Network 10.2.2.0/30 ↵

Table 10 Neutron Port Configuration Sample Commands

Network Type Sample Command

OOB management network
(typically flat) shared by one
of more VSR VMs

neutron port-create mgt_network --name
OOBmgmtPort --fixed_ip
ip_address=135.227.248.2

Ensure that IP addresses assigned to the ports for
external connectivity are consistent with the VSR CLI
configuration. For example, verify that the
management port IP address is the same as the IP
address configured in the bof.cfg.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

Issue: 01 3HE 15837 AAAA TQZZA 01 113

Step 6. After creating all the Neutron ports, verify them as follows:
neutron port-list ↵

5.3.3.9 Create Security Groups

When creating a VM (Nova server) in OpenStack, a security-group must be specified
to apply to that VM. Security-groups control the traffic flows that can ingress to the
VM and egress from the VM over non-SRIOV interfaces. The default security group
provided by OpenStack is generally too restrictive for most VSR VMs and therefore
it is recommended to create new security group profiles.

The general workflow for security group creation is as follows:

Step 1. Create a security group for the VSR instance.
To create a security group called SrosSecurityGroup, use the following
OpenStack command:

External network; for
example, tied to port 1/1/1

host# neutron port-create
Ext_Data_Network --name Port111 --
fixed_ip ip_address=$ipAddress --
binding:vnic-type direct

The binding:vnic-type direct configures the
Neutron as an SR-IOV port.

For non SRIOV ports it may be necessary to change
the anti-spoofing rules applied by Neutron. For
example, to allow a second CP-VM to take over the
management IP address of the first CP-VM you would
modify the Neutron port configuration as follows:
neutron port-update $standby-cp-vm-
port-id --allowed_address_pairs
list=true type=dict ip_address=$A ↵
where A is the management IP of the active CP-VM.

To completely bypass anti-spoofing processing,
disable the IP tables service on the compute host, as
follows:
service iptables stop

Table 10 Neutron Port Configuration Sample Commands (Continued)

Network Type Sample Command

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

114

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

neutron security-group-create SrosSecurityGroup ↵
Step 2. Verify the configured security group.

neutron security-group-list ↵
Step 3. Assign access rules to the security group.

neutron security-group-rule-create --direction
ingress(or egress) --ethertype IPv4 (or IPv6) –protocol
$protocolNum --remote-ip-prefix $remoteIpCidr --port-
rangemin $startPortRange --port-range-max $endPortRange
SrosSecurityGroup ↵

Step 4. Create TCP, ICMP, and UDP ingress and egress rules.
Step 5. Verify the configured security group rules as follows; the command output

should list all the security rules for the configured SrosSecurityGroup:
neutron security-group-rule-list ↵

5.3.4 Deploying a VSR Instance Using OpenStack CLI

Perform Create VMs to deploy a VSR instance using OpenStack CLI commands.

5.3.4.1 Create VMs

To create a VSR VM and start it up immediately, perform the following steps.

Step 1. Use the following CLI command:
nova boot --image $imageName --flavor $flavorType --
nic port-id=$port-id --config-drive $cfgfile --
securitygroups $securityGroup block-device-mapping
vdb=$diskstorage1id --availability-zone
nova:$availabilityZone $VMName ↵

For example, to create a VSR-I VM with one vNIC bound to the
management port A/1 and one vNIC bound to port 1/1/1, you could use a
command such as the following:

Note: For more information about config-drive, see ConfigDrive.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

Issue: 01 3HE 15837 AAAA TQZZA 01 115

nova boot --image srosVmImage --flavor vsrIntegrated
--nic port-id=$OAMportID –nic port-id-$port111id --
config-drive $cfgfile --securitygroups
SrosSecurityGroup block-device-mapping
vdb=$diskstorage1id --availability-zone nova:$zone1
vsrA ↵
This assumes that cfgfile is a text file with a properly formatted SMBIOS
product string starting with the characters “TIMOS:”.

Step 2. Verify VM creation using the following OpenStack command:
nova list ↵

5.3.5 Deploying a VSR Instance Using OpenStack HEAT

Perform Create the HEAT Stack to deploy a VSR instance using OpenStack HEAT.

5.3.5.1 Introduction to OpenStack HEAT

VSR instances can also be deployed using OpenStack HEAT. HEAT provides
template-based orchestration within OpenStack. A HEAT Orchestration Template
(HOT) defines a HEAT stack. In an NFV context, the HEAT stack describes the
resources needed to create a VNF instance including the type and number of VMs,
the VM image, storage, networks, routers, security groups and so on. The template
is defined in YAML format and it is reusable; that is, a template can be invoked
multiple times to create several instances of a VNF.

Table 11 describes the main HEAT terms.

Table 11 Main HEAT Terms

Term Description

HEAT stack The stack objects are a collection of resources that HEAT creates. This
could include instances (VMs), networks, subnets, routers, ports,
security groups, and so on.

Template It is used to define a stack.

Parameters HOT files have three major sections and one section defines a
template’s parameters. Information includes, specific image IDs,
network IDs, and subnet IDs that are passed on to the HOT file by the
user.

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

116

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

5.3.5.2 Overview of a VSR HEAT Template

The following configuration shows an OpenStack Heat template that could be used
to create VSR-I VMs. The sample is commented to provide an explanation of the
template:

heat_template_version: 2016-04-08
must be either 2015-10-15 (compatible with Liberty) or 2016-04-
08 (compatible with Mitaka)
description: Simple template to create VSR-I
parameters:

image:
type: string
description: VSR image name
default: "VSR-20.2.R1"
constraints:

- custom_constraint: glance.image
description: Must identify an image known to Glance -

Use "openstack image list" to see available images
flavor:

type: string
description: VSR flavor name
default: "vsr-i-extra-specs"
constraints:

- custom_constraint: nova.flavor
description: Must identify a known flavor -

Use "openstack flavor list" to see available flavors
mgt_network:

type: string
description: Management network attached to A/1
constraints:

- custom_constraint: neutron.network
description: Must identify an existing network

network1:
type: string
description: External network attached to port 1/1/1
constraints:

- custom_constraint: neutron.network
description: Must identify an existing network

network2:
type: string
description: External network attached to port 1/1/2

Resources Specific objects that HEAT will create and/or modify. This is one of the
three major sections in a HOT file.

Output The major section of a HOT file which is information that is passed on
to the user either via OpenStack Dashboard or via the heat stack-list
or heat stack-show commands.

Table 11 Main HEAT Terms (Continued)

Term Description

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

Issue: 01 3HE 15837 AAAA TQZZA 01 117

constraints:
- custom_constraint: neutron.network

description: Must identify an existing network
license_file:

type: string
description: License file
default: "cf3:/license.txt"

primary_config:
type: string
description: Primary configuration file
default: "cf3:/config.cfg"

static_routes:
type: string
description: Static routes for out of band - example static-route="100.0.0.0/

8 next-hop 10.10.10.10"
default: ""

mda_1:
type: string
description: mda type for slot 1/1
default: m20-v
constraints:

- allowed_values:
- m20-v
- isa-aa-v
- isa-bb-v
- isa-tunnel-v

cpmSmbios:
type: string
description: SMBIOS string
default: "TiMOS: slot=$slot chassis=VSR-I card=cpm-v mda/1=$mda_1 license-

file=$license_file primary-config=$primary_config address=$adrp/
24@active $static_routes "
resources:
Create Neutron ports

mgmt_port:
type: OS::Neutron::Port
properties:

replacement_policy: AUTO
binding:vnic_type: normal
network_id: { get_param: mgt_network }

port_1:
type: OS::Neutron::Port
properties:

replacement_policy: AUTO
binding:vnic_type: direct
network_id: { get_param: network1 }

port_2:
type: OS::Neutron::Port
properties:

replacement_policy: AUTO
binding:vnic_type: direct
network_id: { get_param: network2 }

Create VSR-I
VSR_I:

type: OS::Nova::Server
depends_on: [mgmt_port, port_1, port_2]
properties:

name:
list_join: [‘-‘, [{get_param: ‘OS::stack_name’}, ‘cp-a’]]

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

118

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

image: { get_param: image }
flavor: { get_param: flavor }
networks:
- port: { get_resource: mgmt_port }
- port: { get_resource: port_1 }
- port: { get_resource: port_2 }
config_drive: "true"
user_data_format: RAW
user_data:

str_replace:
template: { get-param: cpmSmbios }
params:

$slot: “A”
$adrp: { get_attr: [mgmt_port, fixed_ips, !!int 0, ip_address] }
$static_routes: { get-param: static_routes }
$license_file: { get-param: license_file }
$primary_config: { get-param: primary_config }
$mda_1: { get-param: mda_1 }

outputs
vsr_ip:

description: fixed ip assigned to the server
value: { get_attr: [mgmt_port, fixed_ips, 0, ip_address] }

5.3.5.3 Create the HEAT Stack

To instantiate a VSR-I instance using the HEAT template example in Overview of a
VSR HEAT Template perform the following steps.

Step 1. Use a command such as:
#heat stack-create -f VSR-I.yaml -P mgt_network="VSR-
mgt" -P network1="network1" -P network2="network2" vsr1

This would create a VSR-I VM with the following properties:
- it would be created from:

• a Glance disk image called “VSR-20.x.R1”
• a Nova flavor called “vsr-i-extra-specs”. This Nova flavor would be

expected to conform with the recommendations given in Create
Nova Flavors Appropriate for VSR VMs.

- it would use:
• a license file called “license.txt” on the CF3 disk
• the default config file on CF3

- it would have:
• one m20-v MDA
• three ports: a management port, an MDA port 1/1/1 (bound, using

SR-IOV, to network1), and an MDA port 1/1/2 (bound, using SR-
IOV, to network2)

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

Issue: 01 3HE 15837 AAAA TQZZA 01 119

• initially, no static routes for management connectivity
• a management IP address allocated from the subnet associated

with the “VSR-mgt” network
Step 2. Use the # heat stack-list command to verify the successful deployment of

one or more VSR instances from HEAT templates.

Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack

120

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR-I on VMware ESXi Hosts

Issue: 01 3HE 15837 AAAA TQZZA 01 121

6 Deploying VSR-I on VMware ESXi Hosts

6.1 VMware Overview

This chapter describes how to create and start up VSR-I VMs on host machines
using the VMware ESXi hypervisor.

There are two methods for deploying VSR-I VMs on VMware ESXi hosts: automated
onboarding of a vAPP using VMware vCloud Director (vCD) or OVA import using the
vSphere Web Client interacting with a vCenter Server. The automated onboarding
using vCD is recommended for deployments using VMXNET3 connectivity, while the
vSphere Web client method is required for deployments using SR-IOV or PCI
passthrough connectivity.

Regardless of the deployment method, the following VMware features are supported
with VSR-I VMs:

• Distributed Resource Scheduler (DRS)—except fully-automated mode
• High Availability
• vSphere standard switch—connected to the guest using an E1000 or VMXNET3

driver
• vSphere distributed switch (vDS)—connected to the guest using an E1000 or

VMXNET3 driver
• SR-IOV and PCI passthrough (NIC model dependent)

The following vSphere features are unsupported:

• DRS fully-automated mode
• vMotion
• Storage vMotion
• Fault Tolerance
• NSX-enabled distributed switch

Note: Other techniques for deploying VSR-I VMs on ESXi hosts (for example, direct ESXi
shell access) are not covered in this guide.

Deploying VSR-I on VMware ESXi Hosts

122

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

6.2 VMware ESXi Host Setup

Regardless of application, a VSR-I VM can be deployed on any compute host
running the ESXi 6.0, ESXi 6.5, or ESXi 6.7 hypervisor. In addition, when configured
only as a control plane BGP route reflector, a VSR-I VM may also be deployed on
any compute host running the ESXi 5.5 hypervisor. No other ESXi versions are
supported.

6.2.1 Optimize BIOS and Host Settings

Follow the recommendations presented in BIOS Settings to ensure that the BIOS
settings of each ESXi compute node are appropriate for the VSR-I VMs that will be
deployed to that host.

If the VMXNET3 driver in the VSR software is used to connect VSR-I vNIC interfaces
to a vSphere standard switch (VSS) or a vSphere distributed switch (VDS), the
following host-level changes may improve performance.

• Increase the number Tx buffers associated with each physical NIC port to 4096.
Depending on the NIC, use one of the following commands (for the physical NIC
port corresponding to vmnic0):
ethtool -G vmnic0 tx 4096

esxcli network nic ring current set -n vmnic0 -t 4096

• Increase the number of Rx buffers associated with each physical NIC port to
4096. Depending on the NIC, use one of the following commands (for the
physical NIC port corresponding to vmnic0):
ethtool -G vmnic0 rx 4096

esxcli network nic ring current set -n vmnic0 -r 4096

• Enable the NetQueue feature using the following command:
esxcli system settings kernel set --setting
"netNetqueueEnabled" --value "true"

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR-I on VMware ESXi Hosts

Issue: 01 3HE 15837 AAAA TQZZA 01 123

6.3 Deploying the VSR-I vApp using vCloud
Director

A VSR-I VM can be instantiated in a VMware data center by onboarding the VSR-I
OVF package (.ova) into vCloud Director, using the web interface. The OVF package
is an archive containing, at a minimum, an XML-based OVF descriptor file (.ovf), a
manifest file, and a VMDK disk image containing the SR OS software images. One
section of the OVF descriptor file is a VirtualSystem object. The VirtualSystem object
describes the abstract resource requirements of a VSR-I VM and contains the
following subsections:

• OperatingSystemSection—indicates that the VSR-I guest OS type is
“otherGuest64” (a non-Linux, non-Windows 64-bit guest O/S)

• VirtualHardwareSection—specifies resource requirements of the VSR-I VM,
including vCPUs, memory, disks, and virtual NICs. It also contains ExtraConfig
information with settings for additional parameters that improve the performance
and stability of VSR-I instances. Further details about the
VirtualHardwareSection are presented in Table 12, which describes some of the
most important parameters in this section, the default value of each one in the
OVF, and whether the default value can be changed at time of onboarding.

Table 12 VirtualHardwareSection Parameters

Parameter Default
Value in
OVF

Notes

Number of vCPUs 6 Can be changed at time of onboarding

Amount of memory 8GB Can be changed at time of onboarding

vNIC interface #1 (ethernet0) E1000
adapter

Network binding can be changed at time of
onboarding

vNIC interface #2 (ethenet1) VMXNET3
adapter

Network binding can be changed at time of
onboarding

ExtraConfig: sched.cpu.latencySensitivity “high” Setting latencySensitivity to “high” is
mandatory when VSR-I VMs are deployed
without CPU pinning directives in the VMX file.
This ensures that each vCPU of the VM is
pinned to a physical CPU and that no other
workload is assigned to that physical CPU
even if hyper-threading is not disabled on the
host machine. This configuration also disables
interrupt coalescing automatically.

Deploying VSR-I on VMware ESXi Hosts

124

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

ExtraConfig:
sched.cpu.latencySensitivity.sysContexts

“1” This setting allocates one dedicated physical
CPU for the Rx and Tx threads of all vNIC ports
of the VM, provided that there is at least one
non-reserved physical CPU core available
after vCPU reservations. If VMXNET3
interfaces are used into a VSS or VDS switch,
it is recommended to increase this value to a
value of 6, but a minimum of 4 at time of
onboarding.

ExtraConfig: ethernet1.ctxPerDev “1” Setting ethernet1.ctxPerDev to “1” is required
when ethernet1 is a high traffic rate vNIC port
using the VMXNET3 adapter, as will always be
the case when deploying a VSR-I from the
supplied vApp template. This setting allocates
a dedicated Tx thread to the ethernet1 vNIC
interface. By default, there is only one software
Tx thread for the entire VM, shared by all its
vNIC ports.

ExtraConfig: numa.nodeAffinity “1” Setting numa.nodeAffinity to “1” ensures that
all vCPUs and all memory are allocated to the
VM from NUMA node “1” on any server with
two CPU sockets and two associated NUMA
nodes. This can be changed to a value of “0” at
time of onboarding. It is only important that all
resources are NUMA aligned.

Table 12 VirtualHardwareSection Parameters (Continued)

Parameter Default
Value in
OVF

Notes

Note: When a VSR-I VM is deployed on a server, ensure that there is a sufficient number
of physical CPU cores unreserved by VMs to allow for general hypervisor functions and the
number of sched.cpu.latencySensitivity.sysContexts.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR-I on VMware ESXi Hosts

Issue: 01 3HE 15837 AAAA TQZZA 01 125

6.3.1 vCD Requirements for OVA Onboarding

A user must have additional permissions to onboard the VSR-I vAPP in vCloud
Director. By default, the pre-created organizational roles do not consider ExtraConfig
parameters when onboarding OVA files. The system administrator must add a new
role in the organization that allows vCD to consider ExtraConfig parameters during
the OVA onboarding. To create this new role using the vCD web console, follow the
instructions in the VMware vCD documentation. When assigning rights to the new
role, the following rights must be included:

• vApp: Preserve All ExtraConfig Elements During OVF Import and Export
• vApp: Preserve Latency ExtraConfig Elements During OVF Import and Export
• vApp: Preserve NUMA Node Affinity ExtraConfig Elements During OVF Import

and Export

6.3.1.1 Create Networks

To onboard the VSR-I vApp the following networks must be pre-created in vCD prior
to OVA deployment:

• a management network for OOB management of the VSR-I and potentially other
VNFs
A single port group must be created for the management network.

• an external network that becomes attached to port 1/1/1 of the VSR-I
This external network allows the VSR-I to communicate with other network
elements.

6.3.2 vApp Installation Steps Through vCD

This section describes the required steps to install VSR-I vApp using vCD.

6.3.2.1 VSR-I OVA Onboarding to the vCD Catalog

Perform the following steps to upload the VSR-I OVA to the vCD catalog.

Step 1. Log in to the vCD web console as an organization user with the rights
described in vCD Requirements for OVA Onboarding.

Deploying VSR-I on VMware ESXi Hosts

126

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

Step 2. Navigate to the Catalogs tab.
Step 3. Select and open the organization to be used for the VSR-I deployment.
Step 4. Under the vApp Template tab, select the upload option, and enter the

required information as shown in Figure 5.

Figure 5 vApp Template Tab

Step 5. Click Upload to complete the upload procedure.

Note: The correct OVA file is named sros-vsr.ova. Do not use the sros-vm.ova file for
onboarding a VSR-I. This OVA is intended to be used for the vSIM only.

sc0022

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR-I on VMware ESXi Hosts

Issue: 01 3HE 15837 AAAA TQZZA 01 127

Step 6. After the upload is complete, the vApp will appear in the vApp catalog
under the specified name, as shown in Figure 6.

Figure 6 vApp Template Catalog

6.3.2.2 Deploy the VSR-I vApp

Perform the following steps to deploy the VSR-I vApp.

Step 1. Navigate to the organization’s Catalogs tab.

sc0023

Deploying VSR-I on VMware ESXi Hosts

128

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

Step 2. Right-click the VSR vApp Template and select the option Add to My Cloud,
as shown in Figure 7.

Figure 7 Add to My Cloud

sc0015

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR-I on VMware ESXi Hosts

Issue: 01 3HE 15837 AAAA TQZZA 01 129

Step 3. Enter the name for the vApp to be deployed and a virtual data center
location, as shown in Figure 8.

Figure 8 Enter the Name for the vApp

sc0016

Deploying VSR-I on VMware ESXi Hosts

130

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

Step 4. In Configure Resources, select a storage policy for the VM included in the
vApp, as shown in Figure 9.

Figure 9 Select a Storage Policy

sc0017

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR-I on VMware ESXi Hosts

Issue: 01 3HE 15837 AAAA TQZZA 01 131

Step 5. In Configure Networking, map the networks in the vApp to the pre-created
networks (port groups) in the vDC and choose the static or DHCP IP
allocation scheme, as shown in Figure 10.

Figure 10 Map the Networks in the vApp

sc0018

Deploying VSR-I on VMware ESXi Hosts

132

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

Step 6. In Customize Hardware, if necessary, modify values for the number of
virtual CPUs, cores per socket, total memory, and disk size, as shown in
Figure 11. Refer to the SR OS 20.x.Rx. Software Release Notes for more
information.

Figure 11 Modify Values in Customize Hardware

sc0019

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR-I on VMware ESXi Hosts

Issue: 01 3HE 15837 AAAA TQZZA 01 133

Step 7. Proceed to the final Ready to Complete review screen and deploy the vApp
by clicking on Finish, as shown in Figure 12. This will create the VSR-I.

Figure 12 Ready to Complete Screen

sc0020

Deploying VSR-I on VMware ESXi Hosts

134

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

Step 8. Start the VSR-I by right-clicking the vApp and selecting the Start action
from the menu, as shown in Figure 13.

Figure 13 VSR Actions

sc0021

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR-I on VMware ESXi Hosts

Issue: 01 3HE 15837 AAAA TQZZA 01 135

6.4 Instantiating a VSR-I using vSphere Web
Client

A VSR-I VM can also be instantiated in a VMware data center by direct import of the
OVA package into vCenter Server. In this workflow, you interact with the vCenter
Server using the vSphere Web Client interface. You need to use this method if you
intend to use SR-IOV or PCI passthrough with the VSR-I VM. It is also necessary to
use this method if you want to optimize the performance of a VSR-SeGW or VSR-AA
application to use the resources of a hyper-threaded host machine as efficiently as
possible.

Before following this procedure, ensure that the vCenter Server is already installed,
and at least one ESXi host is added to the data center group.

6.4.1 Connect to the vCenter Server

Perform the following steps to connect to the vCenter Server using the vSphere Web
Client.

Step 1. Connect to the vCenter Server over HTTP and log in from the VMware
vCenter Single Sign-On window, as shown in Figure 14.

Note: The vSphere Web Client is preferred over the legacy vSphere Client for instantiation
and management of VSR-I VMs in vCenter Server.

Deploying VSR-I on VMware ESXi Hosts

136

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

Figure 14 VMware vCenter Single Sign-On

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR-I on VMware ESXi Hosts

Issue: 01 3HE 15837 AAAA TQZZA 01 137

Step 2. If the login is successful, the vSphere Web Client dashboard is displayed,
as shown in Figure 15.

Figure 15 vSphere Web Client

6.4.2 Create Networks

Perform the following steps to create virtual switches for providing connectivity to
VSR-I instances.

For VSR-I deployment, a virtual switch should be created for each of the following
networks that are needed:

• one management network. This network should use E1000.
• up to nine external data networks. Each of these networks can use SR-IOV or

PCI passthrough or VMXNET3.
Step 1. Navigate to the data center where the VSR-I will be deployed. Right click

on the data center and choose New Distributed Switch from the menu, as
shown in Figure 16.

sc0024

Note: The VSR-I can be connected over a standard or a distributed switch.

Deploying VSR-I on VMware ESXi Hosts

138

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

Figure 16 Data Center Page

Step 2. Input a name for the distributed switch, as shown in Figure 17.

Figure 17 Network Name

sc0026

sc0027

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR-I on VMware ESXi Hosts

Issue: 01 3HE 15837 AAAA TQZZA 01 139

Step 3. In the Select Version tab, select a distributed switch version, as shown in
Figure 18.

Figure 18 Distributed Switch Version

sc0028

Deploying VSR-I on VMware ESXi Hosts

140

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

Step 4. In the Edit Settings tab, specify the number of uplink ports, the resource
allocation, and the default port group, as shown in Figure 19.

Figure 19 Uplink Ports

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR-I on VMware ESXi Hosts

Issue: 01 3HE 15837 AAAA TQZZA 01 141

Step 5. In the Ready to Complete tab, review the settings before selecting Finish,
as shown in Figure 20.

Figure 20 Review Settings

sc0029

Deploying VSR-I on VMware ESXi Hosts

142

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

Step 6. In the Navigator, right click on the distributed port group and choose Edit
Settings... from the menu, as shown in Figure 21.

Figure 21 Edit Settings

Step 7. In the Security tab, set each option to Accept as shown in Figure 22.

Figure 22 DPortGroup Panel

sc0030

sc0031

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR-I on VMware ESXi Hosts

Issue: 01 3HE 15837 AAAA TQZZA 01 143

Step 8. In the VLAN tab, select the VLAN type and VLAN trunk range, as shown in
Figure 23.

Figure 23 VLAN Type

sc0032

Deploying VSR-I on VMware ESXi Hosts

144

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

Step 9. In the Teaming and Failover tab, set the options, as shown in Figure 24.

Figure 24 Teaming and Failover

sc0033

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR-I on VMware ESXi Hosts

Issue: 01 3HE 15837 AAAA TQZZA 01 145

Step 10. In the Navigator, right click on the distributed switch and choose Edit
Settings... from the menu as shown in Figure 25.

Figure 25 Distributed vSwitch Settings

Step 11. In the Advanced tab, set the options, as shown in Figure 26.

Figure 26 DSwitch Advanced Options

sc0034

Deploying VSR-I on VMware ESXi Hosts

146

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

Step 12. In the Navigator, right click on the cluster and choose Add Host... from the
menu, as shown in Figure 27.

Figure 27 Add Host

Step 13. In the Name and location tab, enter the ESXi host IP address, as shown in
Figure 28.

Figure 28 ESXi Host IP Address

sc0035

sc0036

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR-I on VMware ESXi Hosts

Issue: 01 3HE 15837 AAAA TQZZA 01 147

Step 14. Start the process of adding the ESXi host to the distributed switch, as
shown in Figure 29.

Figure 29 Add New Hosts to the Distributed Switch

sc0037

Deploying VSR-I on VMware ESXi Hosts

148

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

Step 15. In the Select hosts tab, click on the “+” button to add New Hosts..., as
shown in Figure 30.

Figure 30 Select Hosts to Attach to the Switch

Step 16. Select the check box for the ESXi host, as shown in Figure 31.

Figure 31 Check box for ESXi Hosts

sc0038

sc0039

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR-I on VMware ESXi Hosts

Issue: 01 3HE 15837 AAAA TQZZA 01 149

Step 17. In the Select network adapter tasks tab, select Manage physical adapters,
as shown in Figure 32.

Figure 32 Manage Physical Adapters

sc0040

Deploying VSR-I on VMware ESXi Hosts

150

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

Step 18. In the Manage physical network adapters tab, add the physical network
adapters to the distributed switch, as shown in Figure 33.

Figure 33 Add Physical Network Adapters

6.4.3 Create the VSR-I VM

Perform the following steps to create the VSR-I VM.

Step 1. In the Navigator, right click on the cluster and choose New Virtual Machine
from the menu, as shown in Figure 34.

sc0041

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR-I on VMware ESXi Hosts

Issue: 01 3HE 15837 AAAA TQZZA 01 151

Figure 34 New Virtual Machine

Step 2. In the Select a creation type tab, select Create a new VM, as shown in
Figure 35.

Figure 35 New Virtual Machine

sc0042

sc0043

Deploying VSR-I on VMware ESXi Hosts

152

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

i. In the Select a name and folder tab, select a name for the VM and a
data center location for the VM, as shown in Figure 36.

Figure 36 Select a Name and Folder

sc0044

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR-I on VMware ESXi Hosts

Issue: 01 3HE 15837 AAAA TQZZA 01 153

ii. In the Select a compute resource tab, select the cluster or host where
you want to run the VM as shown Figure 37.

Figure 37 Select a Compute Resource

sc0045

Deploying VSR-I on VMware ESXi Hosts

154

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

iii. In the Select storage tab, choose the data store to use for storage of
the VM files as shown in Figure 38.

Figure 38 Select Storage

sc0046

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR-I on VMware ESXi Hosts

Issue: 01 3HE 15837 AAAA TQZZA 01 155

iv. In the Select compatibility tab, choose Compatible with ESXi 6.5 and
later, as shown in Figure 39.

Figure 39 Select Compatibility

sc0047

Deploying VSR-I on VMware ESXi Hosts

156

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

v. In the Select a guest OS tab, fill in the family as “Other”, the Version as
“Other (64 bit)”, and guest OS name as desired, as shown in Figure 40.

Figure 40 Select a Guest OS

sc0048

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR-I on VMware ESXi Hosts

Issue: 01 3HE 15837 AAAA TQZZA 01 157

Step 3. In the Customize hardware tab, customize the VM hardware, as shown in
Figure 41.

i. In CPU configuration, select the option to “Expose hardware assisted
virtualization to the guest OS”.

ii. In Memory configuration, all memory should be reserved using the
option “Reserve All Guest Memory (All locked)”.

iii. Modify hard disk configuration if needed. By default, the first disk (IDE
0:0) that is created emulates the CF3 (cf3:\) drive; it should be created
from the VMDK disk image contained in the OVA package.

Figure 41 Customize Hardware

sc0050

Deploying VSR-I on VMware ESXi Hosts

158

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

iv. Additional disks mapped to CF1 (IDE 0:1) and CF2 (IDE 1:0) are
optional and may be created, as shown in Figure 42.

Figure 42 Select the Device Type

sc0051

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR-I on VMware ESXi Hosts

Issue: 01 3HE 15837 AAAA TQZZA 01 159

Step 4. Add network adapters as needed and connect them to the VSR-I VM. A
maximum of 10 vNICs are supported by each VM. The mapping of vNIC
ports to SR OS ports is described in Guest vNIC Mapping in VSR VMs.

i. Click on “Add” to add a new network.
ii. Select the adapter type, as shown in Figure 43. Choose E1000, SR-

IOV passthrough, or VMXNET3, depending on the adapter number.
The adapter with the lowest PCI address must use E1000. The other
adapters can use any of the technologies except VMXNET2 and
e1000e.

Figure 43 Edit Settings

sc0052

Deploying VSR-I on VMware ESXi Hosts

160

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

iii. When selecting SR-IOV passthrough, the physical function (VF) must
also be selected, as shown in Figure 44.

Figure 44 Physical Function

iv. Attach the network adapter to the corresponding port group.
Step 5. Click Next in the dialog box and proceed to finalize the VM creation.

6.4.4 Customizing the VSR-I VM

6.4.4.1 Set Latency Sensitivity

Setting latencySensitivity to “high” is mandatory when VSR-I VMs are deployed
without CPU pinning directives. This ensures that each vCPU of the VM is pinned to
a physical CPU and that no other workload is assigned to that physical CPU even if
hyper-threading is not disabled on the host machine. This configuration also disables
interrupt coalescing automatically.

To set latencySensitivity to “high”:

Step 1. Right click on the VSR VM and choose Edit Settings... from the menu.

sc0053

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR-I on VMware ESXi Hosts

Issue: 01 3HE 15837 AAAA TQZZA 01 161

Step 2. Click on the VM Options tab.
Step 3. For Latency Sensitivity, choose High from the menu, as shown in

Figure 45.

Figure 45 Latency Sensitivity

6.4.4.2 Set NUMA Node Affinity

Every VSR VM should have numa.nodeAffinity set to either “0” or “1” to ensure that
all vCPUs and all memory are allocated to the VM from NUMA node “0” or NUMA
node “1”. It is critical that all resources are NUMA aligned.

To change the NUMA affinity for the VM:

Step 1. In the VM Options tab, select Edit Configuration...

sc0054

Deploying VSR-I on VMware ESXi Hosts

162

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

Step 2. In the Value box for numa.nodeAffinity, enter “0” or “1” as appropriate (the
NUMA node ID). After this step the configuration parameters may be
similar to those shown in Figure 46.

Figure 46 NUMA node ID

6.4.4.3 Configure the SMBIOS Configuration String

VMware allows the SMBIOS configuration string to be passed to a VSR-I VM by
specifying it as a machine.id value. To add a machine.id to a VSR-I VM or edit the
default machine.id provided in the OVF, perform the following steps:

Step 1. In the VM Options tab, select Edit Configuration...
Step 2. In the Value box for machine.id, edit the SMBIOS configuration string,

making sure that it starts with the string TIMOS. See Sysinfo for information
about a properly formatted SMBIOS string and the allowed parameters for
VSR VMs.

sc0055

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR-I on VMware ESXi Hosts

Issue: 01 3HE 15837 AAAA TQZZA 01 163

6.4.4.4 Configure CPU Pinning for Deployment on a Hyper-
Threaded Host

If you are deploying a VSR-SeGW or VSR-AA application on a hyper-threaded ESXi
host and you want the highest possible performance for that application, perform the
following steps:

Step 1. The machine.id setting must include a hyperthreading=1 directive. See
Configure the SMBIOS Configuration String.

Step 2. The sched.cpu.latencySensitivity setting must be set to “High”. See Set
Latency Sensitivity.

Step 3. The sched.cpu.affinity.exclusive setting must be set to “True”.
i. In the VM Options tab, select Edit Configuration...
ii. In the Name box, enter sched.cpu.affinity.exclusive.
iii. In the Value box, enter True; see Figure 47.

Figure 47 Configuring Parameters for CPU Pinning

Step 4. The monitor_control.halt_desched setting must be set to "False".
i. In the VM Options tab, select Edit Configuration...
ii. In the Name box, enter monitor_control.halt_desched.

sc0057

Deploying VSR-I on VMware ESXi Hosts

164

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

iii. In the Value box, enter False; see Figure 47.
Step 5. Pin each vCPU to a pCPU hyper-thread, following the guidelines provided

in NUMA.
i. In the VM Options tab, select Edit Configuration...
ii. For each vCPU you need a row in the table such as following:

sched.vcpu0.affinity (Name) = 4 (Value); see Figure 48.

Figure 48 Configuring vCPU Pinning

Note: The first entry value must be “4”.

sc0070

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Deploying VSR-I on VMware ESXi Hosts

Issue: 01 3HE 15837 AAAA TQZZA 01 165

6.4.5 Start the VSR-I VM

After creating and configuring the VSR-I VMs the VSR instance can be brought into
service by powering it on (Actions → Power on), as shown in Figure 49.

Figure 49 Power On

sc0056

Deploying VSR-I on VMware ESXi Hosts

166

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Virtual Machine Configuration Parameters

Issue: 01 3HE 15837 AAAA TQZZA 01 167

7 Virtual Machine Configuration
Parameters

VM configuration parameters should be set differently, depending on how a VM is
deployed.

7.1 VMs Deployed on KVM Compute Hosts

7.1.1 Virsh Command Line and Libvirt Domain XML File

When a VM is deployed on a KVM compute host using virsh command line tools and
a manually edited libvirt domain XML file, VM configuration parameters should be set
as follows:

• The SMBIOS product string should include slot=A chassis=VSR-I card=cpm-v
in addition to other necessary attributes.

• The SMBIOS product string should include a vsr-deployment-model=route-
reflector directive if the VSR is intended to be used only as a control plane BGP
route reflector (no transit forwarding requirements).

• The SMBIOS product string should include a vsr-deployment-model=queue-
scale directive if the VSR requires thousands of egress traffic queues (such as
a scaled VSR-BNG). This increases the amount of VM memory used for
buffering but also has some performance trade-offs.

• The SMBIOS product string should include a vsr-deployment-model=high-
packet-touch directive if the VSR is used for SeGW applications. This
increases performance of these applications on a hyperthreaded host.

• The SMBIOS product string should include a control-cpu-cores=N directive to
reserve N pCPU cores (2*N hyper-threads) for control plane processing. Without
this directive N takes a value of 1, which does not provide sufficient control plane
capability for most applications. N has a maximum value of 16.

• When a VM is deployed on any host machine with a CPU having 18 or more
CPU cores, the ACPI feature must be enabled in the domain XML file.

Note: Configuration of control-cpu-cores is not necessary if the vsr-deployment-model
is set to route-reflector.

Virtual Machine Configuration Parameters

168

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

• When a VM supporting any application is deployed on a hyperthreaded Linux
host:
- the domain XML file must enable the ACPI feature
- the domain XML file must include a CPU topology section that exposes two

threads per core to the guest.
- The domain XML file must pin vCPU0 and vCPU1 to sibling threads of the

same pCPU core, vCPU2 and vCPU3 to sibling threads of some other
pCPU core, etc.

• The number of vCPU cores must be in the range 2-56. For some applications,
such as NAT, the minimum number of vCPUs is 3. The recommended number
of vCPUs depends on performance requirements; consult your Nokia
representative for further details.

• The amount of vRAM must be in the range of 4GB-64GB. The vRAM must be
entirely backed by 1GB huge pages. Minimum vRAM memory depends on the
application (see Table 13).

• In a multi-socket system supporting NUMA the vCPUs and vRAM of the VM
should be allocated from one single NUMA node, and this should also be the
NUMA node associated with the SR-IOV and PCI pass-through NIC ports used
by the VM.

• The vhost-net threads should be pinned to vCPU cores not used by any virtual
VSR machine (using the “emulatorpin” setting).

• The UUID parameter must match the one encoded in the license.
• The VM can be assigned up to 16 vNIC interfaces. The first virtual interface

(lowest PCI bus/device/function address) must be VirtIO. The remaining virtual
interfaces can be any combination of VirtIO, SR-IOV and PCI pass-through.

7.1.2 OpenStack

When a VM is deployed on a KVM compute host using OpenStack (Nova boot or
Heat stack create) certain parameters should be set as follows:

• A config_drive must be attached to the VM and the user-data written to this
config_drive (in “RAW” format) must be a valid SMBIOS product string that starts
with “TIMOS:”.

• The SMBIOS product string read from the config_drive should include slot=A
chassis=VSR-I card=cpm-v in addition to other necessary attributes.

• The SMBIOS product string read from the config_drive should include a vsr-
deployment-model=route-reflector directive if the VSR is intended to be used
only as a control plane BGP route reflector (no transit forwarding requirements).

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Virtual Machine Configuration Parameters

Issue: 01 3HE 15837 AAAA TQZZA 01 169

• The SMBIOS product string read from the config_drive should include a vsr-
deployment-model=queue-scale directive if the VSR requires thousands of
egress traffic queues (such as a scaled VSR-BNG). This increases the amount
of VM memory used for buffering but also has some performance trade-offs.

• The SMBIOS product string read from the config_drive should include a vsr-
deployment-model=high-packet-touch directive if the VSR is used for SeGW
applications. This increases performance of these applications on a
hyperthreaded host.

• The SMBIOS product string read from the config_drive should include a control-
cpu-cores=N directive to reserve N pCPU cores (2*N hyper-threads) for control
plane processing. Without this directive N takes a value of 1, which does not
provide sufficient control plane capability for most applications. N has a
maximum value of 16. NOTE: configuration of control-cpu-cores is not
necessary if the vsr-deployment-model is set to route-reflector.

• The Nova flavor extra_spec hw:cpu_policy should always be set to dedicated
in order to dedicate one pCPU core (or thread) to each vCPU of the VM.

• When a VM supporting any application is to be deployed on a non-
hyperthreaded Linux host the Nova flavor extra_spec hw:cpu_threads_policy
should be set to isolate.

• When a VM supporting any application is to be deployed on a hyperthreaded
Linux host:
- the Nova flavor extra_spec hw:cpu_threads_policy should be set to

prefer
- the Nova flavor extra_spec hw:cpu_threads should be set to “2”.

hw:cpu_sockets and hw:cpu_cores should also be set appropriately.
• The number of vCPUs for the Nova flavor used to create the VM must be in the

range from 2-56. For some applications (such as NAT) the minimum number of
vCPUs is 3. The recommended number of vCPUs depends on performance
requirements; consult your Nokia representative for further details.

• The amount of vRAM for the Nova flavor used to create the VM must be in the
range of 4GB-64GB. Minimum vRAM memory depends on the application (see
Table 13).

• The Nova flavor extra_spec hw:mem_page_size must be set to 1048576 in
order to allocate 1GB huge pages to the VM.

• The allowed_address_pairs attribute of Neutron ports that use VirtIO should
specify “0.0.0.0/0” for ip_address in order to bypass restrictive anti-spoofing
rules.

• For Neutron ports that use SR-IOV the binding:vnic-type attribute should be
set to direct.

Virtual Machine Configuration Parameters

170

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

• Up to three Cinder volumes may be attached (as block devices) to a VM. The
“hda” device corresponds to CF3, the “hdb” device corresponds to CF1 and the
“hdc” device corresponds to CF2. If a Cinder volume is created from the QCOW2
disk image provided by Nokia the size is limited to 1189 MB even if the
requested volume size is greater.

Table 13 VM Memory Requirements by Function Mix

Functions Minimum Memory for VM (GB) Notes

PE 4

RR 4

NAT profile-1: 28
profile-2: 56

PE + NAT 20

Transit AA (Res 8K mode) 8

PE + AA (VPN 1K mode) 8

IPsec 20 Requirement to
achieve maximum
number of IPSec
tunnel scale

IPsec + AA firewall 30 Requirement to
support AA at
maximum number of
IPsec tunnel scale

LNS 24

BNG without ISA 16
32 (>32k queues)

BNG with BB-ISA 24
48 (>32k queues)

vRGW 24

WLAN-GW 32
48 (>32k queues)

WLAN-GW + AA 40
48 (>32k queues)

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Virtual Machine Configuration Parameters

Issue: 01 3HE 15837 AAAA TQZZA 01 171

7.2 VMs Deployed on a VMware ESXi 6.0 or 6.5
Compute Host using vSphere

When a VM is deployed on a VMware ESXi 6.0 or 6.5 compute host using the
vSphere Web Client interface to the vCenter Server, certain VM configuration
parameters should be set as follows:

• The machine.id setting should include slot=A chassis=VSR-I card=cpm-v in
addition to other necessary attributes.

• The machine.id setting should include a vsr-deployment-model=route-
reflector directive if the VSR is intended to be used only as a control plane BGP
route reflector (no transit forwarding requirements).

• The machine.id setting should include a vsr-deployment-model=queue-scale
directive if the VSR requires thousands of egress traffic queues (such as a
scaled VSR-BNG). This increases the amount of VM memory used for buffering
but also has some performance trade-offs.

• The machine.id setting should include a vsr-deployment-model=high-packet-
touch directive if the VSR is used for SeGW applications. This increases
performance of these applications on a hyperthreaded host.

• The machine.id setting should include a control-cpu-cores=N directive to
reserve N pCPU cores (2*N hyper-threads) for control plane processing. Without
this directive N takes a value of 1, which does not provide sufficient control plane
capability for most applications. N has a maximum value of 16.

• If the host machine has hyperthreading disabled, the latencySensitivity setting
of the VM should be set to high. Navigate to VM Settings→ Options →
Advanced General → Configuration Parameters and set
sched.cpu.latencySensitivity to high. No CPU pinning is required in this case.

• When a VM supporting any application is deployed on a hyperthreaded ESXi
host:
- The machine.id setting must include a hyperthreading=1 directive
- The latencySensitivity is not required unless VMXNET3 networking is

used
- Edit the VMX file to pin each consecutive vCPU to a pCPU hyperthread. For

example to pin vCPU0 to pCPU4 you would include the following line in the
VMX: sched.vcpu0.affinity = “4”.

Note: Configuration of control-cpu-cores is not necessary if the vsr-deployment-model is
set to route-reflector.

Virtual Machine Configuration Parameters

172

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

- Add the following settings to the VMX after the pinning statements:
sched.cpu.affinity.exclusive = "TRUE"

- monitor_control.halt_desched = “FALSE”
• The number of vCPU cores must be in the range 2-56. For some applications

(such as NAT) the minimum number of vCPUs is 3. The recommended number
of vCPUs depends on performance requirements. Consult your Nokia
representative for further details.

• The vCPU cores assigned to the VM must be reserved. Navigate to VM
Settings→ Resources → CPU → Reservation and set the value to the number
of vCPUs assigned to the VM multiplied by the physical CPU clock speed.

• The vCPU cores assigned to the VM must not have limited CPU shares.
Navigate to VM Settings → Resources → CPU → Limit and specify the value
unlimited.

• The amount of vRAM must be in the range of 4GB-64GB. Minimum vRAM
memory depends on the application (see Table 13).

• In a multi-socket system supporting NUMA the vCPUs and vRAM of the VM
should be allocated from one single NUMA node, and this should also be the
NUMA node associated with the SR-IOV and PCI pass-through NIC ports used
by the VM. Navigate to VM Settings → Options → Advanced General →
Configuration Parameters and set numa.nodeAffinity to “0” (NUMA0) or
“1”(NUMA1) as appropriate.

• Add or edit the uuid.bios line in the VMX file and assign the parameter the same
value encoded in the license file.

• The VM can be assigned up to 10 vNIC interfaces. The first virtual interface
(lowest PCI bus/device/function address) must be E1000. The remaining virtual
interfaces can be any combination of E1000, VMXNET3, SR-IOV and PCI pass-
through. NOTE – the first interface that is attached to the VM may not be the
lowest numbered PCI device.

• A separate Tx thread should be allocated for each VMXNET3 vNIC interface.
(By default ESXi uses one Tx thread per VM.) Navigate to VM Settings →
Options → Advanced General → Configuration Parameters and give
ethernetX.ctxPerDev a value of “1” for each VMXNET3 interface.

• If the VM has VMXNET3 vNIC interfaces then a minimum of two host physical
CPU threads should be reserved for handing the Tx threads of the VMXNET3
vNIC interfaces (and also the Rx threads starting with ESXi 6.5). Navigate to VM
Settings → Options → Advanced General → Configuration Parameters and give
sched.cpu.latencySensitivity.sysContexts a value of “2” or greater; a NUMA
node where the VM resides must have at least this number of unreserved cores.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Virtual Machine Configuration Parameters

Issue: 01 3HE 15837 AAAA TQZZA 01 173

7.3 Intel QuickAssist

To achieve maximum IPsec throughput with QAT, apply the following VM
configuration guidelines.

• QAT is supported only on VSR-I using SR-IOV on a KVM hypervisor.
• QAT is a PCIe device.

In general, a higher number of QAT PCIe lanes is helpful to achieve higher
throughput. A PCH chipset with 24x PCIe lanes might result in higher throughput
than a PCH chipset with 16x PCIe lanes, depending on the traffic pattern and
core allocation.

• There are three Physical Functions (PF) per supported QAT hardware.
The number of Virtual Functions (VF) per PF attached to the VSR must be the
same for all three PFs.

• If hyperthreading (HT) is enabled on host, for each physical CPU core, assign
only one sibling HT core to the VSR. Do not assign the other sibling HT core to
any other VM.

• The number of QAT VFs must be equal to or larger than the number of virtual
FP workers. QAT VFs from each QAT PF must be configured in XML in a round-
robin order; for example: PF0_VF0, PF1_VF0, PF2_VF0, PF0_VF1, PF1_VF1,
PF2_VF1, and so on.

• With the current generation of supported CPU, assigning more cores to VSR
should result in higher IPsec throughput, depending on VSR core assignment.

• The number of vFP workers must be multiples of the number of QAT PFs
assigned to the VSR-I VM.

Virtual Machine Configuration Parameters

174

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR-I Lifecycle Management Using CBAM

Issue: 01 3HE 15837 AAAA TQZZA 01 175

8 VSR-I Lifecycle Management Using
CBAM

8.1 Overview

Lifecycle management of VSR-I instances deployed on an OpenStack-based NFVI
is supported by the CloudBand Application Manager (CBAM) software. A CBAM
template package can be downloaded from Nokia OLCS and used to on-board a
VSR-I into CBAM.

This chapter provides information about customizing the VSR-I template package for
a specific NFVI environment and managing the lifecycle of a VSR-I instance using
CBAM. CBAM terms are described in Appendix A: VSR Glossary of Key Terms.

VSR-I Lifecycle Management Using CBAM

176

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

8.2 Introduction to CBAM

CBAM is the component of the Nokia CloudBand suite that serves the role of a
Virtualized Network Function Manager (VNFM) for VSR-I and many other Nokia
VNFs. It supports an open template system for modeling and managing VNFs, based
on ETSI NFV IFA 011 GS and OASIS TOSCA. CBAM uses HEAT Orchestration
Templates (HOT) that describe the virtual resources needed by a VNF.

The VNF lifecycle management operations are modeled as a sequence of tasks
executed by the built-in Mistral workflow engine. CBAM supports out-of-the-box
basic workflows (for example, instantiation and termination) and the Mistral workflow
engine provides flexibility to create advanced custom workflows (such as upgrading
and healing). As part of Mistral workflows, commissioning tasks can leverage
CBAM’s built-in Ansible engine.

The set of resource templates, lifecycle management workflows, and Ansible
playbooks are modeled in CBAM through a VNF descriptor (VNFD). The full set of
CBAM artifacts for a VNF (VNFD, HOT, Mistral workflows, and Ansible playbooks)
are referred to as the VNF package.

Figure 50 shows the high-level architecture of CBAM.

Figure 50 CBAM Architecture

sw0102

Vi-Vnfm
Workflow and
Action Library

Heat + OpenStack APIs
Ve-Vnfm-vnf

Hot

VNF VNF

Heat
Key

Stone
Cinder

VNF Infrastructure Manager
Nova Neutron

Playbooks

VNFDVNF Template
Catalog

Ansible

VNF Topology and
Lifecycle Manager

Alarm
Manager

Mistral
Workflow Engine

Mistral
Workflows

NFV Orchestrator

CloudBand Application Manager

OpenStack

EM

Ve-Vnfm-emOr-Vnfm

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR-I Lifecycle Management Using CBAM

Issue: 01 3HE 15837 AAAA TQZZA 01 177

Table 14 describes the CBAM interfaces referenced in Figure 50 and used for VSR-I
lifecycle management.

Table 14 CBAM Interfaces

Interface Reference Point Description

Or-Vnfm A REST-based interface for integration with orchestration.
The VSR-I VNFD describes the VNF requirements for the
orchestration layer and the supported operations.

Ve-Vnfm-em A REST-based interface for integration with the VNF
element management system. For VSR-I, CBAM is
integrated with NSP NFM-P. For more information, see
Lifecycle Management Actions Supported for VSR-I
VNFs.

Ve-Vnfm-vnf An SSH-based interface for VSR-I commissioning, used in
VSR-I Ansible playbooks.

Vi-Vnfm A REST-based interface for HEAT and Keystone
OpenStack components, used to instantiate and manage
the virtual resources needed by the VSR-I VNF.

VSR-I Lifecycle Management Using CBAM

178

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

8.3 Lifecycle Management Actions Supported for
VSR-I VNFs

CBAM lifecycle management actions supported for VSR-I instances are summarized
in Table 15. Some of the actions depend on whether NSP NFM-P is integrated with
CBAM. NSP NFM-P is the element management system (EMS) of the VSR, and
supports integration with CBAM over the Ve-Vnfm-Em reference point, as described
and diagrammed in Introduction to CBAM. When it is integrated, NFM-P can actively
monitor the status of VSR-I virtual resources and trigger certain LCM actions.

Table 15 Supported LCM Actions for VSR-I Instances

LCM Action Description

On-board VNF From CBAM GUI or REST API, on-boards the VNF package
in CBAM so that it is available for later use in VNF creation

Create VNF From CBAM GUI or REST API, creates a uniquely identified
VNF in CBAM.

Modify VNF information From CBAM GUI or REST API, modifies the VNF metadata
and extensions from their defaults as defined in the VNFD.

Upgrade VNF package From CBAM REST API, upgrades the VNF package, not the
VSR-I instance. Through this operation, a new VNFD
containing corrections may be on-boarded.

Instantiate VNF From CBAM GUI or REST API, instantiates VSR-I specified
OpenStack-based/VMware NFVI either in grantless or
grantful mode. The necessary parameters are provided to
CBAM in the form of a JSON file. After the action is complete
an Ansible playbook verifies that the VSR-I is up by attempting
to connect to TCP port 22 (SSH server port).
If NSP is integrated, CBAM notifies NFM-P upon successful
creation and NFM-P auto-discovers the new instance.
Note: In order to be managed by NSP, the new VSR-I
instance must be instantiated with config.cfg and bof.cfg files
that configure a proper system IP address, enable SNMP and
enable BOF persistence. Ansible playbooks perform these
initial commissioning tasks.

Terminate VNF From CBAM GUI or REST API, terminates a VSR-I instance.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR-I Lifecycle Management Using CBAM

Issue: 01 3HE 15837 AAAA TQZZA 01 179

Manual Heal VNFC If NSP is integrated, manual heal request of VSR-I can be
initiated by NFM-P; CBAM then implements the workflow by
rebooting (first step) or rebuilding (second step) the VM and
NSP is notified of the status. If NSP is not integrated, then the
manual heal workflow must be initiated through the CBAM
GUI or REST interface.

Auto-heal VSR-I Requires NSP integration. If VSR-I becomes unreachable to
NFM-P (according to user-defined policy rule), NSP raises an
alarm and sends a heal workflow request to CBAM.

Table 15 Supported LCM Actions for VSR-I Instances (Continued)

LCM Action Description

VSR-I Lifecycle Management Using CBAM

180

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

8.4 VSR-I VNF Package Design

The zip archive that can be downloaded from Nokia OLCS contains the VNF
package for VSR-I (vSRCbamTemplate.csar) and an example JSON parameters file
(such as vSRCbamInstantiate_Grantless.json). The VNF package has the following
structure:

• ansible/
• CBAM-Extensions/
• hot/
• images/
• javascript/
• Licenses/
• mistral-workbooks/
• TOSCA-Definitions/
• TOSCA-Metadata/
• TOSCA-Metadata/TOSCA.meta
• ChangeLog.txt
• vsr.vnfd.tosca.mf
• vsr.vnfd.tosca.yaml

The TOSCA.metafile is the highest-level entry of the VNF package. It contains the
following:

• Entry-Definitions—VNFD filename as included in the VNF package (for
example, vSR.vnfd.tosca.yaml). The VNFD refers to in the TOSCA.meta
file and refers to all other files included in the VNF package.

• CSAR-Version—version of the CSAR package format
• Created-by—vendor of the VNF package (for example, Nokia)
• TOSCA-Meta-File-Version—version of the VNF package (for example, 1.0,

2.0, and so on); increments with each VNF package release
• ETSI-Entry-Manifest—manifest filename as included in the VNF package

(vsr.vnfd.tosca.mf)
• ETSI-Entry-Change-Log—changelog Filename as included in the VNF

package (ChangeLog.txt)
• ETSI-Entry-Licenses—licenses folder as included in the VNF package

(Licenses)
• ETSI-Entry-Tests—testing folder as included in the VNF package (Tests)

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR-I Lifecycle Management Using CBAM

Issue: 01 3HE 15837 AAAA TQZZA 01 181

The VNFD referred to in the TOSCA.meta file refers to all other files included in the
VNF package.

The VNFD components that are visible to the operator (through the CBAM GUI) are
the following:

• VNF metadata and properties
• VNF requirements (external connection points)
• VNF modifiable attributes
• VNF supported lifecycle management operations (interfaces)

8.4.1 VNFD Metadata and Properties

The VNFD contains metadata and properties that uniquely identify the VNFD for
CBAM. The information is duplicated in metadata and the VNF properties. The
following output contains an example of these sections, from the default Nokia
supplied VNFD.

metadata:
nokia_vnfd_extensions: CBAM-Extensions/cbam_extensions.yaml
nokia_vnfd_implementation_version: 4.0.0

dsl_definitions:
descriptor_id: &descriptor_id e9e0cb86-ea33-4036-8c0d-d8ec0901529b
provider: &provider "Nokia"
product_name: &product_name 'VSR'
product_info_name: &product_info_name 'Virtual Service Router'
software_version: &software_version '20.2.1.1'
descriptor_version: &descriptor_version '20.2.1.1.sriov'
flavour_id: &flavour_id 'default'
flavour_description: &flavour_description 'Default flavor of VSR'
vnfm: &vnfm "1:CBAM-20.2"
customize_grant_request: &customize_grant_request

javascript: javascript/compute_affinity_rules.js
compute_grantless_response: &compute_grantless_response

javascript: javascript/compute_grantless_response.js
grant_actions: &grant_actions

compute_grantless_response: *compute_grantless_response
customize_grant_request: *customize_grant_request

Note: The software_version indicates the VSR-I release for which the template was initially
tested.

VSR-I Lifecycle Management Using CBAM

182

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

8.4.2 VNFD External Connection Points

The external connection points provide information about the external networks to
connect to the VNF. The networks expected for a VSR-I instance are the OOB
management network and the external networks attached to the m20-v MDA ports.
External networks must be provided at VNF instantiation.

In the default Nokia supplied VNFD, the external connection points are modeled as
follows:

topology_template:
substitution_mappings:

node_type: nokia.vSR
requirements:

vsrManagementECP_virtual_link: [vsrManagementECP, virtual_link]
vsrExt1ECP_virtual_link: [vsrExt1ECP, virtual_link]
vsrExt2ECP_virtual_link: [vsrExt2ECP, virtual_link]
vsrExt3ECP_virtual_link: [vsrExt3ECP, virtual_link]
vsrExt4ECP_virtual_link: [vsrExt4ECP, virtual_link]
vsrExt5ECP_virtual_link: [vsrExt5ECP, virtual_link]
vsrExt6ECP_virtual_link: [vsrExt6ECP, virtual_link]
vsrExt7ECP_virtual_link: [vsrExt7ECP, virtual_link]
vsrExt8ECP_virtual_link: [vsrExt8ECP, virtual_link]

8.4.3 VNFD Deployment Flavors

Multiple deployment flavors can be defined in the VNFD (for example, static and
scalable deployments). The VSR-I VNFD currently supports a single rigid flavor as
follows:

dsl_definitions:
flavour_id: &flavour_id 'default'
flavour_description: &flavour_description 'Default flavor of VSR'

node_types:
nokia.vSR:

derived_from: nokia.nodes.nfv.VNF
properties:

….
flavour_id:

type: string
constraints: [equal: *flavour_id]
default: *flavour_id

flavour_description:
type: string
constraints: [equal: *flavour_description]
default: *flavour_description

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR-I Lifecycle Management Using CBAM

Issue: 01 3HE 15837 AAAA TQZZA 01 183

8.4.4 VNFD Instantiation Level

The VNFD instantiates a VSR-I VNF with a fixed (not scalable) configuration of one
VM (VDU).

instantiation_levels:
type: tosca.policies.nfv.InstantiationLevels
properties:
levels:

default:
description: VSR default instantiation level

default_level: default
vsrServer_instantiation_levels:

type: tosca.policies.nfv.VduInstantiationLevels
properties:
levels:

default:
number_of_instances: 1

targets: [vsrServer]

8.4.5 VNFD Extensions

The VNFD uses extensions to customize HOT files so that a single VNFD can be
used to instantiate multiple VNF instances. It uses the extensions to populate the VM
configuration strings (SMBIOS information) and set additional configuration and
deployment options. These parameters are set using the Modify VNF workflow prior
to VNF instantiation.

nokia.datatypes.nfv.VnfInfoModifiableAttributesExtensions:
derived_from: tosca.datatypes.nfv.VnfInfoModifiableAttributesExtensions
properties:

systemIpAddr:
type: string
default: "10.20.1.1"

staticRoute:
type: string
default: "135.0.0.0/8@172.21.32.1"

primaryConfigFile:
type: string
default: "ftp://*:*@172.21.36.97/./images/dut-a.cfg"

licenseFile:
type: string
default: "ftp://*:*@172.21.36.97/./images/vmLICENSE/timos.vsr-all.txt"
required: false

vsrManagementNetmask:
type: string
default: "21"

securityGroup:
type: string
default: "srosSecurityGroup"

controlPlaneCores:

VSR-I Lifecycle Management Using CBAM

184

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

type: string
default: "4"

snmpCommunity:
type: string
default: "private"

vsrCompactFlashSize:
type: string
default: "64"

vsrAllowedAddressPairList:
type: string
default: "0.0.0.0/0"

Table 16 lists the parameters of the VNFD extensions.

Table 16 Parameters of VNFD Extensions

Parameter Description Usage Notes

systemIpAddr Specifies the system IP address of the
VSR-I. Used for identification and
management of the VNF from NSP

Mandatory parameter
Must be a valid IPv4 or IPv6 IP
address; for example: 10.10.10.10
Must be unique per VNF instance

staticRoute Specifies a space-separated list of up
to 10 static routes; for example:
static-route:0.0.0.0/
1@1.1.1.1

static-route:0.0.0.0/
1@1.1.1.1

Mandatory parameter
Configuration options:

• include during instantiation
• configure manually after

instantiation

primaryConfigFile Specifies the FTP location of the VSR-
I configuration file; for example:
ftp://user:pass@IP_address/
~/dir/filename.cfg

Mandatory parameter
Configuration options:

• include during instantiation
• configure manually after

instantiation

licenseFile Specifies the FTP location of the
license file; for example:
ftp://user:pass@IP_address/
~/dir/filename.txt

Optional parameter
Configuration options:

• include during instantiation
• configure manually after

instantiation, but this will require a
reboot

vsrManagementNetmask Specifies the OAM network subnet
mask; for example, 27 for a /27 subnet

Mandatory parameter
Must be a number from 1 to 32

securityGroup Specifies the neutron security group
associated with the ports created under
the HOT

Mandatory parameter
Format is a string that must be a valid
(pre-created) OpenStack security
group

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR-I Lifecycle Management Using CBAM

Issue: 01 3HE 15837 AAAA TQZZA 01 185

8.4.6 VNFD Node Templates

The node templates section of the VNFD provides descriptions for all components of
the VNF (networks, VMs, and storage). This section must be aligned with the flavor
created in OpenStack and the resources created via HOT.

In the Nokia supplied VNFD, the following characteristics apply.

• The VSR-I VM is allocated 16GB of RAM.
• The VSR-I VM is allocated 9 vCPU cores.
• The only supported virtualization environment is indicated to be KVM.
• The VSR-I is allocated one vNIC for management connectivity and eight SR-IOV

vNICs for external connectivity to other VMs and network elements.

controlPlaneCores Specifies the number of control plane
CPU cores that should be allocated to
the VSR-I

The template value of 4 is the minimum
for most deployments

snmpCommunity Specifies the SNMP community string
used to access the VSR-I

—

vsrCompactFlashSize The default size of the CF3 compact
flash attached to the VSR

—

vsrAllowedAddressPairList The allowed IP addresses on each
interface

—

templateName Specifies the vApp template name
which is uploaded in vCD catalog

Applicable and mandatory for VMware
deployments. The value can be a valid
string such as “vsr.flexible”

Table 16 Parameters of VNFD Extensions (Continued)

Parameter Description Usage Notes

Note: CBAM does not verify that the information described in the VNFD is aligned with
OpenStack and HOT. The integrator must ensure that it is manually aligned.

VSR-I Lifecycle Management Using CBAM

186

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

8.5 VSR-I Lifecycle Management Using CBAM

The following sections describe the workflows to on-board the VNF package for
VSR-I into CBAM, create a VSR-I VNF, modify the VSR-I VNF information,
instantiate a VSR-I, terminate a VSR-I, and heal a VSR-I.

8.5.1 On-board the VSR-I VNF Package

Prerequisite: none

Execution: CBAM GUI/REST

The first step before starting to manage VSR-I VNFs in CBAM is to upload the VSR-I
VNF package to CBAM.

To upload the VNF package follow the steps described in the CBAM User Guide.
After the VSR-I VNF package has been uploaded successfully to CBAM, the VNFD
ID should be available in CBAM.

Before uploading the package to CBAM, potential modifications to the VNFD may be
needed as described in VNFD Extensions. All VNF package files are text files that
may be modified using a text editor that supports the YAML file format. The modified
files must be repackaged in a zip file preserving the file structure, and ensuring that
the file, directory, and tree structures are maintained, as described in VSR-I VNF
Package Design.

8.5.2 Create the VNF

Prerequisite: a VSR-I VNF package must have been on-boarded in CBAM

Execution: CBAM GUI/REST

After the VNF package has been uploaded, the next step is to create the VNF. VNF
creation does not instantiate the VNF in the NFVI, instead it creates the VNF in
CBAM for subsequent instantiation. As part of the VNF creation, a unique VNF name
must be assigned to the VNF.

For detailed VNF creation instructions, follow the steps described in the CBAM User
Guide.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR-I Lifecycle Management Using CBAM

Issue: 01 3HE 15837 AAAA TQZZA 01 187

8.5.3 Modify the VNF Information

Prerequisite: a VSR-I VNF must have been created in CBAM

Execution: CBAM GUI/REST

Through the VNF modify operation, you can modify the metadata of the VNF, as
specified in the VNFD, and modify the extensions from their defaults set in the VNFD.

The VSR-I extensions must be modified prior to the instantiation of each VSR-I VNF
instance (see VNFD Instantiation Level). VNF extensions can be modified either
through the CBAM GUI or by uploading a configuration file. An example configuration
file for SR-IOV deployment is included in the zip file that also contains the VNF
package.

For detailed VNF modify instructions, follow the steps described in the CBAM User
Guide.

8.5.4 Instantiate the VNF

Prerequisites:

• a VSR-I VNF must have been created and its extension parameters set
• OpenStack prerequisites:

- the VSR-I software image must be on-boarded into OpenStack Glance
- OpenStack Nova flavors must be created for the VSR-I VMs
- OpenStack Neutron networks must be created for the external networks

and the OOB management network
• VMware requirements

- external orgVDC networks must have been created
- OVA must be on-boarded into the vCD catalog
- the VSR-I SMBIOS configuration string must have been specified as a

machine.id value
VMware allows the SMBIOS configuration string to be passed to a VSR-I
VM when it is specified it as a machine.id value.

Note: The metadata should not typically need modification prior to instantiation and may be
left as specified in the VNFD.

VSR-I Lifecycle Management Using CBAM

188

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

To specify the SMBIOS configuration string as a machine.id value, perform
the following steps.

i. In the OVF descriptor file, edit the SMBIOS configuration string for the
machine.id, ensuring that it starts with the string “TIMOS”.
See Sysinfo for information about a properly formatted SMBIOS string
and the allowed parameters for VSR VMs.

ii. Re-generate the OVA for CBAM use.

Execution: CBAM GUI/REST

The operation instantiates a VSR-I VNF in the OpenStack/VMware NFVI.

Table 17 describes the parameters that must be specified in the operation.

Table 17 Operation Parameters

Parameter Description

VIM Information Specifies information about the Openstack/VMware VIM
that is selected for the instantiation of VSR-I including:

• tenant access information (tenant ID and access
credentials)

• VIM contact address

VNF Flavor Specifies the VNF flavor, as defined in the VNFD, to be
used for instantiation. Currently, only a single rigid flavor is
available for deployment.

Instantiation Level Specifies an instantiation level, as defined in the VNFD
The VSR-I VNFD supports a single default instantiation
level that instantiates a VSR-I with a single VM.

External Networks Specifies the external networks connected to the VNF.
These are specified as Openstack/VMware network
names.

NFVO Integration The current VNFD supports both grantless and grantful
mode.

VM Flavors Reference to a pre-created OpenStack flavor to use with
the VSR-I VM

Software Image Name The software image name as on-boarded into OpenStack
Glance or VMware vCD Catalog

Availability Zone The Openstack Nova availability zone or VMware
organization VDC to use with the VSR-I VM

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR-I Lifecycle Management Using CBAM

Issue: 01 3HE 15837 AAAA TQZZA 01 189

The parameters listed in Table 17 are imported to CBAM through a parameter file in
JSON format. An example parameter file for SR-IOV deployment, named
“vSRCbamInstantiate.json” is included in the zip that also contains the VNF package.

For detailed VNF instantiation instructions, follow the steps described in the CBAM
User Guide.

8.5.5 Terminate the VNF

Prerequisites: an instantiated VSR-I VNF

Execution: CBAM GUI/REST

The operation terminates a VSR VNF and deletes all resources in the NFVI. The
operation may be forced or graceful.

For detailed VNF termination instructions, follow the steps described in the CBAM
User Guide.

8.5.6 Heal the VNFC

Prerequisites:

• an instantiated VSR-I VNF

Execution: CBAM GUI/REST/NSP NFM-P

The operation heals a VSR-I VM that cannot be recovered by guest actions. If
healing is executed in OpenStack, then soft reboot is initially made on the VSR-I VM;
if this action is unsuccessful, then a hard reboot is attempted. If the hard reboot is
unsuccessful, then a nova rebuild action is used to attempt to recover the VM.

In VMware, the heal workflow requests NFVI to power off then power on the VM. If
this action fails, then the VSR-I is re-instantiated (deleted and re-created). Card
status checks are performed after heal completion in VIM level.

Healing may be triggered either through CBAM GUI/REST or from NSP NFM-P:

• CBAM-triggered healing
Healing is triggered manually by the operator, who must identify the VNF to be
healed. There is no integration with VSR-I NFM-P to detect failure conditions
that require healing.

VSR-I Lifecycle Management Using CBAM

190

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

The vnfcToHeal parameter, which corresponds to the target healed VM ID, must
be configured in the CBAM GUI. Use one of the following values to configure this
parameter:
- the combined slot ID (A,1)
- the VNFC name
- the internal CBAM machine ID (for example, when using OpenStack, this

may be “VSR_I”)
If you use OpenStack, you can execute a soft reboot, hard reboot, or nova
rebuild action. If you use VMware, you can power off and power on the vCD; if
this fails, then the VM is re-instantiated.

• NSP NFM-P-triggered healing
NSP NFM-P is integrated with CBAM and can automatically detect failure
conditions that require healing.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR Troubleshooting

Issue: 01 3HE 15837 AAAA TQZZA 01 191

9 VSR Troubleshooting

9.1 Overview

This section provides information about troubleshooting common VSR issues that
relate to host or VM misconfiguration. Issues related to SR OS misconfiguration are
beyond the scope of this section. Refer to the 7450 ESS and 7750 SR
Troubleshooting Guide for more information.

Before troubleshooting a VSR issue, ensure that there are no preexisting network
problems.

Table 18 lists common VSR troubleshooting issues and potential causes.

Note: This chapter provides a set of guidelines to use in the problem-solving process; it is
not intended for use as a comprehensive set of procedures to treat VSR issues. Additional
troubleshooting steps may be required to resolve the problem.

Table 18 Common VSR Troubleshooting Issues

Issue Description Relevant sections

Excessive packet loss A very small amount of packet
loss is not unusual in NFV
deployments, but if packet loss
exceeds 1 to 2%, it may indicate
a more serious problem

• vCPUs Not Pinned or Isolated
• Insufficient CPU Resources
• Incorrect Hyper-threading Settings
• Incorrect NIC Driver or Firmware

Versions in the Host
• Incorrect MTU Settings
• Insufficient Packet Buffer Memory

Lower than expected data
plane performance

If the data plane performance of
the VSR is much lower than
expected or if it deteriorates from
an established baseline, this may
be the result of incorrect host or
VM configuration

• vCPUs Not Pinned or Isolated
• Insufficient CPU Resources
• Incorrect Hyper-threading Settings
• Incorrect NIC Driver or Firmware

Versions in the Host
• NUMA Misalignment
• Insufficient Packet Buffer Memory

VSR Troubleshooting

192

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

To properly troubleshoot one or more of the above problems, the following
recommended workflow is:

Step 1. Collect information about the problem, as described in Collecting Linux
KVM Host Information. If using VMware, refer to VMware documentation
for the most up-to-date commands.
Collect statistics and configuration information from the host, the
hypervisor, and the SR OS software.

Step 2. Perform one of the following.
a. If handing off troubleshooting to another party, submit the collected

information. If handing off troubleshooting to a Nokia representative,
also generate and submit an admin tech-support file. End the workflow
here.

b. If performing troubleshooting, continue to step 3.
Step 3. Look for configuration errors or statistics that may indicate the nature of the

problem, as described in Troubleshooting Common Problems.
Step 4. Attempt to resolve the issue by changing the host, hypervisor, or VSR

configuration and re-testing. Changing one parameter at a time is advised
so that the effect of each change can be assessed individually.

Control plane sessions drop
unexpectedly
Control plane protocols
converge slowly

If the control plane performance
of the VSR is not operating
robustly, with expected
convergence performance, this
may indicate a CPU or memory
resource allocation issue

• Insufficient CPU Resources
• Insufficient VM Memory

System instability If the VSR regularly crashes or
becomes unresponsive, this
could be due to an unsupported
configuration of the host or VM

• vCPUs Not Pinned or Isolated
• Insufficient CPU Resources
• Unsupported host OS (see Compute

Server Software Requirements for
host OS requirements)

• Insufficient VM Memory
• Incorrect BIOS Settings (see BIOS

Settings for configuration
recommendations)

Table 18 Common VSR Troubleshooting Issues (Continued)

Issue Description Relevant sections

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR Troubleshooting

Issue: 01 3HE 15837 AAAA TQZZA 01 193

Note: Root access is assumed in the following command examples.

In some of the following output examples, comments are denoted by two forward slashes
(“//”).

VSR Troubleshooting

194

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

9.2 Collecting Linux KVM Host Information

This section describes how and when to collect Linux KVM host information for
troubleshooting purposes. See Troubleshooting Common Problems for
troubleshooting tools and procedures.

9.2.1 Collecting Information at Host Bootup

9.2.1.1 BIOS Settings of the Host Machine

To determine the BIOS settings of the host machine, perform the following steps.

Step 1. During bootup when performing a server reboot, press the key specified in
POST (such as F2 key or DEL key, as applicable to the BIOS) to show the
BIOS setup screen.

Step 2. Navigate the BIOS screens and record the setting for each of the
parameters listed in Table 19.
On a Nokia Airframe server, the American Megatrends BIOS is used.
Server manufacturers may use different BIOS vendors.

Note: Setting names and navigation paths vary depending on the BIOS vendor. Some
vendors may require enabling or disabling related parameters. See BIOS Settings for more
information about recommended settings.

Table 19 BIOS Settings

Parameter Setting American Megatrends Navigation Path

SR-IOV Support Enabled or Disabled Advanced tab → PCI Subsystem Settings

Hyper-Threading Enabled or Disabled IntelRCSetup tab → Processor Configuration

VMX Enabled or Disabled IntelRCSetup tab → Processor Configuration

Hardware Prefetcher Enabled or Disabled IntelRCSetup tab → Processor Configuration

Adjacent Cache Prefetch Enabled or Disabled IntelRCSetup tab → Processor Configuration

X2APIC Enabled or Disabled IntelRCSetup tab → Processor Configuration

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR Troubleshooting

Issue: 01 3HE 15837 AAAA TQZZA 01 195

9.2.2 Collecting Information Before Any VSR VMs Are
Running

9.2.2.1 Used and Available Huge Pages (VMs Not Running)

Use the cat /proc/meminfo command to show the following statistics:

• HugePages_Total — the total number of huge pages
• HugePages_Free — the number of huge pages that are free

For example:

[root@vsr ~]# cat /proc/meminfo
MemTotal: 65759060 kB
MemFree: 11688396 kB
MemAvailable: 11749136 kB
Buffers: 85636 kB
Cached: 205368 kB
SwapCached: 0 kB
Active: 203668 kB
Inactive: 182536 kB
Active(anon): 108172 kB

Intel® VT for Directed I/O
(VT-d)

Enabled or Disabled IntelRCSetup tab → IIO Configuration

CPU C3 report Enabled or Disabled IntelRCSetup tab → Advanced Power Management
Configuration → CPU C State Control

CPU C6 report Enabled or Disabled IntelRCSetup tab → Advanced Power Management
Configuration → CPU C State Control

Turbo Mode Enabled or Disabled IntelRCSetup tab → Advanced Power Management
Configuration → CPU P State Control

NUMA Enabled or Disabled IntelRCSetup tab → Common RefCode Configuration

CPU processor CPU processor model in
each socket

IntelRCSetup tab → Processor Configuration

Power management Energy Performance
BIAS Setting

IntelRCSetup tab → Advanced Power Management
Configuration→ CPU – Advanced PM Tuning→
Energy Performance BIAS

Table 19 BIOS Settings (Continued)

Parameter Setting American Megatrends Navigation Path

VSR Troubleshooting

196

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

Inactive(anon): 9276 kB
Active(file): 95496 kB
Inactive(file): 173260 kB
Unevictable: 41208 kB
Mlocked: 41208 kB
SwapTotal: 32965628 kB
SwapFree: 32965628 kB
Dirty: 0 kB
Writeback: 0 kB
AnonPages: 136424 kB
Mapped: 49224 kB
Shmem: 10204 kB
Slab: 108880 kB
SReclaimable: 77308 kB
SUnreclaim: 31572 kB
KernelStack: 3568 kB
PageTables: 6304 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 39630756 kB
Committed_AS: 752012 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 484788 kB
VmallocChunk: 34358945788 kB
HardwareCorrupted: 0 kB
AnonHugePages: 51200 kB
CmaTotal: 0 kB
CmaFree: 0 kB
HugePages_Total: 50
HugePages_Free: 34
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 1048576 kB
DirectMap4k: 179620 kB
DirectMap2M: 4947968 kB
DirectMap1G: 63963136 kB
[root@vsr ~]#

9.2.3 Collecting Information When the Host OS Is
Running, Whether or Not VSR VMs Are Running

9.2.3.1 Linux OS Distribution and Version

Use the cat /etc/*release* and uname --all commands to check the CentOS,
RedHat, Ubuntu, or Linux version.

The following cat /etc/*release* output shows the host OS as “CentOS 7.3.1611”.

[root@vsr ~]# cat /etc/*release*

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR Troubleshooting

Issue: 01 3HE 15837 AAAA TQZZA 01 197

CentOS Linux release 7.3.1611 (Core) //This line shows the host OS.
Derived from Red Hat Enterprise Linux 7.3 (Source)
NAME="CentOS Linux"
VERSION="7 (Core)"
ID="centos"
ID_LIKE="rhel fedora"
VERSION_ID="7"
PRETTY_NAME="CentOS Linux 7 (Core)"
ANSI_COLOR="0;31"
CPE_NAME="cpe:/o:centos:centos:7"
HOME_URL="https://www.centos.org/"
BUG_REPORT_URL="https://bugs.centos.org/"
CENTOS_MANTISBT_PROJECT="CentOS-7"
CENTOS_MANTISBT_PROJECT_VERSION="7"
REDHAT_SUPPORT_PRODUCT="centos"
REDHAT_SUPPORT_PRODUCT_VERSION="7"
CentOS Linux release 7.3.1611 (Core) //This is an incorrect version.
CentOS Linux release 7.3.1611 (Core) //This is an incorrect version.
cpe:/o:centos:centos:7

The following cat /etc/*release* output shows the host OS as “Ubuntu 16.04.1”.

root@vsr:~# cat /etc/*release*
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=16.04
DISTRIB_CODENAME=xenial
DISTRIB_DESCRIPTION="Ubuntu 16.4.1 LTS"
NAME="Ubuntu"
ID=ubVERSION="16.04.1 LTS (Xenial Xerus)" //This is an incorrect version.
untu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 16.04.1 LTS"
VERSION_ID="16.04"
HOME_URL="http://www.ubuntu.com/"
SUPPORT_URL="http://help.ubuntu.com/"
BUG_REPORT_URL="http://bugs.launchpad.net/ubuntu/"
VERSION_CODENAME=xenial
UBUNTU_CODENAME=xenial

9.2.3.2 Linux Kernel Version

Use the uname --all command to determine the kernel name, version, release level,
and release date.

The following uname --all output shows the kernel version as “3.10.0-514”.

[root@vsr ~]# uname --all
Linux vsr 3.10.0-
514.6.1.el7.x86_64 #1 SMP Wed Jan 18 13:06:36 UTC 2017 x86_64 x86_64 x86_64 GNU/
Linux

The following uname --all output, from an Ubuntu machine, shows the kernel version
as “4.4.0-53-generic”.

VSR Troubleshooting

198

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

root@sc-03:~# uname --all
Linux sc-03 4.4.0-53-generic #74-
Ubuntu SMP Fri Dec 2 15:59:10 UTC 2016 x86_64 x86_64 x86_64 GNU/Linux

9.2.3.3 PCI Slots in the Host Machine

PCI slots have different bandwidth capabilities, expressed, for example, as “PCI
Express x1” or “PCI Express x4/x8/x16”, where the number after “x” represents a
number of PCI lanes. The higher the value after “x”, the more PCI lanes are available
per slot, resulting in more bandwidth. The physical slot size is also different for each
value.

Use the Linux dmidecode -t slot command to show information about every PCI slot
in the host machine. For each PCI slot, the following information is provided:

• server slot and CPU number (CPU1, CPU2)
• PCI bus width (x8, x16)
• PCI bus address (domain:bus:slot:function)

The following dmidecode-t output shows that the host machine has a PCI SLOT1
on the motherboard, connected to CPU1. It is a PCIe version 3 bus with x8 width and
therefore has a maximum theoretical bandwidth of 63 Gb/s. The PCI slot has the bus
address 0000:02:00.0.

[root@vsr vsr-ws]# dmidecode -t slot
Handle 0x001C, DMI type 9, 17 bytes
System Slot Information

Designation: CPU1 SLOT1
Type: x8 PCI Express 3 x8
Current Usage: Available
Length: Short
ID: 1
Characteristics:

3.3 V is provided
Opening is shared
PME signal is supported

Bus Address: 0000:02:00.0
Handle 0x001D, DMI type 9, 17 bytes
System Slot Information

Designation: CPU1 SLOT2
Type: x16 PCI Express 3 x16
Current Usage: In Use
Length: Long

Note: All slots are backward compatible. While a large card can be inserted into a small slot
and can function, the speed is reduced. Consider the NIC requirements for a specified PCI
slot to achieve the maximum speed.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR Troubleshooting

Issue: 01 3HE 15837 AAAA TQZZA 01 199

ID: 2
Characteristics:

3.3 V is provided
Opening is shared
PME signal is supported

Bus Address: 0000:03:00.0
...
Handle 0x0020, DMI type 9, 17 bytes
System Slot Information

Designation: CPU2 SLOT5
Type: x8 PCI Express 3 x8
Current Usage: In Use
Length: Short
ID: 5
Characteristics:

3.3 V is provided
Opening is shared
PME signal is supported

Bus Address: 0000:81:00.0

9.2.3.4 CPU Mapping to NUMA Nodes

Use the numactl -H command to record the memory size and CPU processor
mapping to each NUMA node.

In the following output, lines that start with “node 0” refer to NUMA 0, and those that
start with “node 1” refer to NUMA 1.

[root@vsr vsr-ws]# numactl -H
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
node 0 size: 65424 MB
node 0 free: 38045 MB
node 1 cpus: 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
node 1 size: 65536 MB
node 1 free: 38958 MB
node distances:
node 0 1

0: 10 21
1: 21 10

VSR Troubleshooting

200

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

9.2.3.5 NIC Driver and Firmware Details

9.2.3.5.1 Show the List of PCIe Devices

Use the lshw command to show the list of PCIe devices. Determine if there are any
missing device names or descriptions for any installed NIC, which may suggest a
problem with driver activation or that an alternate driver is in use.

The lshw command is not present by default, so must be installed using the yum
install or apt install commands.

[root@vsr vsr-ws]# yum install lshw
root@sc-03:~# apt install lshw

The following lshw output does not have missing device names or descriptions.

[root@vsr ~]# lshw -c network -businfo
Bus info Device Class Description
==
pci@0000:03:00.0 enp3s0f0 network 82599 10 Gigabit Dual Port Network Connection
pci@0000:03:00.1 enp3s0f1 network 82599 10 Gigabit Dual Port Network Connection
pci@0000:06:00.0 enp6s0f0 network Ethernet Controller X540-AT2
pci@0000:06:00.1 enp6s0f1 network Ethernet Controller X540-AT2
pci@0000:81:00.0 ens6f0 network 82599 10 Gigabit Dual Port Network Connection
pci@0000:81:00.1 ens6f1 network 82599 10 Gigabit Dual Port Network Connection
pci@0000:83:00.0 enp131s0f0 network 82599 10 Gigabit Dual Port Network Connection
pci@0000:83:00.1 enp131s0f1 network 82599 10 Gigabit Dual Port Network Connection
pci@0000:85:00.0 ens4f0 network MT27700 Family [ConnectX-4]
pci@0000:85:00.1 ens4f1 network MT27700 Family [ConnectX-4]
<>

The following lshw output shows bridges.

[root@vsr ~]# lshw -c network -businfo
Bus info Device Class Description
==
pci@0000:03:00.0 enp3s0f0 network 82599ES 10-Gigabit SFI/SFP+ Netwo
pci@0000:03:00.1 enp3s0f1 network 82599ES 10-Gigabit SFI/SFP+ Netwo
pci@0000:05:00.0 enp5s0f0 network 82599ES 10-Gigabit SFI/SFP+ Netwo
pci@0000:05:00.1 enp5s0f1 network 82599ES 10-Gigabit SFI/SFP+ Netwo
pci@0000:07:00.0 enp7s0f0 network Ethernet Controller 10-Gigabit X5
pci@0000:07:00.1 enp7s0f1 network Ethernet Controller 10-Gigabit X5
pci@0000:81:00.0 enp129s0f0 network 82599ES 10-Gigabit SFI/SFP+ Netwo
pci@0000:81:00.1 network 82599ES 10-Gigabit SFI/SFP+ Netwo
pci@0000:81:10.0 network 82599 Ethernet Controller Virtual
pci@0000:83:00.0 enp131s0f0 network 82599ES 10-Gigabit SFI/SFP+ Netwo
pci@0000:83:00.1 enp131s0f1 network 82599ES 10-Gigabit SFI/SFP+ Netwo

enp5s0f0.10 network Ethernet interface
ovs-mgmt network Ethernet interface
ovs-vsr1-fab network Ethernet interface
ovs-system network Ethernet interface
virbr0-nic network Ethernet interface

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR Troubleshooting

Issue: 01 3HE 15837 AAAA TQZZA 01 201

virbr0 network Ethernet interface
vsr1-mgmt network Ethernet interface

The following lshw output shows two missing device names. In this scenario, the
VFIO-PCI driver is in use for DPDK purposes.

[root@vsr vsr-ws]# lshw -c network -businfo
Bus info Device Class Description
===
pci@0000:03:00.0 enp3s0f0 network 82599 10 Gigabit Dual Port Network Connection
pci@0000:03:00.1 enp3s0f1 network 82599 10 Gigabit Dual Port Network Connection
pci@0000:05:00.0 network 82599 10 Gigabit Dual Port Network Connection
pci@0000:05:00.1 network 82599 10 Gigabit Dual Port Network Connection
pci@0000:07:00.0 enp7s0f0 network Ethernet Controller X540-AT2
pci@0000:07:00.1 enp7s0f1 network Ethernet Controller X540-AT2
pci@0000:81:00.0 ens5f0 network 82599 10 Gigabit Dual Port Network Connection
pci@0000:81:00.1 ens5f1 network 82599 10 Gigabit Dual Port Network Connection
<>

The following lshw output is missing the device name and description in several
fields, where the description is “Illegal Vendor ID”. In this scenario, the VFIO-PCI
driver is in use for SR IOV purposes.

[root@vsr vsr-ws]# lshw -c network -businfo
Bus info Device Class Description
==
pci@0000:03:00.0 enp3s0f0 network 82599 10 Gigabit Dual Port Network Conn
ection
pci@0000:03:00.1 enp3s0f1 network 82599 10 Gigabit Dual Port Network Conn
ection
pci@0000:05:00.0 ens3f0 network 82599 10 Gigabit Dual Port Network Conn
ection
pci@0000:05:00.1 ens3f1 network 82599 10 Gigabit Dual Port Network Conn
ection
pci@0000:05:10.0 network Illegal Vendor ID
pci@0000:05:10.1 network Illegal Vendor ID
pci@0000:05:10.2 network Illegal Vendor ID
pci@0000:05:10.3 network Illegal Vendor ID
pci@0000:05:10.4 network Illegal Vendor ID
pci@0000:05:10.5 network Illegal Vendor ID
pci@0000:07:00.0 enp7s0f0 network Ethernet Controller X540-AT2
pci@0000:07:00.1 enp7s0f1 network Ethernet Controller X540-AT2

9.2.3.5.2 Show the Kernel Drivers and Modules

Use the lspci command to show the kernel driver and kernel module used for every
installed NIC.

The following lspci output shows information for two Intel X520 NICs.

VSR Troubleshooting

202

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

[root@vsr vsr-ws]# lspci -k | grep -i ethernet -A2
03:00.0 Ethernet controller: Intel(R) 82599 10 Gigabit Dual Port Network Connection
(rev 01)

Subsystem: Intel(R) Ethernet Server Adapter X520-2
Kernel driver in use: ixgbe
Kernel modules: ixgbe

...
05:00.0 Ethernet controller: Intel(R) 82599 10 Gigabit Dual Port Network Connection
(rev 01)

Subsystem: Intel(R) Ethernet Server Adapter X520-2
Kernel driver in use: vfio-pci
Kernel modules: ixgbe

The following lspci output corresponds to two ports of a Mellanox Connect X-4 NIC.

[root@vsr ~]# lspci -k | grep -i ethernet -A2
85:00.0 Ethernet controller: Mellanox Technologies MT27700 Family [ConnectX-4]

Subsystem: Mellanox Technologies Device 0050
Kernel driver in use: mlx5_core
Kernel modules: mlx5_core

85:00.1 Ethernet controller: Mellanox Technologies MT27700 Family [ConnectX-4]
Subsystem: Mellanox Technologies Device 0050
Kernel driver in use: mlx5_core
Kernel modules: mlx5_core

9.2.3.5.3 Show the Driver Version, Name, and PCI Bus Information

For each kernel module used by an installed NIC, use the modinfo command to
show the version of the installed driver.

The following modinfo output shows that the installed Intel ixgbe driver is version
4.5.4.

[root@vsr vsr-ws]# modinfo ixgbe
filename: /lib/modules/3.10.0-514.6.1.el7.x86_64/updates/drivers/net/ethernet/
intel/ixgbe/ixgbe.ko
version: 4.5.4
license: GPL
description: Intel(R) 10GbE PCI Express Linux Network Driver
author: Intel Corporation, <linux.nics@intel.com>

Note: For the second NIC, the kernel driver in use (vfio-pci) is different from the kernel
module (ixgbe), which indicates a limited usage of this interface (DPDK or PCI
passthrough).

Note: Whenever a physical NIC is moved from one slot to another slot, collect the following
information. A NIC swap may result in Linux interface name changes, MAC address
changes, and/or PCI bus address changes.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR Troubleshooting

Issue: 01 3HE 15837 AAAA TQZZA 01 203

rhelversion: 7.3
srcversion: 57F7B0031F462E8B1D7D84C

The following modinfo output shows that the installed Mellanox mlx5_core driver is
version 3.4-1.0.6.

[root@vsr ~]# modinfo mlx5_core
filename: /lib/modules/3.10.0-514.2.2.el7.x86_64/weak-updates/mlnx-en/drivers/
net/ethernet/mellanox/mlx5/core/mlx5_core.ko
version: 3.4-1.0.6
license: Dual BSD/GPL
description: Mellanox Connect-IB, ConnectX-4 core driver
author: Eli Cohen <eli@mellanox.com>
rhelversion: 7.3
srcversion: 8ACFABDB5FCF79412802363

Alternatively, use the ethtool -i interface name command to show the driver name,
driver version, and PCI bus information for a Linux interface.

The following ethtool -i output is for an Intel NIC port.

[root@vsr vsr-ws]# ethtool -i ens5f0
driver: ixgbe
version: 4.5.4
firmware-version: 0x61c10001
expansion-rom-version:
bus-info: 0000:81:00.0
supports-statistics: yes
supports-test: yes
supports-eeprom-access: yes
supports-register-dump: yes
supports-priv-flags: yes

The following ethtool -i output is for a Mellanox NIC port.

[root@vsr ~]# ethtool -i ens4f0
driver: mlx5_core
version: 3.4-1.0.6 (20 Nov 2016)
firmware-version: 12.16.1020
expansion-rom-version:
bus-info: 0000:85:00.0
supports-statistics: yes
supports-test: yes
supports-eeprom-access: no
supports-register-dump: no
supports-priv-flags: yes

VSR Troubleshooting

204

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

9.2.3.6 Host Interface Details

Use the ip link show command to show information about host interfaces. Verify that
the MTU value of each interface is sufficiently higher than the guest interface MTU
settings.

[root@vsr_hyp]# ip link show
11: enp132s0f1: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 qdisc mq master
br02 state UP mode DEFAULT qlen 1000
15: br02: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEF
AULT
87: vnet1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master br02 s
tate UNKNOWN mode DEFAULT qlen 500
89: vnet3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master br02 s
tate UNKNOWN mode DEFAULT qlen 500
[root@vsr_hyp]#

9.2.3.7 Optical Transceiver Details

Use the ethtool -m interface name command to show details about the pluggable
optical transceiver module associated with a NIC port.

The following ethtool -m output shows SFP statistics when using Intel.

[root@vsr vsr-ws]# ethtool -m ens5f0
Identifier : 0x03 (SFP)
Extended identifier : 0x04 (GBIC/SFP defined by 2-

wire interface ID)
Connector : 0x07 (LC)
Transceiver codes : 0x10 0x00 0x00 0x01 0x00 0x00 0x

00 0x00
Transceiver type : 10G Ethernet: 10G Base-SR
Transceiver type : Ethernet: 1000BASE-SX
Encoding : 0x06 (64B/66B)
BR, Nominal : 10300MBd
Rate identifier : 0x02 (8/4/

2G Rx Rate_Select only)
Length (SMF,km) : 0km
Length (SMF) : 0m
Length (50um) : 80m
Length (62.5um) : 30m
Length (Copper) : 0m
Length (OM3) : 300m
Laser wavelength : 850nm
Vendor name : Intel Corp
Vendor OUI : 00:1b:21
Vendor PN : FTLX8571D3BCV-IT
Vendor rev : A
Option values : 0x00 0x3a
Option : RX_LOS implemented
Option : TX_FAULT implemented
Option : TX_DISABLE implemented

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR Troubleshooting

Issue: 01 3HE 15837 AAAA TQZZA 01 205

Option : RATE_SELECT implemented
BR margin, max : 0%
BR margin, min : 0%
Vendor SN : MUF1ZZL
Date code : 151111
Optical diagnostics support : Yes
Laser bias current : 7.690 mA
Laser output power : 0.6140 mW / -2.12 dBm
Receiver signal average optical power : 0.6015 mW / -2.21 dBm
Module temperature : 31.86 degrees C /

89.34 degrees F
Module voltage : 3.3232 V

The following ethtool -m output shows SFP statistics when using Mellanox.

[root@vsr ~]# ethtool -m ens4f0
Identifier : 0x11 (QSFP28)
Extended identifier : 0x00
Extended identifier description : 1.5W max. Power consumption
Extended identifier description : No CDR in TX, No CDR in RX
Extended identifier description : High Power Class (> 3.5 W) not e

nabled
Connector : 0x23 (No separable connector)
Transceiver codes : 0x88 0x00 0x00 0x00 0x00 0x00 0x

00 0x00
Transceiver type : 40G Ethernet: 40G Base-CR4
Transceiver type : 100G Ethernet: 100G Base-

CR4 or 25G Base-CR CA-L
Encoding : 0x00 (unspecified)
BR, Nominal : 25500Mbps
Rate identifier : 0x00
Length (SMF,km) : 0km
Length (OM3 50um) : 0m
Length (OM2 50um) : 0m
Length (OM1 62.5um) : 0m
Length (Copper or Active cable) : 3m
Transmitter technology : 0xa0 (Copper cable unequalized)
Attenuation at 2.5GHz : 6db
Attenuation at 5.0GHz : 8db
Attenuation at 7.0GHz : 10db
Attenuation at 12.9GHz : 16db
Vendor name : Mellanox
Vendor OUI : 00:02:c9
Vendor PN : MCP1600-C003
Vendor rev : A2
Vendor SN : MT1622VS07875
Revision Compliance : SFF-8636 Rev 2.0
Module temperature : 0.00 degrees C / 32.00 degrees F
Module voltage : 0.0000 V

VSR Troubleshooting

206

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

9.2.4 Collecting Information After VSR VMs Are Running

9.2.4.1 NUMA Information

NUMA allocation has a strong impact on high-performance VNFs. NUMA
misalignment can result in VSR instability and high traffic latency.

A single NUMA node represents a pool of CPU cores, memory, and PCI slots
(containing NICs); these virtualized components perform best when the latency in
communication between components is minimized. Allocating components (such as
CPU cores and NICs) from different NUMA nodes requires communication to cross
a QPU/UPI link, which is limited in bandwidth and can cause delays. These
resources should reside on the same NUMA. Border violations may occur if this
requirement is not observed.

Use the numactl command to determine if there is an issue with NUMA
misalignment (see NUMA Topology for more information about this command).

Use the numastat command to detect NUMA border violations.

9.2.4.1.1 Used and Available Memory Per NUMA Node

Use the numastat -m command to show the following statistics per NUMA node:

• MemTotal — the total memory available
• MemFree — free memory
• MemUsed — used memory

The following numastat -m output corresponds to a server with 128 Gbytes DRAM.
Each NUMA has 64 Gbytes of memory and the utilization of each NUMA memory
pool is about equal.

[root@vsr vsr-ws]# numastat -m
Per-node system memory usage (in MBs):

Node 0 Node 1 Total
--------------- --------------- ---------------

MemTotal 65424.62 65536.00 130960.62
MemFree 38044.87 38959.46 77004.33
MemUsed 27379.75 26576.54 53956.29
Active 169.55 149.30 318.86
Inactive 63.72 57.29 121.01
Active(anon) 136.54 27.46 164.00
Inactive(anon) 1.18 9.05 10.23
Active(file) 33.01 121.84 154.85
Inactive(file) 62.55 48.23 110.78

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR Troubleshooting

Issue: 01 3HE 15837 AAAA TQZZA 01 207

Unevictable 111.11 306.29 417.40
Mlocked 111.11 306.29 417.40
Dirty 0.00 0.00 0.00
Writeback 0.00 0.00 0.00
FilePages 107.59 181.03 288.61
Mapped 38.04 11.28 49.32
AnonPages 236.96 331.93 568.89
Shmem 1.08 9.31 10.39
KernelStack 4.02 4.31 8.33
PageTables 4.27 3.36 7.63
NFS_Unstable 0.00 0.00 0.00
Bounce 0.00 0.00 0.00
WritebackTmp 0.00 0.00 0.00
Slab 65.73 57.61 123.34
SReclaimable 24.79 21.64 46.43
SUnreclaim 40.95 35.96 76.91
AnonHugePages 176.00 244.00 420.00
HugePages_Total 24576.00 24576.00 49152.00
HugePages_Free 4096.00 20480.00 24576.00
HugePages_Surp 0.00 0.00 0.00

9.2.4.1.2 NUMA Memory Used by the Hypervisor

Use the numastat qemu command to show information about the use of memory by
the QEMU process.

The following numastat qemu output shows that all VMs created by QEMU are
allocated huge pages from NUMA node 0.

[root@vsr vsr-ws]# numastat qemu
Per-node process memory usage (in MBs) for PID 6062 (qemu-kvm)

Node 0 Node 1 Total
--------------- --------------- ---------------

Huge 16384.00 0.00 16384.00
Heap 99.93 0.00 99.93
Stack 0.11 0.00 0.11
Private 16.96 0.15 17.11
---------------- --------------- --------------- ---------------
Total 16501.00 0.15 16501.15

9.2.4.1.3 NUMA Miss Statistics

Use the numastat or numastat -v (verbose) command to show the following NUMA
statistics:

• Numa Miss — the number of attempted memory allocations to another node that
were allocated on this node due to low memory on the intended node. Each
Numa Miss event has a corresponding Numa Foreign event on another node.

VSR Troubleshooting

208

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

• Numa Foreign — the number of memory allocations initially intended for this
node that were allocated to another node instead. Each Numa Foreign event
has a corresponding Numa Miss event on another node.

The following numastat output shows memory usage within NUMA borders.

[root@vsr vsr-ws]# numastat -v
Per-node numastat info (in MBs):

Node 0 Node 1 Total
--------------- --------------- ---------------

Numa_Hit 9727.01 14590.22 24317.23
Numa_Miss 0.00 0.00 0.00
Numa_Foreign 0.00 0.00 0.00
Interleave_Hit 128.71 127.19 255.90
Local_Node 5169.49 14452.00 19621.49
Other_Node 4557.52 138.21 4695.73

The following numastat output shows memory usage that violates NUMA borders:

[root@localhost ~]# numastat -v
Per-node numastat info (in MBs):

Node 0 Node 1 Total
--------------- --------------- ---------------

Numa_Hit 445179 1308573 1753752
Numa_Miss 0 971897 1971897
Numa_Foreign 971897 0 971897
Interleave_Hit 80 79 159
Local_Node 445169 1308506 1753676
Other_Node 10 971964 971973

9.2.4.2 Used and Available Huge Pages (VMs Running)

Use the cat /proc/meminfo command to show the following statistics and compare
to the results from the same command as used before the VMs were running:

• HugePages_Total — the total number of huge pages
• HugePages_Free — the number of huge pages that are free, after deducting

use by the VSR VMs

See output in Used and Available Huge Pages (VMs Not Running).

9.2.4.3 Kernel Messages

Use the dmesg command to view kernel messages that may indicate errors.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR Troubleshooting

Issue: 01 3HE 15837 AAAA TQZZA 01 209

The following dmesg output shows an MTU error, indicated by the “VF max_frame
9216 out of range” line.

[root@vsr_hyp ~]# dmesg | tail -10
[1670173.622405] vfio-pci 0000:03:10.0: irq 65 for MSI/MSI-X
[1670173.682574] ixgbe 0000:03:00.1 enp3s0f1: VF Reset msg received from vf 0
[1670173.692442] vfio-pci 0000:03:10.1: irq 61 for MSI/MSI-X
[1670173.692451] vfio-pci 0000:03:10.1: irq 66 for MSI/MSI-X
[1670173.832478] ixgbe 0000:82:00.0 enp130s0f0: VF Reset msg received from vf 0
[1670173.852540] ixgbe 0000:82:00.0 enp130s0f0: VF max_frame 9216 out of range
[1670173.930838] ixgbe 0000:82:00.1 enp130s0f1: VF Reset msg received from vf 0
[1670174.051260] ixgbe 0000:84:00.1 enp132s0f1: VF Reset msg received from vf 0
[1670174.151628] ixgbe 0000:03:00.0 enp3s0f0: VF Reset msg received from vf 0
[1670174.251940] ixgbe 0000:03:00.1 enp3s0f1: VF Reset msg received from vf 0

9.2.4.4 MTU Information

Use the show port command to view the interface MTU from the VSR perspective.

Use the ip link show device command to view the interface MTU from the host
perspective.

9.2.5 Collecting Information When the VSR Is Running
and Under Load

When determining whether a VM is overloaded, consider that the CPU load is divided
into the following blocks, which do not directly depend on the other:

• control plane CPU
• data plane CPU

9.2.5.1 VSR Control Plane CPU Utilization

Use the show system cpu or show card a cpu commands to show the CPU
utilization of the VSR control plane.

The following output shows an idle system; output values will be higher for a non-idle
system.

A:vsr23-1# show card "a" cpu
===
Card a CPU Utilization (Sample period: 1 second)
===

VSR Troubleshooting

210

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

Name CPU Time CPU Usage Capacity
(uSec) Usage

BFD 7 ~0.00% ~0.00%
BGP 0 0.00% 0.00%
BGP PE-CE 0 0.00% 0.00%
CFLOWD 15 ~0.00% ~0.00%
Cards & Ports 1,131 0.05% 0.04%
DHCP Server 4 ~0.00% ~0.00%
ETH-CFM 175 ~0.00% 0.01%
HQoS Algorithm 39 ~0.00% ~0.00%
HQoS Statistics 0 0.00% 0.00%
ICC 148 ~0.00% ~0.00%
IMSI Db Appl 12 ~0.00% ~0.00%
IOM 6,177 0.30% 0.22%
IP Stack 853 0.04% 0.02%
IS-IS 205 0.01% 0.01%
ISA 561 0.02% 0.02%
LDP 241 0.01% 0.02%
Logging 5 ~0.00% ~0.00%
MBUF 0 0.00% 0.00%
MCS 72 ~0.00% 0.02%
MPLS/RSVP 600 0.02% 0.03%
MSCP 0 0.00% 0.00%
Management 1,480 0.07% 0.04%
OAM 928 0.04% 0.03%
OSPF 894 0.04% 0.02%
OpenFlow 8 ~0.00% ~0.00%
PKI 20 ~0.00% ~0.00%
RIP 0 0.00% 0.00%
RTM/Policies 0 0.00% 0.00%
Redundancy 0 0.00% 0.00%
SIM 246 0.01% 0.01%
SNMP Daemon 0 0.00% 0.00%
Security 0 0.00% 0.00%
Services 570 0.02% 0.02%
Stats 0 0.00% 0.00%
Subscriber Mgmt 431 0.02% 0.02%
System 5,903 0.29% 0.18%
Traffic Eng 0 0.00% 0.00%
VRRP 131 ~0.00% ~0.00%
WEB Redirect 21 ~0.00% ~0.00%

Total 2,003,978 100.00%

Idle 1,983,062 98.95%
Usage 20,916 1.04%

Busiest Core Utilization 11,071 1.10%
===

9.2.5.2 VSR Data Plane CPU Utilization

Use the show card 1 virtual fp command to show the utilization of the VSR data
plane compared to its maximum capacity.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR Troubleshooting

Issue: 01 3HE 15837 AAAA TQZZA 01 211

*A:Latency-AA# show card 1 virtual fp
===
Card 1 Virtual Forwarding Plane Statistics
===
Task vCPUs Average Maximum

Utilization Utilization

NIC 1 39.28 % 39.28 %
Worker 4 0.05 % 0.05 %
Scheduler 1 0.00 % 0.00 %

If the worker tasks are under heavy utilization, as shown in Figure 51, this will create
back pressure on the NIC task, which will stop draining packets from the NIC. The
following diagram shows this process.

Figure 51 Worker Tasks Under Heavy Utilization

9.2.5.3 Host Machine CPU Utilization (HTOP)

Use the htop command to show the utilization of each physical CPU core from the
host OS perspective.

The htop command is not present by default, so must be installed using the yum
install or apt install commands.

[root@vsr vsr-ws]# yum install htop
root@sc-03:~# apt install htop

An output sample for htop is shown in Figure 52.

Note: These cores work in PMD mode and are shown in hypervisor as 100% load; the show
card virtual fp command shows the real effective load.

sw0571

eth-yeth-x NICNIC R/Q

VFP Worker N

EgressIngress

VSR Troubleshooting

212

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

Figure 52 htop Output

9.2.5.4 NIC Packet Drops

9.2.5.4.1 Show the Number of Dropped Packets

Use the show port 1/mda/port detail command and record the number of “Dropped”
packets under the heading “NIC receive overrun”.

This information is especially important when the port is in PCI passthrough mode
because the host does not show any drop statistics for PCI passthrough ports when
using the ethtool -S command, as described in Show Host-Level NIC Statistics.

A:VSR# show port 1/1/1 detail
===
VSR Early Discard Statistics
===

Packets Octets

NIC receive overrun

Dropped : 0 0

sc0073

Note: To show this information, the system must be configured with
config>system>congestion-management.

Note: Although the port may be shown as up and running, traffic may be silently dropped
by the host.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR Troubleshooting

Issue: 01 3HE 15837 AAAA TQZZA 01 213

Ingress capacity exceeded early discards
FC 1 Dropped : 0 0
FC 2 Dropped : 0 0
FC 3 Dropped : 0 0
FC 4 Dropped : 0 0
FC 5 Dropped : 0 0
FC 6 Dropped : 0 0
FC 7 Dropped : 0 0

Buffer pool exhaustion early discards
FC 1 Dropped : 416967890 211819636753
FC 2 Dropped : 0 0
FC 3 Dropped : 161313510 81947263080
FC 4 Dropped : 0 0
FC 5 Dropped : 0 0
FC 6 Dropped : 0 0
FC 7 Dropped : 0 0

9.2.5.4.2 Show Host-Level NIC Statistics

Use the ethtool -S interface-name command to show host-level NIC statistics and to
check for dropped traffic. The most important statistic in this output is the count for
rx_no_dma_resources. Any number greater than 0, or that increments with traffic,
indicates that host-level resources are being exhausted.

Figure 53 shows NIC statistics at a 90% load.

VSR Troubleshooting

214

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

Figure 53 NIC Statistics – 90% Load (ixgbe 4.6.4)

For example:

[root@vsr_hyp ~]# ethtool -S enp130s0f0
NIC statistics:

rx_packets: 1452519449579
...
rx_no_dma_resources: 1307435840907

9.2.5.5 OVS Statistics

Use the ovs-ofctl dump-ports command, in combination with the watch command,
to monitor statistics for transmitted, received, and dropped packets in OVS.

sc0072

Note: The output for some commands can vary across different versions of OVS. Refer to
OVS documentation for more information.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR Troubleshooting

Issue: 01 3HE 15837 AAAA TQZZA 01 215

To determine traffic statistics for a specified OVS, use the watch -c -n 1 -d ovs-ofctl
dump-ports ovs-sf-1 command. This command can also be used for OVS-DPDK.

In the following watch command output, the statistics for Transmit (TX) packets
match those of the Receive (RX) packets in port 2, while port 1 also shows TX
dropped packets.

watch -c -n 1 -d ovs-ofctl dump-ports ovs-sf-1
OFPST_PORT reply (xid=0x2): 3 ports

port 1: rx pkts=84681434, bytes=6777075390, drop=0, errs=0, frame=0, over=0, crc=
0

tx pkts=83511830, bytes=7502578448, drop=28094, errs=0, coll=0
port 2: rx pkts=83511830, bytes=7502578448, drop=0, errs=0, frame=0, over=0, crc=

0
tx pkts=84681434, bytes=6777075390, drop=0, errs=0, coll=0

port LOCAL: rx pkts=8, bytes=648, drop=0, errs=0, frame=0, over=0, crc=0
tx pkts=146146696, bytes=10981617152, drop=0, errs=0, coll=0

To determine traffic statistics for all available OVSs, use the watch -c -n 1 -d ovs-
dpctl show -s command. This command is not applicable for OVS-DPDK.

The following output shows the statistics for dropped TX packets in port 2.

watch -c -n 1 -d ovs-dpctl show -s
system@ovs-system:

lookups: hit:168167606 missed:158 lost:0
flows: 4
port 0: ovs-system (internal)

RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 aborted:0 carrier:0
collisions:0
RX bytes:0 TX bytes:0

port 1: ovs-sf-1 (internal)
RX packets:8 errors:0 dropped:0 overruns:0 frame:0
TX packets:146124798 errors:0 dropped:0 aborted:0 carrier:0
collisions:0
RX bytes:648 TX bytes:10979971640 (10.2 GiB)

port 2: sf.vsr-01.cpm
RX packets:84668573 errors:0 dropped:0 overruns:0 frame:0
TX packets:83499183 errors:0 dropped:28094 aborted:0 carrier:0
collisions:0
RX bytes:6776039716 (6.3 GiB) TX bytes:7501447526 (7.0 GiB)

port 3: sf.vsr-01.iom-1
RX packets:83499183 errors:0 dropped:0 overruns:0 frame:0
TX packets:84668573 errors:0 dropped:0 aborted:0 carrier:0
collisions:0
RX bytes:7501447526 (7.0 GiB) TX bytes:6776039716 (6.3 GiB)

VSR Troubleshooting

216

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

9.2.5.6 Packet Captures

Use a tool such as Wireshark to capture packets at various interconnect points. The
interconnect points that support Wireshark packet captures are shown in the
following system diagram.

Figure 54 shows the major VSR data plane options.

Figure 54 Major VSR Data Plane Options

9.2.5.7 Insufficient VM Memory

Avoid memory oversubscription. Check memory consumption using the show
system memory-pools command to show how much memory is used and how
much is remaining.

sw0866

OVS

IT

FTP/
JumpServer

Linux Bridge
OVS

VSR-I

NIC
PCI-PT

NIC
SR-IOV

OVS-
DPDK

NIC
SR-IOV

NIC
PF

NIC
PFvnet

vnet
vnet 1/1/1

1/1/2
A/1

consoletelnet
1/1/3

1/1/4

vnet

LPB

LPB

LPB dummy

dpdk

dpdk
vhost

• Loopback interface
• Port can capture packets with Wireshark or tcpdump
• Port cannot capture packets with Wireshark or tcpdump

PCI slot

PCI slot

PCI slot

PCI slot

LPB

<name>

<name>

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR Troubleshooting

Issue: 01 3HE 15837 AAAA TQZZA 01 217

9.3 Troubleshooting Common Problems

This section provides information about troubleshooting common problems.

9.3.1 vCPUs Not Pinned or Isolated

For CPU or vCPU isolation, ensure that only one VM uses a vCPU and that there is
no overlap between VMs and vCPUs.

Review the OpenStack configuration for any errors, as the system may silently ignore
mistyped configuration. See Deploying VSR on Linux KVM Hosts Using Libvirt or
OpenStack for more information about configuration.

If the vCPUs might not have been pinned or isolated correctly, see the following
sections for more information:

• CPU Isolation
• vCPU
• Cputune
• Create Nova Flavors Appropriate for VSR VMs

9.3.2 Insufficient CPU Resources

Insufficient CPU resources can lead to the following general problems:

• excessive packet loss
• lower than expected data plane performance
• control plane instability or performance problems
• system instability

When determining whether CPU capacity is overloaded, consider that the CPU
resources for the control plane and data plane are separated.

See the following sections for more CPU resource information:

• vCPU
• Cputune
• CPU

VSR Troubleshooting

218

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

• Sysinfo
• CPU Processor Information
• Adjust Compute Node Resource Allocation
• Create Nova Flavors Appropriate for VSR VMs

9.3.2.1 Control Plane CPU Resources

Control plane CPU resources are overloaded if:

• the output of the show system cpu or show card cpu commands (VSR Control
Plane CPU Utilization) show any task at more than 80% utilization or overall
CPU utilization regularly above 99%

• the output of the htop command (Host Machine CPU Utilization (HTOP)) shows
any of the first N pCPU cores (where N is the control-cpu-cores SMBIOS
value) at more than 90% utilization

To remedy control plane CPU resource overload:

• add more vCPUs to the VM (see vCPU)
• allocate more vCPUs to the control plane using the control-cpu-cores SMBIOS

parameter (see Allocation of vCPUs for Control and Management Tasks)
• enable hyper-threading on the host machine (see Hyper-Threading)

9.3.2.2 Data Plane CPU Resources

Data plane CPU resources are overloaded if the output of the show card 1 virtual
fp command (VSR Data Plane CPU Utilization) regularly shows any task at more
than 99% utilization.

To remedy data plane CPU resource overload:

• add more vCPUs to the VM (see vCPU)
• allocate fewer vCPUs to the control plane using the control-cpu-cores

SMBIOS parameter (see Allocation of vCPUs for Control and Management
Tasks)

• enable hyper-threading on the host machine with the appropriate tuning (see
Hyper-Threading)

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR Troubleshooting

Issue: 01 3HE 15837 AAAA TQZZA 01 219

9.3.3 Incorrect Hyper-threading Settings

If hyper-threading might not have been configured correctly, see the following
sections for more information:

• Hyper-Threading
• Kernel Parameters
• Cputune
• CPU
• Sysinfo
• Create Nova Flavors Appropriate for VSR VMs
• Instantiating a VSR-I using vSphere Web Client
• Configure CPU Pinning for Deployment on a Hyper-Threaded Host

9.3.4 Incorrect NIC Driver or Firmware Versions in the
Host

An incorrect host driver version can cause issues if you are using the ports of the
associated NIC in SR-IOV mode. The SR-IOV VF may not bind correctly to the VSR
port, resulting in no datapath through that port.

Refer to the SR OS 20.x.Rx. Software Release Notes for more information about NIC
firmware and driver versions. If the host driver is too old, update it to the
recommended version. Because Intel drivers are kernel-dependent, this update
requires a compile from the source code. If the host driver is too recent, downgrade
it to the recommended version.

See the following sections for more NIC information:

Note: Enabling hyper-threading helps the data plane CPU load only if the vsr-deployment-
model is high-packet-touch).

Note: Kernel or Linux updates may result in a change to the driver version.

VSR Troubleshooting

220

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

• VSR Networking
• NICs
• Kernel Parameters

9.3.5 Incorrect MTU Settings

MTU settings are present on the host (hypervisor) and guest VM. Generally, MTU
configured on a guest VM should be less than or equal to MTU configured on the
host; otherwise, packets may be silently dropped at the hypervisor level, which can
be difficult to troubleshoot.

Use the following tools to troubleshoot MTU values on SR-IOV, PCI-passthrough,
Linux bridge, and OVS.

• Use the ip link show interface-name command at the host level to check the
MTU.

• Use the show port port-name detail SR OS command to check the guest VSR
interface MTU.

• Compare the results of the previous checks, if applicable.

Ensure that the guest MTU is lower than the host MTU. See the following sections
for more information about MTU settings:

• Using SR-IOV
• Sysinfo
• Enable SR-IOV on OpenStack Controller and Compute Node

9.3.5.1 SR-IOV MTU Settings

Each NIC port used by a VSR in SR-IOV mode must have a minimum MTU of 1500
bytes and the MTU setting in the host must match the MTU setting in VSR; otherwise,
packets may be dropped.

9.3.5.1.1 SR-IOV Troubleshooting

MTU settings can result in errors and issues, whether or not trusted mode is enabled
with SR-IOV. Ensure that the MTU configured on the NICs will be larger than
requested MTU.

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

VSR Troubleshooting

Issue: 01 3HE 15837 AAAA TQZZA 01 221

In trusted mode, if the requested MTU is bigger than the PF MTU, an error message
is shown in the dmesg command output, but the VM is not prevented from booting.
Unidirectional traffic is observed.

In untrusted mode, if the requested MTU is bigger than the PF MTU, the hypervisor
silently ignores a value and traffic with big MTUs is silently dropped. Because this
issue does not prevent many protocols (including BGP and RSVP) from working, it
may not be easily detectable.

Because multicast traffic does not work with trusted mode disabled, LDP and IGPs
that use multicast do not work with untrusted mode.

9.3.5.2 Linux Bridge MTU Settings

The Linux bridge inherits its MTU value from the first virtual or physical interface that
is added to it.

9.3.6 NUMA Misalignment

If NUMA might not have been configured correctly, see the following sections for
more information:

• BIOS Settings
• NUMA
• Kernel Parameters
• vCPU
• Numatune
• Create Nova Flavors Appropriate for VSR VMs
• Deploying the VSR-I vApp using vCloud Director
• Set NUMA Node Affinity

Note: Some MTU configuration commands (such as the ip link set dev eth0 mtu 9000
command) are not persistent. Due to lack of persistency, if a server using a Linux bridge is
rebooted, connectivity may be lost or performance may be severely affected.

Note: Change the MTU settings before starting the VMs.

VSR Troubleshooting

222

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

9.3.7 Insufficient Packet Buffer Memory

If the VSR configuration has a lot of queues or if the host vSwitch does not provide
queues with sufficient buffer depth, traffic loss may increase, especially if the traffic
is bursty. This is because there are not enough packet buffers to absorb the traffic
bursts and to service all the queues in a timely manner. If the VSR configuration has
a lot of queues, ensure that the vsr-deployment-model SMBIOS parameter is set
to queue-scale.

9.3.7.1 NIC Packet Drops

As data can be written to a hypervisor memory independently of the CPU, it is
extensively used by the NIC to write data traffic to a memory for future processing. If
the option is disabled, a constant traffic drop of around 0.2%, might be observed after
reaching a certain throughput. This drop occurs because the NIC is not capable of
writing all incoming traffic to memory and, as a result, drops it. Such dropped traffic
indicates that some BIOS options (such as DMA or VT-d or I/OAT) were not set
correctly.

9.3.8 Insufficient VM Memory

Correct memory allocation is a key component for VSR operation. Memory
consumption must be monitored from a VM perspective; from a hypervisor
perspective, all configured memory is allocated to the VM.

VSR requires an allocation of 1 Gbyte for Hugepages. Refer to the SR OS 20.x.Rx.
Software Release Notes for the minimum amount of memory required for different
network functions.

See the following sections for more information about VM memory settings:

• Memory
• Guest Memory Backing

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Appendices

Issue: 01 3HE 15837 AAAA TQZZA 01 223

Appendices

• Appendix A: VSR Glossary of Key Terms

Appendices

224

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Appendix A: VSR Glossary of Key Terms

Issue: 01 3HE 15837 AAAA TQZZA 01 225

Appendix A: VSR Glossary of Key Terms

Table 20 A

Term Definition

Ansible playbooks Defined in YAML format and included if commissioning operations
are needed on the VNF as part of Mistral workflows or pre/post
actions.

Table 21 C

Term Definition

CentOS An open source Linux distribution that reuses source code from
Red Hat Enterprise Linux.

Config Drive An OpenStack feature that allows instance-specific configuration
data to be written to a read-only virtual disk that is attached to the
VM when it boots.

CPU Pinning A configuration constraint (often expressed as an affinity map),
which specifies to the scheduler the (logical) cores that can be
used to run a task or set of tasks.

Table 22 D

Term Definition

DPDK Data Path Development Kit
Open source software (BSD licensed) developed by Intel to
improve fast packet processing for NFV data plane applications.
DPDK optimizations include poll-mode NIC drivers in Linux user
space, huge pages for memory management, and lockless
queues.

Table 23 G

Term Definition

Geneve The Generic Network Virtualization Encapsulation tunneling
protocol.

Appendix A: VSR Glossary of Key Terms

226

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

Table 24 H

Term Definition

Haswell Intel CPU micro-architecture introduced in 2013 that uses 22-nm
process.

Healing A recovery action that reboots the VM.

HEAT template An OpenStack HEAT template. The HOT (HEAT Orchestration
Template) used by CBAM has access to CBAM built-in
parameters and the extensions defined in the VNFD, which can
be used to parametrize the resources defined in HOT.

Huge pages A large block (2MB or 1GB) of physically contiguous virtual
memory that has a mapping (in the page table) to physical
memory.

Hyper-threading Intel technology that presents one physical CPU core as two
logical processors to the OS.

Hypervisor Software running on a host machine that creates and manages
VMs, and provides the guest O/S in each VM with an abstraction
of the physical machine.
See also VMM.

Table 25 I

Term Definition

Integrated model A VSR instance that uses a single VM to support all the functions
of one network element.

Intel VT-d Intel Virtualization Technology for Directed I/O
Intel CPU MMU feature that provides hardware assist for mapping
a guest virtual address (GVA) to a guest physical address (GPA)
to a host physical address (HPA). Avoids the need for VMM to
maintain a shadow page table per guest.

Intel VT-x Intel Virtualization Technology for x86 processors
Hardware virtualization support in Intel CPUs that allows guest
OS to run natively on x86. Introduces two new CPU modes: VMX
root (intended for host/VMM execution) and VMX non-root
(intended for guest).

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Appendix A: VSR Glossary of Key Terms

Issue: 01 3HE 15837 AAAA TQZZA 01 227

Table 26 J

Term Definition

Javascript helpers Supported from CBAM as pre/post actions of Mistral workflows
(built-in or custom) and as part of Mistral actions.

Table 27 K

Term Definition

Kernel Space A block of virtual memory strictly reserved for the OS kernel,
kernel extensions and device drivers.

KVM Kernel-based Virtual Machine
Linux kernel module that allows a user space program, such as
QEMU, to access the hardware virtualization features of the CPU.

Table 28 L

Term Definition

L3 Cache Fast on-chip memory of the CPU that stores frequently accessed
data, saving time to access main memory. It is shared by all cores
of the CPU.

Libvirt Open source Linux package that provides a common set of APIs
for creating and managing the VMs on one host, independent of
hypervisor. Libvirt uses XML files to define the properties of VM
instances, networks, and other devices; the virsh command line
toolset is provided.

Linux Bridge Software implementation of a bridge that forwards Ethernet
frames based on destination MAC address; bridging is performed
by a kernel module controlled by the brctl userspace program
installed with the bridge-utils package. A Linux bridge is
supported by various Linux OS.

Table 29 M

Term Definition

MANO Management and Orchestration
A reference architecture defined by ETSI NFV study group that
gives generic names to the functional components of a complete
NFV solution.

Appendix A: VSR Glossary of Key Terms

228

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

Mistral workflows Defined in YAML format and included if custom operations
(interfaces) are defined in the VNFD. Each workflow includes a
set of inputs, which can affect the execution of the workflow.

Table 30 N

Term Definition

NUMA Non-Uniform Memory Access
An optimization for multi-CPU systems where each processor has
its own memory.

Table 31 O

Term Definition

OpenStack An open source cloud orchestration platform (VIM) managed by
the non-profit OpenStack Foundation, it includes various
components such as Nova (compute), Neutron (networking),
Glance (image service), Cinder (block storage), and Dashboard
(GUI).

OVA Open Virtual Application
A tar archive of an OVF package.

OVF Open Virtualization Format
A DMTF standard format for packaging software to be run in VMs.
An OVF package contains an XML-based OVF descriptor file
(.ovf), one or more disk images, and other auxiliary files. The OVF
descriptor file specifies HW requirements and lists references to
other files in the OVF package.

Table 29 M (Continued)

Term Definition

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Appendix A: VSR Glossary of Key Terms

Issue: 01 3HE 15837 AAAA TQZZA 01 229

OVS Open Virtual Switch
Open-source software implementation of a multi-layer switch, it
supports standard bridging protocols, monitoring protocols
(sFlow, NetFlow), and programmatic extensions (OpenFlow,
OVSDB).
Main OVS components are: userspace daemon (ovs-vswitchd),
database daemon (ovsdb-server), and kernel module.
The kernel module implements 'fast path' using a flow cache table
populated by ovs-vswitchd. The first packet of a flow goes to ovs-
switchd for slow-path processing. ovs-vswitchd communicates
with the kernel using the netlink protocol, and with ovsdb-server
using the OVSDB protocol.

Table 32 P

Term Definition

Paravirtualization Technique where the guest and hypervisor coordinate to optimize
performance in a virtualized environment.

Prefetching Transferring data before it is required to optimize performance.

Table 33 Q

Term Definition

QCOW2 A virtual disk image format supported by QEMU.

QEMU Quick Emulator
Open source hypervisor typically used with KVM that emulates a
broad range of devices including CPUs, disks, PCIe chipsets,
USB devices, and serial ports.

Table 34 R

Term Definition

RHEL Red Hat Enterprise Linux

Table 31 O (Continued)

Term Definition

Appendix A: VSR Glossary of Key Terms

230

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

RSS Receive Side Scaling
A feature supported by some NICs to classify incoming packets
into different receive queues based on 5-tuple flow. Each queue
has its own interrupt handled by its own core, which may improve
receive throughput.

Table 35 S

Term Definition

SMBIOS System Management BIOS
Data structures and access methods for storing and reading BIOS
information.

SR-IOV A PCI-SIG standard that allows a PCIe device to appear as
multiple separate PCIe devices, allowing multiple VM vNIC
interfaces to share the same physical NIC port for
communications.

Table 36 U

Term Definition

Ubuntu A Debian-based common Linux distribution.

User Space A block of virtual memory where application software and some
drivers execute.

Table 37 V

Term Definition

vFP A software implementation of a SR-series router forwarding plane,
optimized for x86 CPU instructions and memory architecture. The
vFP uses the same control APIs as hardware-based IOMs/XCMs.

VIM Virtualized Infrastructure Manager
A MANO component responsible for managing the NFV
infrastructure including compute, storage, and network resources.
OpenStack and CloudStack are typical VIMs.

Table 34 R (Continued)

Term Definition

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

Appendix A: VSR Glossary of Key Terms

Issue: 01 3HE 15837 AAAA TQZZA 01 231

VirtIO A paravirtualized I/O framework where buffers are transferred
between the guest-side VirtIO driver and the host-side VirtIO
driver.

VHost-net A device driver that runs in the host kernel and performs the
virtqueue operations of the host-side VirtIO driver. It delivers
higher performance than complete emulation of the host-side
VirtIO driver in QEMU (avoids system calls from userspace,
supports zero-copy TX operation).

VM Virtual Machine

VMDK Virtual Machine Disk
The virtual disk image format used by VMware VMs.

VMware vSphere A virtualization product suite sold by VMware, it includes ESXi
hypervisor, vCenter server, vSphere Web client, and advanced
feature add-ons including vMotion, High Availability, Fault
Tolerance, Distributed Switch, Distributed Resource Scheduler.

VNF package A TOSCA Cloud Service Archive (CSAR) zip file containing all
artifacts needed for VNF instantiation:

• VNF descriptor (VNFD)
• VNFD metadata
• HEAT templates (HOT)
• Mistral workflows
• Ansible playbooks
• Javascript helpers

VNFD Describes the virtual resources required by the VNF (compute,
network, and storage) and the lifecycle management operations it
supports. References all other VNF artifacts that are part of the
VNF package. The template is defined in YAML format and is
reusable. The VNFD supports parametrization and facilitates the
deployment of multiple VNF instances through a single VNFD/
VNF package.
When CBAM is integrated with an orchestrator, the VNFD is also
the contract between a VNF and the orchestrator that fully
describes the expectations of the VNF from the infrastructure.

VNFD - metadata Provides information to uniquely identify a VNF descriptor (ID,
version, and product).

VNFD - requirements Describes the connectivity requirements (for externally managed
provider networks) that are expected to be available to support
VNF connectivity.

Table 37 V (Continued)

Term Definition

Appendix A: VSR Glossary of Key Terms

232

VSR INSTALLATION AND SETUP GUIDE
RELEASE 20.2.R1

3HE 15837 AAAA TQZZA 01 Issue: 01

VNFD - extensions Modifiable parameters defined per VNF instance.

VNFD - interface The supported lifecycle operations for a VNF that are
implemented either through the CBAM built-in Mistral workflows
or by custom Mistral workflows included in the VNF package.

VNFD - node
templates

Describes the following virtual resources needed for VNF
instantiation:

• VMs—virtual deployment units (VDUs) associated with a
software image, flavor (vCPU and memory), and storage
requirements

• internal networks—virtual links
• VM connectivity—a set of virtual connection points that are

associated with internal or external networks

VNFD - heat mapping The HEAT mapping section of the VNFD associates the abstract
resource descriptions with their corresponding implementations in
HOT.

VNFM VNF Manager
The MANO component responsible for lifecycle management of
VNF instances. Coordinates with EMS/NMS. This role is provided
by CloudBand CBAM for VSR instances.

VxLAN Virtual eXtensible Local Area Network
A method of encapsulating Ethernet frames inside IP/UDP
packets to create a tenant-specific overlay network within a data
center.

Table 38 X

Term Definition

x2APIC x2 Advanced Programmable Interrupt Controller
An Intel programmable interrupt controller.

Table 37 V (Continued)

Term Definition

Customer Document and Product Support

Customer Documentation
Customer Documentation Welcome Page

Technical Support
Product Support Portal

Documentation Feedback
Customer Documentation Feedback

https://documentation.nokia.com
https://customer.nokia.com/support/s/
mailto:documentation.feedback@nokia.com

© 2020 Nokia.
3HE 15837 AAAA TQZZA 01

	VSR INSTALLATION AND SETUP GUIDE RELEASE 20.2.R1
	Table of Contents
	1 Getting Started
	1.1 About This Guide
	1.1.1 Audience
	1.1.2 VSR and SR Technical Publications

	1.2 VSR Installation and Setup

	2 VSR Overview
	2.1 VSR Overview
	2.1.1 VSR Concept

	2.2 VSR Network Functions
	2.2.1 BGP Route Reflector
	2.2.2 Broadband Network Gateway
	2.2.3 L2TP Network Server
	2.2.4 Network Address Translation
	2.2.5 MAP-T Border Relay
	2.2.6 Provider Edge Router
	2.2.7 Data Center Gateway
	2.2.8 Security Gateway
	2.2.9 Application Assurance
	2.2.10 WLAN Gateway
	2.2.11 Virtualized Residential Gateway

	2.3 VSR Deployment Models
	2.3.1 Integrated Model

	2.4 VSR Card and MDA Types
	2.4.1 Card Types
	2.4.2 MDA Types

	2.5 VSR Architecture
	2.5.1 Virtual Forwarding Path
	2.5.2 Control and Management Plane
	2.5.2.1 Allocation of vCPUs for Control and Management Tasks

	2.6 VSR Networking
	2.7 VSR Software Packaging

	3 NFV Infrastructure Requirements
	3.1 Overview
	3.2 Compute Server Hardware Requirements
	3.2.1 CPU and DRAM
	3.2.2 Intel QuickAssist Support
	3.2.3 Storage
	3.2.4 NICs
	3.2.4.1 Using SR-IOV
	3.2.4.2 Using PCI Passthrough

	3.3 Compute Server Software Requirements
	3.3.1 BIOS Settings
	3.3.2 NUMA
	3.3.2.1 NUMA Topology
	3.3.2.2 Assessing NUMA Layout and Processes
	3.3.2.3 Prepare VMs for Using NUMA

	3.3.3 Hyper-Threading
	3.3.4 CPU Isolation
	3.3.5 Host OS and Hypervisor
	3.3.5.1 Linux KVM Compute Hosts
	3.3.5.2 VMware ESXi

	3.3.6 Data Center Networking

	4 VSR Software Licensing
	4.1 Overview
	4.2 VSR-I License Keys
	4.3 Feature Licenses
	4.4 Checking the License Status

	5 Deploying VSR on Linux KVM Hosts Using Libvirt or OpenStack
	5.1 Introduction
	5.2 Deploying and Managing VSR VMs Using Libvirt
	5.2.1 Libvirt Domain XML Structure
	5.2.1.1 Domain Name and UUID
	5.2.1.2 Memory
	5.2.1.3 Guest Memory Backing
	5.2.1.4 vCPU
	5.2.1.5 Cputune
	5.2.1.6 Numatune
	5.2.1.7 CPU
	5.2.1.8 Sysinfo
	5.2.1.9 OS
	5.2.1.10 Hypervisor Features
	5.2.1.11 Clock
	5.2.1.12 Devices
	5.2.1.13 Seclabel

	5.2.2 Example Libvirt Domain XML
	5.2.3 Verifying VSR Installation on Linux KVM Hosts
	5.2.3.1 Overview
	5.2.3.2 Verifying Host Details
	5.2.3.3 Verifying the Creation of VMs
	5.2.3.4 Verifying Host Networking
	5.2.3.5 Verifying VSR Installation

	5.3 Deploying and Managing VSR VMs using OpenStack
	5.3.1 OpenStack Overview
	5.3.2 Basic OpenStack Installation
	5.3.3 Preparing the OpenStack Environment for VSR VMs
	5.3.3.1 Optimize BIOS and Linux Kernel Settings of Compute Nodes
	5.3.3.2 Adjust Compute Node Resource Allocation
	5.3.3.3 Adjust Nova Scheduler Parameters
	5.3.3.4 (Optional) Enable SR-IOV on OpenStack Controller and Compute Nodes
	5.3.3.5 (Optional) Create Volume Drives using OpenStack Cinder
	5.3.3.6 Create Nova Flavors Appropriate for VSR VMs
	5.3.3.7 Add VSR Images to OpenStack
	5.3.3.8 Create Neutron Networks, Subnets, and Ports
	5.3.3.9 Create Security Groups

	5.3.4 Deploying a VSR Instance Using OpenStack CLI
	5.3.4.1 Create VMs

	5.3.5 Deploying a VSR Instance Using OpenStack HEAT
	5.3.5.1 Introduction to OpenStack HEAT
	5.3.5.2 Overview of a VSR HEAT Template
	5.3.5.3 Create the HEAT Stack

	6 Deploying VSR-I on VMware ESXi Hosts
	6.1 VMware Overview
	6.2 VMware ESXi Host Setup
	6.2.1 Optimize BIOS and Host Settings

	6.3 Deploying the VSR-I vApp using vCloud Director
	6.3.1 vCD Requirements for OVA Onboarding
	6.3.1.1 Create Networks

	6.3.2 vApp Installation Steps Through vCD
	6.3.2.1 VSR-I OVA Onboarding to the vCD Catalog
	6.3.2.2 Deploy the VSR-I vApp

	6.4 Instantiating a VSR-I using vSphere Web Client
	6.4.1 Connect to the vCenter Server
	6.4.2 Create Networks
	6.4.3 Create the VSR-I VM
	6.4.4 Customizing the VSR-I VM
	6.4.4.1 Set Latency Sensitivity
	6.4.4.2 Set NUMA Node Affinity
	6.4.4.3 Configure the SMBIOS Configuration String
	6.4.4.4 Configure CPU Pinning for Deployment on a Hyper- Threaded Host

	6.4.5 Start the VSR-I VM

	7 Virtual Machine Configuration Parameters
	7.1 VMs Deployed on KVM Compute Hosts
	7.1.1 Virsh Command Line and Libvirt Domain XML File
	7.1.2 OpenStack

	7.2 VMs Deployed on a VMware ESXi 6.0 or 6.5 Compute Host using vSphere
	7.3 Intel QuickAssist

	8 VSR-I Lifecycle Management Using CBAM
	8.1 Overview
	8.2 Introduction to CBAM
	8.3 Lifecycle Management Actions Supported for VSR-I VNFs
	8.4 VSR-I VNF Package Design
	8.4.1 VNFD Metadata and Properties
	8.4.2 VNFD External Connection Points
	8.4.3 VNFD Deployment Flavors
	8.4.4 VNFD Instantiation Level
	8.4.5 VNFD Extensions
	8.4.6 VNFD Node Templates

	8.5 VSR-I Lifecycle Management Using CBAM
	8.5.1 On-board the VSR-I VNF Package
	8.5.2 Create the VNF
	8.5.3 Modify the VNF Information
	8.5.4 Instantiate the VNF
	8.5.5 Terminate the VNF
	8.5.6 Heal the VNFC

	9 VSR Troubleshooting
	9.1 Overview
	9.2 Collecting Linux KVM Host Information
	9.2.1 Collecting Information at Host Bootup
	9.2.1.1 BIOS Settings of the Host Machine

	9.2.2 Collecting Information Before Any VSR VMs Are Running
	9.2.2.1 Used and Available Huge Pages (VMs Not Running)

	9.2.3 Collecting Information When the Host OS Is Running, Whether or Not VSR VMs Are Running
	9.2.3.1 Linux OS Distribution and Version
	9.2.3.2 Linux Kernel Version
	9.2.3.3 PCI Slots in the Host Machine
	9.2.3.4 CPU Mapping to NUMA Nodes
	9.2.3.5 NIC Driver and Firmware Details
	9.2.3.6 Host Interface Details
	9.2.3.7 Optical Transceiver Details

	9.2.4 Collecting Information After VSR VMs Are Running
	9.2.4.1 NUMA Information
	9.2.4.2 Used and Available Huge Pages (VMs Running)
	9.2.4.3 Kernel Messages
	9.2.4.4 MTU Information

	9.2.5 Collecting Information When the VSR Is Running and Under Load
	9.2.5.1 VSR Control Plane CPU Utilization
	9.2.5.2 VSR Data Plane CPU Utilization
	9.2.5.3 Host Machine CPU Utilization (HTOP)
	9.2.5.4 NIC Packet Drops
	9.2.5.5 OVS Statistics
	9.2.5.6 Packet Captures
	9.2.5.7 Insufficient VM Memory

	9.3 Troubleshooting Common Problems
	9.3.1 vCPUs Not Pinned or Isolated
	9.3.2 Insufficient CPU Resources
	9.3.2.1 Control Plane CPU Resources
	9.3.2.2 Data Plane CPU Resources

	9.3.3 Incorrect Hyper-threading Settings
	9.3.4 Incorrect NIC Driver or Firmware Versions in the Host
	9.3.5 Incorrect MTU Settings
	9.3.5.1 SR-IOV MTU Settings
	9.3.5.2 Linux Bridge MTU Settings

	9.3.6 NUMA Misalignment
	9.3.7 Insufficient Packet Buffer Memory
	9.3.7.1 NIC Packet Drops

	9.3.8 Insufficient VM Memory

	Appendices
	Appendix A: VSR Glossary of Key Terms

	Customer Document and Product Support

