NOKIA

Nokia Service Router Linux

SOFTWARE INSTALLATION GUIDE
Release 20.6

3HE 16113 AAAA TQZZA
Edition: 2
November 2020

Nokia — Proprietary and confidential.
Use pursuant to applicable agreements.

SOFTWARE INSTALLATION GUIDE
Release 20.6

Nokia is committed to diversity and inclusion. We are continuously reviewing our
customer documentation and consulting with standards bodies to ensure that
terminology is inclusive and aligned with the industry. Our future customer
documentation will be updated accordingly.

Nokia is a registered trademark of Nokia Corporation. Other products and company
names mentioned herein may be trademarks or tradenames of their respective
owners.

The registered trademark Linux® is used pursuant to a sublicense from the Linux
Foundation, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis.

The information presented is subject to change without notice. No responsibility is
assumed for inaccuracies contained herein.

© 2020 Nokia.

Contains proprietary/trade secret information which is the property of Nokia and must
not be made available to, or copied or used by anyone outside Nokia without its
written authorization. Not to be used or disclosed except in accordance with
applicable agreements.

3HE 16113 AAAA TQZZA Edition: 2

SOFTWARE INSTALLATION GUIDE
Release 20.6

Table of contents

1 Getting started ... 5
1.1 About this dOCUMENT..... ... 5
1.2 Summary of ChANGES........ooiiiiiii e 5
1.3 Precautionary MeSSAgESuuuiii i 5
14 (O] 0177 o111 1 SR 6
2 INErodUCION ... 9
2.1 File system [ayOut..........oeimiiiiiiie e 9
2.2 BOOTt PrOCESS. ...ttt 10
3 Installing containers.........cccccceiriicrnserr e —————— 11
3.1 Container installation prerequisitesooovviiiiiiiiiiiieeeeeee, 11
3.2 Launching a container manually..............ccccoiiiiiiii e 11
3.3 Launching a container topology............coooiiiiiiiiiiiiiiee e 15
3.4 Destroying an existing topology.........ccoueiiiiiiiiiiiie e 21
4 Installing software ... 23
4.1 Installation CONCEPLSovvveiiiiicccee e 23
411 7250 IXR installation CONCEPLSuueieiiiiiiieeee e 23
4.1.2 7220 IXR-D installation CoNCeptsocvveeeiiiiiiiiieeee e 24
4.1.3 SOftWAre IMAGE.......eeiiiiiiei e 24
4.2 Installing the software manually on a 7250 IXR ..., 25
4.3 Installing the software manually on a 7220 IXR-D.......cceovveiiiiiiiiiiiiiiinnn, 26
431 Manual bootStrappPingueeeeeiiiiieeee e 27
4.4 Upgrading the SOftWare ..ot 29
5 Zero Touch Provisioningcccccveemmmiininnssns s 33
5.1 APPHCADITITY 33
5.2 OVEBIVIBW.....eeie ettt e e e e ettt e e e et e e e e et ee e e e e eneee 33
5.2.1 NetwOork reqUIrEMENTSovviiiiiiee e 34
5.3 Process information.............oouiiiiiiiiii e 36
5.3.1 DHCP discovery and soliCitationcccccciiiiiiiieiee e, 36
5.3.1.1 AULO-Provisioning OPLIONSovviviiiiiieeee e 38
5.3.1.2 DHCP server Option 42 (IPv4) and 56 (IPv6) for NTPcccccvvvveeveeeennnn. 38
5.3.2 DHGCP OffEF ..ot 38
5.3.21 Default gateway route configuration for IPV4................ccooeeiiiiiieeeeceeee, 39
5.3.2.2 DHCP FEIAY...cei ettt et e e 39
5.3.3 Python provisioning SCrPt.......... i 39
5.34 Auto-provisioning failuresoooooiiiiiiiiiieeee e 40
5.3.5 ZTP 10OG fllES..cc ettt 40
5.4 CoNfIQUIING ZTP oot e e 41
5.4.1 ZTP CLI versus SR LINUX CLI ..oooiiiiiiiiiiiice e 41
5.4.2 Configuring the Python provisioning SCript..........cccvvveiiiiiieeeeeeieeciiee, 42
543 Configuring the ZTP timeout value using the provisioning script............... 45

Edition: 2 3HE 16113 AAAA TQZZA 3

SOFTWARE INSTALLATION GUIDE

Release 20.6
5.4.4 Configuring options in the grub.cfg using ZTP CLI.........cccccceiiiiiiineenee. 45
545 Managing images using ZTP CLI ..., 47
5.4.6 Configuring the NOS using ZTP CLIooviiiiiiiieeiee e 49
54.7 Redownloading the executable files with ZTP CLI ..., 49
54.8 Starting, stopping, and restarting a ZTP process using ZTP CLI 50
5.4.9 Checking the status of a ZTP process using ZTP CLI.........c.cccccceeveennnnee. 51
5.4.10 Configuring options in the grub.cfg using SR Linux CLI............cccceeeeennee. 51
5.4.11 Specifying the image, kernel, or RAM to boot the system using SR
LINUX CLI e 52
5412 Starting, stopping, and restarting a ZTP process using the SR
LINUX CLI et 53
5.4.13 Checking the status of a ZTP process using the SR Linux CLlI................. 54
5.5 REFEIENCES ..o 55
5.5.1 ZTP CLI command StrUCIUIEoeeiiiiiiiiiiiiiieecc e 55
5.5.2 SR Linux CLI command StruCture...........ccooueieiieieiiiie e 56
Appendix: ZTP Python library ... 59
A8 I O 1= | SR 59
FUNCHIONS ettt e et e ettt et 60
CRASSIS_CONIIOI() ..teeeee ettt e et e e e 60
(o g P E] oY o= o Y TP PPRP 60
CONFIGUIE(CONTIGUIT) ... 60
IMage_aCtivate(VEISION)ueeiiiiiiiei ettt e e e e e 61
image_bootorder(DOOLOIAEN)ouuiiiiii e 61
IMAage_delete(VErSION)eii it 62
IMAGE_IIST() ceeeeee ettt 62
image_upgrade(image_url, md5_url, OPtioNS)........ccoiiiiiiiiiiiie e 63
OPLION_AULODOOL(SALUS)....ceeiiiiiiii e 63
option_bootiNtf(INTEITACE) ... 64
OPLION_CIENTIA(LYPE) ..ot 64
OPtioN_dOWNGrade(StatUS)eeeiiiiiiiiie e 64
option_duration(timeout, retry) ... 65
OPLIoN_fOrmMatoVI(STAtUS)oo i 65
option_formatsrletC(Status)ee i 66
option_formatsrlopt(STatuS)........eeiii i 66
o] o] 110 a TN 115 () PSPPSR 66
OPLION_NOSINSTAII(STATUS)....ceiiiiiiiiie e 67
PrOVISION(PrOVISIONUIT)eiiiiiiie ettt et e e e e e e e e e e 67
Y=Y (oI =T =) PRSP 68
Y=Y (oI =T o {) I PSR SPPR 68
SEIVICE_STATUS() 1 nteeeie ettt et e e e 68
7=V (o= T o] o) I PSP PPPR 69

3HE 16113 AAAA TQZZA Edition: 2

SOFTWARE INSTALLATION GUIDE Getting started
Release 20.6

1 Getting started

This chapter provides an overview of this document, includes summaries of changes
from previous releases, and lists precautionary messages and command
conventions.

1.1 About this document

This document describes how to install the Nokia Service Router Linux (SR Linux) in
various environments. It defines the required prerequisites and procedures for how
to install SR Linux software elements. Examples of commonly used commands are
provided.

This document is intended for network technicians, administrators, operators,
service providers, and others who need to understand how the software is installed

and upgraded.

1.2 Summary of changes

The following changes were made in this release.

Table 1 Change summary

Topic Location

Installation information for the 7220 IXR-D system added | Installing software

Importable ZTP Python library appendix added Appendix: ZTP Python library

1.3 Precautionary messages

Observe all dangers, warnings, and cautions in this document to avoid injury or
equipment damage during installation and maintenance. Follow the safety
procedures and guidelines when working with and near electrical equipment.

Table 2 describes information symbols contained in this document.

Edition: 2 3HE 16113 AAAA TQZZA 5

Getting started SOFTWARE INSTALLATION GUIDE

Release 20.6
Table 2 Information symbols
Symbol Meaning Description
Danger Warns that incorrect handling and installation could result in bodily injury.
& An electric shock hazard could exist. Before beginning work on this

equipment, be aware of hazards involving electrical circuitry, be familiar
with networking environments, and implement accident prevention
procedures.

Warning Warns that incorrect handling and installation could result in equipment
damage or loss of data.

>

Caution Warns that incorrect handling may reduce component or system
@ performance.
Note Notes contain suggestions or additional operational information.

1.4 Conventions

Nokia SR Linux documentation uses the following command conventions.

* Bold type indicates a command that the user must enter.
* Input and output examples are displayed in Courier text.

* An open right angle bracket indicates a progression of menu choices or simple
command sequence (often selected from a user interface). Example: start >
connect to.

* Angle brackets (< >) indicate an item that is not used verbatim. For example, for
the command show ethernet <name>, name should be replaced with the name
of the interface.

* A vertical bar (|) indicates a mutually exclusive argument.
» Square brackets ([]) indicate optional elements.

* Braces ({}) indicate a required choice. When braces are contained within square
brackets, they indicate a required choice within an optional element.

* ltalic type indicates a variable.

Generic IP addresses are used in examples. Replace these with the appropriate IP
addresses used in the system.

6 3HE 16113 AAAA TQZZA Edition: 2

SOFTWARE INSTALLATION GUIDE Getting started
Release 20.6

In command prompt examples, # indicates a regular prompt and $ indicates a sudo/
root/privileged prompt.

Edition: 2 3HE 16113 AAAA TQZZA 7

Getting started SOFTWARE INSTALLATION GUIDE
Release 20.6

8 3HE 16113 AAAA TQZZA Edition: 2

SOFTWARE INSTALLATION GUIDE

Release 20.6

Introduction

Edition: 2

2

2.1

Introduction

This chapter provides an overview of basic software operations on the SR Linux.

File system layout

The file system is distributed and laid out as a closed-source third-party application
on the OS. The directory structure is listed in Table 3.

Table 3

File system layout

Path

Purpose

/opt/srlinux/bin/*

Application binaries

lopt/srlinux/lib/*

Shared libraries

letc/opt/srlinux/config.json

System configuration

/etc/opt/srlinux/banner

The system banner, pre-login

letc/opt/srlinux/srlinux.rc

Global environment file

letc/opt/srlinux/tls/*

User-configured certificates

letc/opt/srlinux/appmgr/*

YAML configuration

/etc/opt/srlinux/yang/*

YANG models

/etc/opt/srlinux/checkpoint/*

Configuration checkpoints

letc/opt/srlinux/devices/*

Discovered devices

/etclopt/srlinux/cli/plugins/*

Operator-provided plug-ins

Ivarfopt/srlinux/run/*

Application PIDs

Ivar/log/srlinux/buffer/*

Tmpfs logging

Ivar/log/srlinux/buffer.persist/*

Persistent buffered logging

Ivar/log/srlinux/file/*

Persistent logging

Ivar/log/srlinux/debug/*

Debug logging, tmpfs

/var/log/srlinux/debug.persist/*

Persistent debug logging

Ivar/log/srlinux/monitor/*

Log_mgr tmpfs storage

Ivar/log/srlinux/monitor.persist/*

Log_mgr persistent storage

3HE 16113 AAAA TQZZA

Introduction SOFTWARE INSTALLATION GUIDE
Release 20.6

Table 3 File system layout (Continued)
Path Purpose
/var/log/srlinux/archive/* Archive directory for previous startups
$SHOME/ .srlinuxrc Per-user environment
$HOME/srlinux/cli/plugins/* Per-user CLI plug-ins

The Solid State Drive (SSD) is used for an overlay file system, allowing the user to
add persistent modifications to the system.

2.2 Boot process

The SR Linux boots using a normal Linux boot mechanism. The BIOS is set up to
boot from the internal storage device. The following is the general boot sequence:

Step 1. The system powers on. Assuming a fully populated system, all components
initialize to the point where they bring up their link on the back door bus.
Fans are under hardware control and run at 100% speed.

Step 2. Both control modules start their boot sequence. During this sequence, the
following occurs:

a. The BIOS tries to boot off the internal storage device.

b. Grub2 loads the kernel and initramfs into memory. The initramfs
contains a squashfs of the root file system used to run SR Linux,
including base CentOS and SR Linux applications.The squashfs is
unpacked and loaded.

c. When the initramfs has loaded, the application manager (app_mgr)
starts and loads the applications based on their start order.

d. The system is operational.

Step 3. On control redundant platforms, both control modules attempt to boot at the
same time. The control module in slot B will wait up to 300 seconds before
becoming active, after detecting slot 1 on the back door bus.

Step 4. The chassis_mgr and device_mgr initialize, push images, and boot each
line card and Switch Fabric Module (SFM). This includes making any
decisions based on power availability, and taking control of fans.

10 3HE 16113 AAAA TQZZA Edition: 2

SOFTWARE INSTALLATION GUIDE Installing containers
Release 20.6

3 Installing containers

This chapter provides an overview of container installation tasks. Container
installation tasks include:

» Launching a container manually

Launches a single SR Linux container using a manual procedure.
» Launching a container topology

Launches a container topology using an automated script.

3.1 Container installation prerequisites

Ensure that prerequisites are met before installing an SR Linux container or
container topology.

Minimum system requirements:

» Centos 7.4 system, Kernel 4.17

* 8 GB RAM

» 8 core CPU

* The host machine user should have sudo privileges (preferably passwordless)

Minimum software requirements:

» Docker CE installed, minimum version 18.09:
https://docs.docker.com/get-docker/
* Python version 3.6 or higher
* license key file available
* docker-topo-master.tgz file (if building SR Linux container topology)
* srlinux-vX.Y.Z-N.tar.xz file (for the SR Linux docker image)
where X=Major, Y=Minor, Z=Patch, and N=Build Number

3.2 Launching a container manually

This procedure manually launches a single container.

Edition: 2 3HE 16113 AAAA TQZZA 11

https://docs.docker.com/get-docker/

Installing containers

SOFTWARE INSTALLATION GUIDE
Release 20.6

12

Step 1. Copy the srlinux-vX.Y.Z-N.tar.xz file into ~/ of the Centos 7 Host Machine.
Step 2. Copy the license.key into ~/license.key.
Step 3. Load the docker image. To load the image, the user must have root
privilege, or be part of the docker group.
$ docker image load -i ~/srlinux-vX.Y.Z-N.tar.xz
Step 4. Check that the docker image was imported correctly:
$ docker images
Example:
REPOSITORY TAG IMAGE ID CREATED SIZE
srlinux 19.11.1- 3e77d45745f2 7 hours ago 1.3GB
Step 5. Launch aninstance of the SR Linux container on the host using the options

in the following command line. This command must be entered in a single
line. See the Note that follows about copying text from a PDF file without
broken lines.

$ docker run -t -d --rm --privileged \

--sysctl net.ipvé.conf.all.disable ipv6=0 \
--sysctl net.ipv4.ip forward=0 \

--sysctl net.ipvé.conf.all.accept dad=0 \

--sysctl net.ipvé.conf.default.accept dad=0 \
--gsysctl net.ipv6.conf.all.autoconf=0 \

--gsysctl net.ipvé.conf.default.autoconf=0 \

-u $(id -u):$(id -g) \

-v ~/license.key:/opt/srlinux/etc/license.key:ro \
--name srlinux dutl srlinux:vX.Y.Z-N

sudo bash -c¢ ‘/opt/srlinux/bin/sr linux'

where X=Major, Y=Minor, Z=Patch, and N=Build Number for
srlinux:vX.Y.Z-N

Note: Copying a long command string from a PDF file will introduce line breaks. As a
workaround, copy the text string and place into Notepad++. Highlight the text and select
CTRL+J. The result is a single line with no returns.

Step 6.

Check that the docker container has been created with the name ‘srlinux’:
$ docker ps

3HE 16113 AAAA TQZZA Edition: 2

SOFTWARE INSTALLATION GUIDE Installing containers
Release 20.6

Example:
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
9d5dbd03£f7£f8 srlinux:19.11.1 "/tini--fixuid-g.." 3 mins ago Up3 mins. srlinux dutl

Step 7. Turn off the DockerO Tx checksum offload:
sudo ethtool --offload docker0 tx off
Step 8. Open an SSH session to the DUT using the following credentials:
- username: admin
- password: admin

Example:

ssh admine$ (docker inspect srlinux dutl --format {{.NetworkSettings.IPAddress}}
admin@l172.17.0.4's password:

/ /N / /N _ /__/\ /__/\ /__/|
/) /o /N //\ AR ANEAFAN [=]
/o /sl /N /NN /N /]/ AN AN AR |1+
/) N) e/~ /N N\ /N AN 2 N U N N T
YA VANV RN VAV EY AN AN /N \/\:\ S/ /N N N\:/ [\
A AV A N WA VI /A N 0 N A A W WP W/ N N RO S e N N W N A A A S S R
N N::/ /:/ N Nii/mme~ N NN /0 N NEV/N N\~ N NN /Y [~~]] ~~
_\/ /:/ N\ \:\ ANERAVAY, AN CEVAVER A ARV EY |-
/__/:/ AR A \o\::/ /_/:/ N\ \:\ \o\::/ []:]
__\/ __\/ __\/ __\/ _\/ __\/ [/

Hello admin,

Welcome to the srlinux CLI.

Type 'help' (and press <ENTER>) if you need any help using this.
--{ running }--[1--

Edition: 2 3HE 16113 AAAA TQZZA 13

Installing containers

SOFTWARE INSTALLATION GUIDE

Release 20.6

14

Step 9. Verify the application versions running on the system:

as table | filter fields pid author version

Example:
A:3-node-srlinux-A# info from state system app-management application
as table | filter fields pid author version
o m o m o m e mm e mm +
| Name | | |
t+=====================+ + +
| aaa mgr | 2189 | Nokia | v20.6.0-13-gc6a313b84c
| acl mgr | 2198 | Nokia | v20.6.0-13-gc6a313b84c
| app_mgr | 2131 | Nokia | v20.6.0-13-gc6a313b84c
| arp nd mgr | 2207 | Nokia | v20.6.0-13-gc6a313b84c
| bfd mgr | | |
| bgp mgr | 2650 | Nokia | v20.6.0-13-gc6a313b84c
| chassis mgr | 2216 | Nokia | v20.6.0-13-gc6a313b84c
| dev_mgr | 2155 | Nokia | v20.6.0-13-gc6a313b84c
| dhep client mgr | 2228 | Nokia | v20.6.0-13-gc6a313b84c
| £ib_mgr | 2237 | Nokia | v20.6.0-13-gc6a313bs84c
| gnmi_server | 2473 | Nokia | v20.6.0-13-gc6a313b84c
| idb_server | 2180 | Nokia | v20.6.0-13-gc6a313b84c
| isis_mgr | | |
| json_rpc | 2476 | Nokia | v20.6.0-13-gc6a313b84c
| 12 mac_learn mgr | 2248 | Nokia | v20.6.0-13-gc6a313b84c
| 12_mac_mgr | 2258 | Nokia | v20.6.0-13-gc6a313b84c
| 12 static mac_mgr | |
| lag mgr | 2267 | Nokia | v20.6.0-13-gc6a313b84c
| linux mgr | 2276 | Nokia | v20.6.0-13-gc6a313b84c
| 11dp mgr | 2657 | Nokia | v20.6.0-13-gc6a313b84c
| log mgr | 2285 | Nokia | v20.6.0-13-gc6a313b84c
| mcid mgr | 2294 | |
| mgmt_ server | 2303 | Nokia | v20.6.0-13-gc6a313b84c
| mpls_mgr | | |
| net_inst_mgr | 2312 | Nokia | v20.6.0-13-gc6a313b84c
| oam mgr | 2325 | Nokia | v20.6.0-13-gc6a313b84c
| ospf mgr | | Nokia |
| pley mgr | 2667 | Nokia | v20.6.0-13-gc6a313b84c
| gos mgr | 2471 | Nokia | v20.6.0-13-gc6a313b84c
| sdk_mgr | 2335 | Nokia | v20.6.0-13-gc6a313b84c
| sshd-mgmt | 2923 | |
| static_route mgr | 2674 | Nokia | v20.6.0-13-gc6a313b84c
| supportd | 2140 | Nokia | v20.6.0-13-gc6a313b84c
| vrrp_mgr | | |
| xdp_cpm | 2349 | Nokia | v20.6.0-13-gc6a313b84c
| xdp_lc 1 | 2365 | Nokia | v20.6.0-13-gc6a313b84c
o m s m e m e mm e mm +----mm- - Fommmmmmmmm - o mm s s

info from state system app-management application *

3HE 16113 AAAA TQZZA

Edition: 2

SOFTWARE INSTALLATION GUIDE

Release 20.6

Installing containers

Edition: 2

3.3 Launching a container topology

This procedure launches a container topology using an automated script. See

Figure 1 for a topology example.

Figure 1

Example 3 node container topology

srlinux-A

el-1
192.168.11.1

el-2
192.168.12.1

srlinux-B

el-1
192.168.11.2

el-3
192.168.13.1

srlinux-C

el-2

192.168.12.2

el-3
192.168.13.2

=» | examples/v2/config/license.key.

Note: The docker-topo uses the SR Linux license at ~/docker-topo-master/topo-extra-files/

Step 1. Copy the file srlinux-vX.Y.Z-N.tar.xz into ~/ of the Centos 7 Host Machine.

Step 2. Load the docker image:

$ docker image load -i ~/srlinux-vX.Y.Z-N.tar.xz

Example:

~ $ docker image load -i srlinux-vX.Y.Z.tar.xz

ba6c2307b523:
53ald27flcbd:
blcfdlcl7e46:
559el4cblef4:
99b5dl4edc4l:
b89e0ee26076:
ba4b6c40087a:
4f529c55a3¢c9:
9637194042£f7:
34eed33aab83:

Loading layer
Loading layer
Loading layer
Loading layer
Loading layer
Loading layer
Loading layer
Loading layer
Loading layer
Loading layer

329.1MB/329.1MB
5.12kB/5.12kB
311.3kB/311.3kB
303.1kB/303.1kB
4.015MB/4.015MB
3.072kB/3.072kB
2.56kB/2.56kB
2.56kB/2.56kB
7.68kB/7.68kB
25.6kB/25.6kB

3HE 16113 AAAA TQZZA

15

Installing containers

SOFTWARE INSTALLATION GUIDE
Release 20.6

16

964b072delec: Loading layer 25.6kB/25.6kB
ac434023ca76: Loading layer 3.072kB/3.072kB
ae35el17£1206: Loading layer 3.072kB/3.072kB
7£230658£8b8: Loading layer 3.072kB/3.072kB
78£9091adeb6: Loading layer 2.56kB/2.56kB
b8£f40a106975: Loading layer 3.072kB/3.072kB
238c0f5a7a42: Loading layer 3.072kB/3.072kB
c607a3d0a237: Loading layer 3.072kB/3.072kB
00£1c823da02: Loading layer 3.072kB/3.072kB
068f6071eab8: Loading layer 403.9MB/403.9MB
1963843423a6: Loading layer 3.072kB/3.072kB
Loaded image: srlinux:v<release>-190

Step 3. Check that the docker image was imported correctly:

$ docker images

Example:
REPOSITORY TAG IMAGE ID CREATED SIZE
srlinux 19.11.1 3e77d45745f£2 7 hours ago 1.3GB

Step 4. Create a docker-topo-master folder with the required files, using the
following command:

cd ~; tar -zxvf docker-topo-master.tar.gz
Step 5. Change directories to the docker-topo-master directory:
cd ~/docker-topo-master
Step 6. In the docker-topo-master directory, install docker-topo using:
sudo python3.6 setup.py install

Note: If you encounter an error creating a directory or file, check the
directory permissions.

Step 7. The image name SRLINUX IMAGE: srlinux:vX.Y.Z-Nis defined by
default. If a different name is required, edit the image name in file ~/docker-
fopo-master/topo-extra-files/examples/v2/3-node.yml.

Example (image filename location):

VERSION: 2

driver: veth

PREFIX: 3-node

SRLINUX IMAGE: srlinux:19.11.1
PUBLISH BASE: 9000

links:
- endpoints: ["srlinux-A:el-1", "srlinux-B:el-1"]
- endpoints: ["srlinux-A:el-2", "srlinux-C:el-2"]
- endpoints: ["srlinux-B:el-3", "srlinux-C:el-3"]

3HE 16113 AAAA TQZZA Edition: 2

SOFTWARE INSTALLATION GUIDE Installing containers

Release 20.6
Step 8. Important: If there are already existing containers with 3-node.yml, they
need to be destroyed before creating the new 3-node topology. See
Destroying an existing topology for this procedure.
If there is no existing topology (or an existing topology is destroyed), create
a 3-node topology using:
$ docker-topo --create topo-extra-files/examples/v2/3-
node.yml
Example:
$ docker-topo --create topo-extra-files/examples/v2/3-node.yml
INFO: main :Version 2 requires sudo. Restarting script with sudo
INFO:_main__ :
alias srlinux-A='ssh -o UserKnownHostsFile=/dev/null -
o StrictHostKeyChecking=no admin@$ (docker inspect 3-node-srlinux-A --
format "{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}")"
$ alias srlinux-B='ssh -o UserKnownHostsFile=/dev/null -
o StrictHostKeyChecking=no admin@$ (docker inspect 3-node-srlinux-B --
format "{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}")"
$ alias srlinux-C='ssh -o UserKnownHostsFile=/dev/null -
o StrictHostKeyChecking=no admine@$ (docker inspect 3-node-srlinux-C --
format "{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}")"
INFO:_ main_:All devices started successfully
Note: Topology for 1-Node and 2-Nodes can also be built using the following commands:
* For 2-Node: $ docker-topo --create topo-extra-files/examples/v2/2-
node.yml
* For 1-Node: $ docker-topo --create topo-extra-files/examples/v2/1-
node.yml
Step 9. Using the output from the previous step, create login shortcut commands.
Example:
$ alias srlinux-A='ssh -o UserKnownHostsFile=/dev/null
-0 StrictHostKeyChecking=no admin@$ (docker inspect 3-
node-srlinux-A --format "{{range
.NetworkSettings.Networks}}{{.IPAddress}}{{end}}")"
$alias srlinux-B='ssh -o UserKnownHostsFile=/dev/null -
o StrictHostKeyChecking=no admin@$ (docker inspect 3-
node-srlinux-B --format "{{range
.NetworkSettings.Networks}}{{.IPAddress}}{{end}}")"
Edition: 2 3HE 16113 AAAA TQZZA 17

Installing containers

SOFTWARE INSTALLATION GUIDE
Release 20.6

$ alias srlinux-C='ssh -o UserKnownHostsFile=/dev/null
-0 StrictHostKeyChecking=no admin@$ (docker inspect 3-
node-srlinux-C --format "{{range
.NetworkSettings.Networks}}{{.IPAddress}}{{end}}")"

Step 10. Once the shortcut is created, use the alias command to open the CLI with
the alias name. Enter admin as the username and password. For example,
to open srlinux-A CLI, enter:

$ srlinux-A

Example:

$ srlinux-A

Warning: Permanently added '172.18.18.2' (RSA) to the list of known hosts.
admin@l172.18.18.2's password:

Hello admin,

Welcome to the srlinux CLI.

Type 'help' (and press <ENTER>) if you need any help using this.

--{ running }--[1--

Step 11. Check that new nodes are up and running:

$ docker ps -a

Example:

$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORT NAMES
2505ea85a702 srlinux:v0.1.0-198 " /tini -- fixuid -q .."2 mins ago Up 2 minutes 3-
node-srlinux-A

f8a0b21fl26d srlinux:v0.1.0-198 " /tini -- fixuid -g .."2 mins ago Up 2 minutes 3-
node-srlinux-B

b30£f6326c87b srlinux:v0.1.0-198 " /tini -- fixuid -g .."2 mins ago Up 2 minutes 3-

node-srlinux-C

18

Step 12. Access the CLI for the nodes.
a. Using the shortcut command created in Step 9:
srlinux-A
« If the shortcut was not created, use the docker exec command:
$ docker exec -it 3-node-srlinux-A sr_cli

b. Using the full SSH command, as shown in the output after the container
creation:

$ ssh -o UserKnownHostsFile=/dev/null -o
StrictHostKeyChecking=no admin@$ (docker inspect 3-
node-srlinux-A --format "{{range
.NetworkSettings.Networks}}{{.IPAddress}}{{end}}")

3HE 16113 AAAA TQZZA Edition: 2

SOFTWARE INSTALLATION GUIDE Installing containers
Release 20.6

Note: If the CLI prompt does not come up immediately, adjust the terminal window size.
=) | This is a known Docker issue.

Step 13. Verify that the interface and IP addresses exist on all nodes:

i. enter running
ii. info interface <interface name>

iii. info network-instance <instance name>

Example:

enter running
--{ running }--[1--
info interface *
interface ethernet-1/1 {
admin-state enable
subinterface 1 {
admin-state enable
ipva {
dhcp-client false
address 192.168.11.1/30 {

}

1
}

interface ethernet-1/2 {
admin-state enable
subinterface 1 {
admin-state enable
ipva {
dhcp-client false
address 192.168.12.1/30 {

}

}
1

interface mgmt0 {
admin-state enable
subinterface 0 {
admin-state enable
ipva {
dhcp-client true
}

ipve {
dhcp-client true
}

}

--{ running }--[1-
info network-instance *
network-instance mgmt {
type ip-vrf
admin-state enable
description "Management network instance"

ip-forwarding {

Edition: 2 3HE 16113 AAAA TQZZA 19

Installing containers SOFTWARE INSTALLATION GUIDE
Release 20.6

receive-ipv4-check true
receive-ipvé-check true

}

interface mgmt0.0 {
protocols {
linux {
export-routes true
export-neighbors true

}
}

network-instance red {
type ip-vrf
admin-state enable
ip-forwarding {
receive-ipv4-check true
receive-ipvé-check true

}

interface ethernet-1/1.1 {

}

interface ethernet-1/2.1 {
protocols {
linux {
export-routes true
export-neighbors true

}
1

static-routes {
route 192.168.13.0/24 {
admin-state enable
metric 1
preference 5
next-hop-group static-ipv4-grp
}
}
next-hop-groups {
ecmp {
max-paths-level-2 1
}

group static-ipv4-grp
admin-state enable
collect-stats false
nexthop 1 {
ip-address 192.168.12.2
admin-state enable
resolve true
}
nexthop 2 {
ip-address 192.168.11.2
admin-state enable
resolve true

1
}

--{ running }--[1--

20 3HE 16113 AAAA TQZZA Edition: 2

SOFTWARE INSTALLATION GUIDE Installing containers

Release 20.6

Edition: 2

Step 14. Ping different nodes to verify connectivity:

ping <IP Address> network-instance <instance names

Example:

--{ running }--[1--

ping 192.168.11.1 network-instance red

Pinging 192.168.11.1 in srbase-red

PING 10.0.0.0 (192.168.11.1) 56(84) bytes of data.

64 bytes from 192.168.11.1: icmp_seqg=1 ttl=64 time=1.74 ms
64 bytes from 192.168.11.1: icmp seqg=2 ttl=64 time=0.596 ms
64 bytes from 192.168.11.1: icmp_seqg=3 ttl=64 time=0.664 ms
64 bytes from 192.168.11.1: icmp_seqg=4 ttl=64 time=0.710 ms
e

--- 192.168.11.1 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3001lms
rtt min/avg/max/mdev = 0.596/0.927/1.740/0.471 ms

B R R R

3.4 Destroying an existing topology

Destroy an existing topology using the docker-topo --destroy command. Destroy
the created topology using the following command:

$ docker-topo --destroy topo-extra-files/examples/v2/3-
node.yml

3HE 16113 AAAA TQZZA 21

Installing containers

SOFTWARE INSTALLATION GUIDE
Release 20.6

22

3HE 16113 AAAA TQZZA

Edition: 2

SOFTWARE INSTALLATION GUIDE Installing software
Release 20.6

4 Installing software

Software installation tasks include:

* Installation concepts
Describes concepts to be familiar with prior to installing or upgrading.
* Installing the software manually on a 7250 IXR
Installs the SR Linux software on a 7250 IXR system for the first time.
* Installing the software manually on a 7220 IXR-D
Installs the SR Linux software on a 7220 IXR-D system for the first time.
» Upgrading the software
Upgrades previously installed SR Linux software to a higher version.

4.1 Installation concepts

SR Linux can be installed on either the 7250 IXR or 7220 IXR-D series systems.

Installations can be completed using the CLI. To perform either an initial imaging,
reinstallation, or an upgrade or downgrade of a system, the operation requires
pushing the new image to the device, changing the boot configuration, and rebooting.

In the installation procedure examples, commands preceded by $ require root
privilege. Commands preceded by # should be executed from a bash shell.

The basic installation actions performed on the system do not change, regardless of
the method used to install the SR Linux (either using the CLI or manually), but the
CLI method is dependent on having a working system whereas the manual method
is not.

41.1 7250 IXR installation concepts

On a 7250 IXR system, SR Linux boots from an internal SD card. No other boot
device may be used with the system. The SD card contains:

» an MBR (containing the Grub2 boot loader)
* a partition used for SR Linux images
« two overlay partitions used for persistent storage

Edition: 2 3HE 16113 AAAA TQZZA 23

SOFTWARE INSTALLATION GUIDE

Installing software
Release 20.6

Installations can be performed manually without using the CLI. The process may also
require partitioning an SD card external to the system, installing Grub into the MBR
of the card, and copying the SR Linux image to the device. Use of the manual method
requires advanced knowledge of Linux commands, including disk formatting,
copying files, unpacking compressed images, and editing of text files. Basic
knowledge of editing text files in Linux is mandatory. The manual method requires a
Linux server, with an empty SD card mounted (or use of a USB-SD card adapter).

4.1.2 7220 IXR-D installation concepts

On a 7220 IXR-D system, SR Linux boots from a the internal SSD. No other boot
device may be used with the system. The internal SSD contains:

» an MBR (containing the Grub2 boot loader)
* a partition used for SR Linux images
* two overlay partitions used for persistent storage

SR Linux can boot from a USB device in recovery scenarios.

4.1.3 Software image

The software image is a set of files provided as part of an SR Linux distribution. The
files contained in an image are:

» Squashfs — Contains the SR Linux root file system, including any needed
binaries for system operation.

* Initramfs (or initrd) — Contains an initial file system that is used to make the
hardware operational before unpacking the SR Linux squashfs into memory,
then switching the root file system to it.

 Kernel (or vmlinuz) — The Linux kernel is the initial program executed by the
boot loader. The kernel handles all interactions between the OS and hardware.

To perform an installation, you must have an SR Linux image, which is a gzipped
tarball containing these files, along with some other files used for operations and
maintenance (for example, YANG models and SNMP MIBs).

24 3HE 16113 AAAA TQZZA Edition: 2

SOFTWARE INSTALLATION GUIDE Installing software
Release 20.6

4.2 Installing the software manually on a 7250 IXR

Installing the software manually requires a working Linux system, with access to an
SD card (preferably 16 GB in size). A USB adapter may be used, as most servers do
not have SD card slots. The SD card should be unformatted, or at least no important
data should be present on it. Any data on the card is wiped during the procedure.
Installing the software manually requires a download of a script. In the following
examples, /dev/sdb is used as the SD card device in examples, and all steps should
be completed as a user with root privileges.

Warning: If used incorrectly, this procedure could be destructive and may render the
& system creating the SD card inoperable. Verify the correct drive is being used before
completing the installation.

Step 1. Copy the SR Linux image and SR Linux rescue image to either an SD card
or USB drive and insert it into the system. Alternatively, copy the images to
the server being used to prepare the SD card. Use the following command:

cp <path-to-srlinux-image-tgz> <destination-
directorys>

cp <path-to-srlinux-rescue-image-tgzs>
<destinationdirectorys>

Example:

cp /mnt/removable/SRLinux-20.6.1-10.tgz /tmp
cp /mnt/removable/initramfs rescue-4.19.39-2.x86 64-03.img /tmp

Step 2. Wipe the SD card and ensure that you correctly identify the SD card, as this
action is destructive.

Step 3. Install x86_64-€fi on the system.
Example:

sudo yum install grub2-efi-x64-modules

Step 4. Upgrade mkfs.fat to version 4.1 or higher.
Example:

wget https://rpmfind.net/linux/fedora/linux/releases/29/Everything/x86 64/os/
Packages/d/dosfstools—4.l—6.f029.x86_64.rpm
sudo yum localinstall dosfstools-4.1-6.£c29.x86_ 64.rpm

Step 5. Download the sdcardflash.sh script.
Step 6. Run the script.
Example:

/tmp/sdcardflash.sh -v -e 20.6.1-10 -1 srlinux-20.6.1-10.tgz -r initramfs rescue-

Edition: 2 3HE 16113 AAAA TQZZA 25

Installing software

SOFTWARE INSTALLATION GUIDE
Release 20.6

4.3

26

4.19.39-2.x86_64-03.img -s /dev/sdb -g "autoboot nosinstall"

Step 7. Physically remove the SD card from the system.

Step 8. Repeat steps 2 to 7 with another SD card for the standby control module (if
applicable).

Step 9. Remove both control modules from the system (refer to the SR Linux 7250
Hardware Installation Guide for a procedure), then insert the SD cards into
the internal SD slot for each module.

Step 10. Insert the control modules into the chassis, and power the chassis on.

Installing the software manually on a 7220
IXR-D

Installing the software manually on a 7220 IXR-D system requires a working Linux
system and a USB device. Installation also requires the ONIE boot loader install
environment.

If you do not host the SR Linux images from a ZTP server, you must perform a
manual bootstrap procedure to complete the installation.

Step 1. Download the ONIE recovery .iso image for the respective IXR-D unit from
OLCS.

Step 2. Copy the ONIE recovery .iso Image file to a USB using the following
command:

dd if=<machine>.iso of=/dev/sdX bs=10M

where machine=the image name for the device and sdX=the USB device
name.

Step 3. Once the ONIE recovery .iso image is copied, unmount the USB device
and remove it from the Linux machine.

Step 4. Insert the USB into the 7220 IXR-D system and power the system on.

Step 5. When the setup message comes up, press either the DEL or ESC key to
enter the BIOS interface.

Version 2.19.1266. Copyright (C) 2019 American Megatrends. Inc.
BIOS Date: 11/01/2019 15:48:23 Ver: OACHIO37 Minor Ver: V1.03
Press or <ESC> to enter setup.

Entering Setup...

Step 6. In the BIOS prompt, select Boot Device as USB, then Save & Exit.

3HE 16113 AAAA TQZZA Edition: 2

SOFTWARE INSTALLATION GUIDE Installing software

Release 20.6

Edition: 2

AN

4.3.1

Warning: Installing the ONIE from the USB wipes out all SSD partitions.

Step 7. Install the ONIE from the USB. Select ONIE: Embed ONIE in the GNU
Grub screen.

Step 8. Once the ONIE installation is complete, remove the USB to boot ONIE from
the SSD.

Step 9. Once the device boots ONIE from the SSD, select ONIE: Install OS in the
GNU Grub screen.

Step 10. Verify the platform, version, and build date of the installed ONIE image.

GRUB loading.
Welcome to GRUB!

Platform : x86_64-nokia_ ixr7220 d3-r0
Version : 2019.02-onie_version-v1.5
Build Date: 2020-02-13T15:05+08:00

telnet>

Step 11. The device boots and enters the ONIE:/ # prompt.

The ONIE service discovery automatically begins to get a device IP
address from a ZTP server, and the SR Linux image is downloaded.

Note: If you do not host the SR Linux images from a ZTP server, you must perform a manual
bootstrap procedure to complete the installation. See the Manual bootstrapping procedure
to continue.

Step 12. After the SR Linux software installation completes, the 7220 IXR-D reboots
with the updated SR Linux image. The SR Linux services and applications
are automatically started.

Manual bootstrapping

If you do not host the SR Linux images from a ZTP server, you must perform a
manual bootstrapping to retrieve the image. Perform this procedure in addition to the
steps in Installing the software manually on a 7220 IXR-D to complete the
installation.

Step 1. After the ONIE image boots the service discovery starts automatically. To
stop the service discovery, execute:

3HE 16113 AAAA TQZZA 27

Installing software SOFTWARE INSTALLATION GUIDE
Release 20.6

ONIE:/ # onie-stop
Step 2. Configure the management IP address and the default route to copy the
SR Linux image to the 7220 IXR-D.

ONIE:/ #

ONIE:/ # ifconfig eth0 135.227.251.182 netmask 255.255.255.0
ONIE:/ # ip route add 0.0.0.0/0 via 135.227.248.1

IP: RTNETLINK answers: Network is unreachable

ONIE:/ #

Step 3. Using the scp command, copy the SR Linux image <version>.bin to the
root folder. The "root" user password is blank.

Step 4. To install SR Linux, execute the following command:
onie-nos-install <bins

Example:

ONIE:/ # onie-nos-install /root/srlinux-20.6.1-21398.bin
discover: installed mode detected.

Stopping: discover... done.

ONIE: Executing installer: /root/srlinux-20.6.1-21398.bin
/dev/console

Verifying archive integrity... 100% MD5 checksums are OK. All good.

Uncompressing srlinux-20.6.1-21398 100%

Files used: srlinux-20.6.1-21398.squashfs, initramfs-4.18.39-2.x86 64-02.img, vmlinuz-4.19.39-2.x86_ 64
Found ONIE-BOOT on /dev/sda2

Will use /dev/sda as install dev

Parts used: old part start[4], efi part[4], nos part[5], etc part[6], opt part[7], data part[8]

Remove existing partitions from /dev/sda

/dev/sda4 is not mounted

Warning: The kernel is still using the old partition table.

The new table will be used at the next reboot.

The operation has completed successfully.

Step 5. Once the image is installed, the 7220 IXR-D reboots with the SR Linux
image.
Starting Wait for Plymouth Boot Screen to Quit...

Starting Terminate Plymouth Boot Screen...
[OK] Started Login Service.

SRLINUX 20.6.1-21463
Kernel 4.19.39-2.x86_64 on an X86 64

Localhost login: linuxadmin
Password: 2020:06:21 19:52:54:54 | EVENT | Starting ZTP process

[linuxadmin@localhost ~}$ system2020:06:21 19:52:58:64 | EVENT | Set link mgmtO up

ctl disable z2020:06:21 19:53:03:82 \ EVENT \ ZTP Perform DHCP V4. attempt [1]

£2020:06:21 19:53:04:14 | EVENT | Received dhcp lease on mgmt0O for 135.227.251.182/21
2020:06:21 19:53:04:23 | EVENT | option 66 provided by dhcp: http://135.277.248.118
2020:06:21 19:53:04:23 | EVENT | option 67 provided by dhcp: duts/SD-RD2-126/ztp-config.yml

Step 6. Enter the login credentials: 1inuxadmin
Step 7. Disable watchdog reboot using the following command:

28 3HE 16113 AAAA TQZZA Edition: 2

SOFTWARE INSTALLATION GUIDE Installing software

Release 20.6
sr _wdc noreboot
Step 8. Permanently disable the ZTP service using the following command.
systemctl disable ztp
Step 9. Enable SR Linux as a service with the systemct1 command.
systemctl enable /opt/srlinux/systemd/srlinux.service
Step 10. Configure the network IP address and enable network as service by
performing the following steps.
i. Enter sudo bash -c¢ 'echo "NETWORKING=yes" >/etc/
sysconfig/network'
ii. Enter sudo systemctl enable network
iii. Edit and include the sudo/etc/sysconfig/network-scripts/
ifcfg-mgmt 0 with the appropriate IP address, netmask, and gateway
information.
DEVICE=mgmtO0
IPADDR=<IP_ ADDR>
BOOTPROTO=static
NETMASK=<NET MASK>
GATEWAY=<GATEWAY >
ONBOOT=yes
IPV6INIT=NO
NM CONTROLLED=no
Step 11. After a reboot, the networking and SR Linux service is started
automatically.
4.4 Upgrading the software
This procedure upgrades the software using the CLI. It requires a working system,
with SR Linux operational and the CLI available. If the system is not operational and
CLlI is not available, see either Installing the software manually on a 7250 IXR or
Installing the software manually on a 7220 IXR-D to perform an initial installation.
Step 1. Copy the SR Linux image to a location that the system being installed has
access to: either to a USB or SD card, or somewhere on the network
(assuming that the system being installed has access to the server). Enter:
cp <path-to-srlinux-image-bin> <destination-
directorys>
Example:
Edition: 2 3HE 16113 AAAATQZZA 29

Installing software

SOFTWARE INSTALLATION GUIDE
Release 20.6

30

cp SRLinux-20.6.1-10.bin /mnt/removable

Step 2. Log in to the system being upgraded:
ssh <user>@<address>

Example:

ssh linuxadmin@l192.168.0.1

Step 3. Enter the login credentials (when prompted by the system):
— username: linuxadmin
- password: 1inuxadmin

Step 4. Copy the image to the system. Do either of the following:

a. If not using removable media (USB or SD card), copy the image to the
system across the network:

sudo ns_exec srbase-mgmt bash

sudo scp <users>@<server-with-srlinux-images>:<path-
to-srlinux-image-bin> <local-destinations

Example:

sudo ns_exec srbase-mgmt bash
sudo scp serveruser@192.168.0.2:srlinux-20.6.1-10.bin /local-destination

b. If using removable media (USB or SD card), insert either the USB or
SD card into the system and mount it to a temporary directory:

sudo mkdir -p /mnt/removable
sudo mount <path-to-disk> /mnt/removable

Example:

sudo mkdir -p /mnt/removable
sudo mount /dev/sdcl /mnt/removable

Step 5. Unpack the SR Linux image to a location that the system being installed
has access to, either across the network, or to a USB or SD card that may
be inserted into the active control module:

sudo mkdir -p /mnt/nokiaos/<versions

sudo cp <local-destination>/<srlinux-image-file.bin>
/tmp/<srlinux-image-file.bin>

sudo chmod +x /<tmp>/<srlinux-image-file.bin>

sudo /tmp/srlinux-image-file.bin> --target /mnt/
nokiaos/<versions> --noexec

Example:

sudo mkdir -p /mnt/nokiaos/20.6.1-10
sudo cp /mnt/removable/srlinux-20.6.1-10.bin /tmp/srlinux-20.6.1-10.bin

3HE 16113 AAAA TQZZA Edition: 2

SOFTWARE INSTALLATION GUIDE Installing software

Release 20.6

Edition: 2

sudo chmod +x /tmp/srlinux-20.6.1-10.bin
sudo /tmp/srlinux-20.6.1-10.bin --target /mnt/nokiaos/20.6.1-10 --noexec

Step 6. Start an SR Linux CLI session, and retrieve the current version of the
software:

Example:

sr_cli
info from state system boot image
system {
boot {
image [
19.11.7-16

]
}
}

Step 7. Update the bootimage list by reordering the current version behind the new
version:

enter candidate
system boot image [<version> <old-versions>]
commit now

Example:

enter candidate
system boot image [20.6.1-10 19.11.7-16]
commit now

Step 8. Reboot the chassis:
tools platform chassis reboot

Step 9. Wait up to ten minutes, then log in to the device via SSH or console, and
confirm the new version.

3HE 16113 AAAA TQZZA 31

Installing software

SOFTWARE INSTALLATION GUIDE
Release 20.6

32

3HE 16113 AAAA TQZZA

Edition: 2

SOFTWARE INSTALLATION GUIDE Zero Touch Provisioning

Release 20.6

Edition: 2

5 Zero Touch Provisioning

Traditional deployment of new nodes in a network is a multistep process where the
user has to connect to the hardware and provision global and local parameters.

Zero Touch Provisioning (ZTP) automatically configures the nodes by obtaining the
required information from the network and provisioning them with minimal manual
intervention and configuration. The technician installs the nodes into the rack and
when power is applied, and if connectivity is available, the nodes are auto-
provisioned.

5.1 Applicability

The following implementation is currently supported:
* auto-boot using Out-of-Band (OOB) port, which includes support of HTTP,
HTTPS, TFTP, and FTP.
Note: No VLANSs are supported on the management port.
* dual stack IPv4 and IPv6 (including DHCP client IPv4/IPv6)

5.2 Overview

For auto-boot using OOB, the node storage device ships with the SR Linux image

and the grub.cfg. Within the grub.cfg is an auto-boot flag. The correct part number
should be ordered to obtain the grub.cfg with the auto-boot flag enabled by default.
The flag can be manually changed if needed.

When the SR Linux boots, it checks the grub.cfg for the auto-boot flag. If the flag is
set, the node goes into the auto-boot mode.

Once initiated, the auto-boot mode starts the auto-provisioning process. The
provisioning process discovers the IP address of the node and provisions the node
based on a Python provisioning script.

The DHCP server provides the node with the location of the provision script using
Option 66 and 67, or Option 43. The node uses this URL to download the
provisioning script. The provisioning script contains the location of the RPMs,
configurations, images, and scripts. These files are downloaded to the storage
device.

3HE 16113 AAAA TQZZA 33

SOFTWARE INSTALLATION GUIDE

Zero Touch Provisioning
Release 20.6

During provisioning, all events are logged and displayed at the console for
debugging. Once the process completes, the auto-boot flag is removed from the
grub.cfg file. This ensures that after a successful auto-boot, additional reboots of the

node will not enter auto-boot mode.

5.2.1 Network requirements

ZTP requires the following components:

* DHCP server (IPv4 or IPv6) — To support the assignment of IP addresses
through DHCP requests and offers.

« file server — For staging and transfer of RPMs, configurations, images, and
scripts. HTTP, HTTPS, TFTP, and FTP are supported. For HTTPS, the default
Mozilla certificate should be used.

* DHCP relay — Required if the server is outside the management interface
broadcast domain.

ZTP works in the following network environments:

* nodes, HTTP file servers, and DHCP server in the same subnet

* HTTP file servers and DHCP server in the same subnet, separate from the
nodes
* nodes, HTTP file servers, and DHCP server in different subnets

Figure 2 shows the first scenario where all components are in a Layer 2 broadcast
domain. There is no DHCP relay and all IPs are assigned from a single pool.

34 3HE 16113 AAAA TQZZA Edition: 2

SOFTWARE INSTALLATION GUIDE
Release 20.6

Zero Touch Provisioning

Figure 2

T

ﬁe

!

Auto-provisioning

Node

All components in the same subnet

5

LAN

HTTP File
Servers

DHCP
Server
sw0970

Figure 3 shows the second scenario where only the HTTP file servers and DHCP
server are in the same subnet. The DHCP relay is used to fill Option 82 as the
gateway address. The gateway address is used to find the appropriate pool in the
DHCP server to assign the correct subnet IP address to the SR Linux.

The DHCP offer allows the Option 3 router to define the default gateway. If multiple
addresses are provided via Option 3, the first address is used for the default

gateway.

Figure 3

T

—

i

Auto-provisioning

Node

Edition: 2

HTTP file and DHCP servers in the same subnet

T

ﬁe

l

Router
DHCP Relay

3HE 16113 AAAA TQZZA

HTTP File
Servers

DHCP
Server
sw0971

35

Zero Touch Provisioning

SOFTWARE INSTALLATION GUIDE
Release 20.6

Figure 4 shows the third scenario where all components are in different subnets. The
DHCP relay adds the Option 82 gateway address to the DHCP request, and the
DHCP server adds the Option 3 with the gateway address of the HTTP file server.

Figure 4 All components in different subnets
Subnet 1
HTTP File
Servers
—{(— —{(—
Auto-provisioning Router
Node DHCP Relay
Subnet 2
DHCP
Server

sw0972

5.3 Process information

When the node reboots, the SR Linux starts the auto-boot process if the auto-boot
flag is set in the grub.cfg. Currently only the management port is supported for auto-
boot.

5.3.1 DHCP discovery and solicitation

DHCP discovery is sent out from a management port that is operationally up with un-
tag format when OOB is used. IPv4 DHCP discovery is sent out first, and if no offer
is received within the DHCP timeout, an IPv6 DHCP solicitation will be sent out. The
DHCP timeout is 60 seconds.

» For DHCP IPv4, Option 61 is used for pool selection. By default, the node sends
Option 61 with the serial number of the chassis.

Note: The grub.cfg can be provisioned with a MAC option as well. When a MAC
option is specified, Option 61 will be populated with the chassis MAC address.

36 3HE 16113 AAAA TQZZA Edition: 2

SOFTWARE INSTALLATION GUIDE Zero Touch Provisioning
Release 20.6

» For DHCP IPv6, Option 1 is used for pool selection. By default, the node uses
RFC 3315 DUID Type 2 vendor-assigned unique ID. The value for enterprise-id
is 6527 and the identifier is the chassis serial number.

Note: Type 3 is configurable in the grub.cfg.

When the DHCP server receives the discovery packet, it will assign the IP address
to the node. The DHCP offer for IPv4 should contain the options shown in Table 4.

Table 4 Required DHCP offer options
Option Name Description
viaddr Client-lp-Address Network interface — IP address (for NW

consistency, a fixed IP address is recommended vs
randomly assigned from the DHCP server IP pool)

1 Subnet Mask Network interface — Subnet mask

3 Router Network interface — Default gateway (Only the first
router is used. Additional routers are ignored.)

51 Lease Time Validated to be infinite

54 Server Address DHCP server identifier

66 Boot server host name | Server IP address

67 Bootfile Name URL or IP to the provisioning file

Table 5 defines DHCP IPv4 and IPv6 equivalents.

Table 5 DHCP IPv4 and IPv6 equivalents
Option IPv4 IPv6 IPv6 Comments
option Option
Client ID Option 61 Option 1 2 - Vendor-assigned unique ID (default)
(DUID) 3 - Link-layer address
NTP server Option 42 Option56 | —
User class Option 77 | Option 15 | —
TFTP server Option 66 NA —
name
Bootfile name Option 67 Option59 | —
Vendor-specific | Option 43 Option 17 | —
options

Edition: 2 3HE 16113 AAAA TQZZA 37

Zero Touch Provisioning SOFTWARE INSTALLATION GUIDE

Release 20.6

38

Auto-provisioning options

Defined options determine how DHCP discovery functions.

The client ID used in IPv4 and IPv6 can be configured as a chassis serial ID or
chassis MAC address. By default, the chassis serial ID is used, but the user can
configure the auto-boot option to use the chassis MAC address. This option can be
configured by editing the grub.cfg and adding the -mac sub-option to the auto-boot
option:

grub.cfg location: /nokiaboot/boot/grub2/grub.cfg or /mnt/boot/boot/grub2/grub.cfg

The ZTP timeout default is set at 1 hour for each attempt. During the provisioning
process, the node will perform three attempts for a period of 3 hours (1 hour for each
attempt). After the three initial attempts, the node reboots. The user can change the
1 hour default using the ZTP CLI.

See sections Configuring ZTP and References for procedures and commands used
to provision available options.

5.3.1.2 DHCP server Option 42 (IPv4) and 56 (IPv6) for NTP

DHCP will provide an NTP server URL using Option 42 (for IPv4) or Option 56 (for
IPv6). When the time is obtained and synced from the NTP server, any log event
obtained after this time will have the correct timestamp. Any log event before the time
was obtained will not have the correct timestamp, and will have the default
timestamp.

5.3.2 DHCP offer

OOB auto-boot supports both IPv4 discovery and IPv6 solicitation, but when the offer
is received, the provisioning script follows the same address family format for file
download as the DHCP offer.

The first DHCP offer received with the correct Option 66 and 67 or Option 43 is used.
The Python provisioning script is downloaded from the location defined by Option 66
and 67 or Option 43.

With an IPv4 DHCP offer, the node IP address and other information, like the default
route, is included.

3HE 16113 AAAA TQZZA Edition: 2

SOFTWARE INSTALLATION GUIDE Zero Touch Provisioning

Release 20.6

Edition: 2

For IPv6, only the IP arrives from the DHCP server. This offer does not include a
prefix, and when it is received, the route is installed with a prefix of /128. This means
that the prefix received from the RA is ignored, and the node always acts as a host
with a prefix of /128. The default route is received from the Route Advertisement (RA)
from the IPv6 peer.

Default gateway route configuration for IPv4

Once the DHCP offer is received, the Option 3 router can be used to program the
default gateway on the SR Linux. A static route should be configured with the default
route 0.0.0.0/0 as the next-hop IP address (provided by the Option 3 router).

5.3.2.2 DHCP relay

The DHCP relay can be used to fill Option 82 for the gateway address. The gateway
address can be used to find the appropriate pool in the DHCP server to assign the
correct subnet IP address to the SR Linux.

5.3.3 Python provisioning script

The Python provisioning file is downloaded from the location dictated by Option 66
and 67 or 43 using HTTP, HTTPS, TFTP, or FTP. Option 66 and 67 takes
precedence over Option 43 when both are present in the offer, but Option 43 will be
used if there is a download error with Option 66 and 67. In addition, Option 66 and
67 can be summarized in Option 67 only. The URL of the provisioning file can be
resolved via the DHCP-provided DNS. Up to three DNS servers can be offered by
the DHCP.

The node downloads the Python script and places it on the storage device. The node
then uses the Python provisioning script to download any RPMs, images, scripts, or
config and places them in the destination dictated by the script.

The URLs defined in the Python script define multiple levels of redundancy. If the
primary location is unreachable and times out, two additional redundant servers can
be configured. The node cycles through the primary, secondary, and tertiary
locations and once successful, downloads the files to the storage device where they
are executed locally.

3HE 16113 AAAA TQZZA 39

Zero Touch Provisioning SOFTWARE INSTALLATION GUIDE
Release 20.6

After successful completion, the provisioning script disables the auto-boot flag to
ensure that additional reboots of the node will not enter auto-boot mode. Once the
nodes reboot, they will come up in an operational state with the config and image.

For additional information about the Python provisioning script, see Configuring the
Python provisioning script.

5.3.4 Auto-provisioning failures

The following are possible failure scenarios:

* No Option 66 and 67 or 43 is received (possibly because the format is a URL or
no IP address was provided via the DHCP server).

* The download of the Python provisioning script failed or the server was not
reachable.

* The download of the RPMs, scripts, or config failed (possibly due to the server
not being available, or incorrect directory or credentials).

» Copying the RPMs, scripts, or config to the storage device failed.
If a failure occurs:

* Details of the failure display on the console and are recorded in the appropriate
log files. Log files are stored in the storage device. There can be three log files,
which are overwritten in a circular manner.

» The DHCP task is notified of the failure and releases the IP address on the port.

* The auto-boot task goes through the process cycle again until it succeeds, the
timeout value is reached, or the auto-boot Option is removed from the grub.cfg,
either by editing the grub.cfg or using the ZTP CLI.

5.3.5 ZTP log files

ZTP log files are stored under /var/log/ztp. For example:

[root@srlinux ztpl# 1ls -1ltr
total 28528

-rw-r--r-- 1 root root 18220 Sep 4 23:04 ztp 2019-09-04_23-03-52_880867.1log
-rw-r--r-- 1 root root 1789 Sep 4 23:29 ztp 2019-09-04_23-29-38_496995.10og
-rw-r--r-- 1 root root 18220 Sep 4 23:31 ztp 2019-09-04_23-31-08_996284.log
-rw-r--r-- 1 root root 1791 Sep 5 17:42 ztp 2019-09-05_17-42-01_082002.1og
-rw-r--r-- 1 root root 0 Sep 5 21:56 ztp 2019-09-05_21-56-13_730783.1log
-rw-r--r-- 1 root root 0 Sep 5 21:56 ztp 2019-09-05 21-56-14 036070.log

[root@srlinux ztpl#

40 3HE 16113 AAAA TQZZA Edition: 2

SOFTWARE INSTALLATION GUIDE Zero Touch Provisioning
Release 20.6

5.4 Configuring ZTP

The following are common ZTP configuration procedures:

» Configuring the Python provisioning script
» Configuring the ZTP timeout value using the provisioning script

The following are common ZTP configuration procedures using the ZTP CLI:

» Configuring options in the grub.cfg using ZTP CLI

* Managing images using ZTP CLI

* Configuring the NOS using ZTP CLI

» Redownloading the executable files with ZTP CLI

» Starting, stopping, and restarting a ZTP process using ZTP CLI
» Checking the status of a ZTP process using ZTP CLI

The following are common ZTP configuration procedures using the SR Linux CLI:

+ Configuring options in the grub.cfg using SR Linux CLI

» Specifying the image, kernel, or RAM to boot the system using SR Linux CLI
+ Starting, stopping, and restarting a ZTP process using the SR Linux CLI

» Checking the status of a ZTP process using the SR Linux CLI

5.4.1 ZTP CLI versus SR Linux CLI

There are two CLIs where ZTP-related commands can be executed:

* SR Linux CLI (sr_cli)
« ZTP CLI

The SR Linux commands are available to use only when the SR Linux is operational
at the sr_cli.

When the SR Linux is not operational, the ZTP CLI is a unified tool that can be used
to manage ZTP tasks at the console.

Refer to the References sections for a complete list of available ZTP-related
commands.

Edition: 2 3HE 16113 AAAA TQZZA 41

Zero Touch Provisioning SOFTWARE INSTALLATION GUIDE

Release 20.6

42

5.4.2 Configuring the Python provisioning script

The primary components of the Python provisioning script include:

* location of provider certificate and trust anchor when HTTPS is used to
download RPMs and other bash/Python scripts

« the URL location for each RPM, script, and config

* DNS information for resolving the URL of a file. At least one DNS entry is needed
for resolving the URL of downloaded files. This DNS can be different from the
DHCP offered DNS. If a DNS is defined in the provisioning file, it takes
precedence over the DHCP DNS. If there is no DNS in the provisioning script,
the DHCP DNS will be used.

* a section to clear the auto-boot option from the grub.cfg kernel section
The following is an example Python provisioning script.
Example: Python provisioning script

import errno

import os

import sys

import signal

import subprocess

from subprocess import Popen, PIPE
import threading

srlinux image url = 'http://135.227.249.116/srlinux/srlinux-20.6.1-10656.squashfs"
srlinux image md5 url = 'http://135.227.249.116/srlinux/srlinux-20.6.1-10656.md5"
srlinux_config url = 'http://135.227.249.116/srlinux/config.json'
class ProcessError (Exception) :
def init (self, msg, errno=-1):
Exception._init_ (self, msg)

self.errno = errno

class ProcessOpen (Popen) :

def _ init_ (self, cmd, cwd=None, env=None, flags=None, stdin=None,
stdout=None, stderr=None, universal newlines=True,) :
self. use killpg = False
shell = False
if not isinstance(cmd, (list, tuple)):
shell = True

Set flags to 0, subprocess raises an exception otherwise.
flags = 0
Set a preexec function, this will make the sub-process create it's
own session and process group - bug 80651, bug 85693.
preexec_fn = os.setsid

self. cmd = cmd

self. retval = None

self. hasTerminated = threading.Condition()

Popen._ init (self, cmd, cwd=cwd, env=env, shell=shell, stdin=stdin,

stdout=PIPE, stderr=PIPE, close_fds=True,
universal newlines=universal newlines, creationflags=flags,)
print ("Process [{}] pid [{}]1".format (cmd, self.pid))
def _getReturncode (self) :

3HE 16113 AAAA TQZZA Edition: 2

SOFTWARE INSTALLATION GUIDE Zero Touch Provisioning

Release 20.6

return self. returncode
def ~ finalize(self):
Any finalize actiomns
pass
def _setReturncode (self, value):
self. returncode = value
if value is not None:
Notify that the process is done.
self. hasTerminated.acquire ()
self. hasTerminated.notifyAll ()
self. hasTerminated.release()
returncode = property(fget=_getReturncode, fset=_setReturncode)
def _getRetval (self):
Ensure the returncode is set by subprocess if the process is finished.
self.poll ()
return self.returncode
retval = property(fget=_getRetval)
def wait for(self, timeout=None):
if timeout is None or timeout < 0:
Use the parent call.
try:
out, err = self.communicate ()
self. finalize()
return self.returncode, out, err
except OSError as ex:
If the process has already ended, that is fine. This is
possible when wait is called from a different thread.
if ex.errno != 10: # No child process
raise
return self.returncode, "", ""
try:
out, err = self.communicate (timeout=timeout)
self. finalize()
return self.returncode, out, err
except subprocess.TimeoutExpired:
self. finalize()
raise ProcessError (
"Process timeout: waited %d seconds, "
"process not yet finished." % (timeout)
)
def kill (self, exitCode=-1, sig=None) :
if sig is None:
sig = signal.SIGKILL
try:
if self. use killpg:
os.killpg(self.pid, sig)
else:
os.kill (self.pid, sig)
except OSError as ex:
self. finalize()
if ex.errno != 3:
Ignore: OSError: [Errno 3] No such process
raise
self.returncode = exitCode
self._ finalize()
def commandline (self):
""r"returns string of command line"""
if isinstance(self._ cmd, six.string):
return self. cmd

Edition: 2 3HE 16113 AAAA TQZZA

43

Zero Touch Provisioning SOFTWARE INSTALLATION GUIDE
Release 20.6

return subprocess.list2cmdline(self._cmd)
__str = commandline
def execute_and out (command, timeout=None) :
print ("Executing command: {}".format (command))
process = ProcessOpen (command)
try:
#logger.trace ("Timeout = {}".format (timeout))
ret, out, err = process.wait for (timeout=timeout)
return ret, out, err
except ProcessError:
print ("{} command timeout".format (command))
process.kill ()
return errno.ETIMEDOUT, "", ""
def execute (command, timeout=None) :
ret, _, _ = execute_and out (command, timeout=timeout)
return ret
def pre tasks():
pass
def srlinux():
nos_install ()
nos_configure ()
def post_tasks() :

pass
def nos_install():
cmd = 'ztp image upgrade --imageurl {} --

md5surl {}'.format (srlinux image url, srlinux image md5 url)
ret,out,err = execute_and_out (cmd)
def nos_configure() :
cmd = 'ztp configure-nos --configurl {}'.format (srlinux config url)
ret,out,err = execute_and_out (cmd)
def main() :
pre_tasks ()
srlinux()
post_tasks ()
if name == '_ main_ ':
main ()

44 3HE 16113 AAAA TQZZA Edition: 2

SOFTWARE INSTALLATION GUIDE
Release 20.6

Zero Touch Provisioning

5.4.3 Configuring the ZTP timeout value using the
provisioning script

The ZTP process sends DHCP discovery messages on all ports within a ZTP cycle.
Every time the DHCP discovery timeout expires and a DHCP offer has not been
received, the DHCP discovery process reinitiates on the port until the ZTP timeout
expires.

The timeout value can be set using the:

* ZTP CLI (see procedure 5.4.4 Configuring options in the grub.cfg using ZTP
CLI)

* SR Linux CLI (see procedure 5.4.10 Configuring options in the grub.cfg using
SR Linux CLI)

5.4.4 Configuring options in the grub.cfg using ZTP CLI

Several options can be manually configured in the grub.cfg using the ZTP CLI at the
console. The command has the following format:

ztp option <command> [<argumentss]

where command must be one of the following:

Command Description

autoboot Enables or disables the auto-boot flag

bootintf Specifies boot interface options

clientid Sets the client ID to a chassis MAC address or serial ID

downgrade Indicates whether NOS downgrade is allowed

duration Specifies the ZTP timeout value and number of retry attempts

formatovl Indicates the format overlay file system on the next reboot

formatsrletc Indicates the format /etc/opt/srlinux overlay file system

formatsrlopt Indicates the format /opt/srlinux overlay file system

list Displays the current value for each of the command options

nosinstall Specifies if a NOS upgrade should be performed as part of the
ZTP process

reload Reloads the config and updates the grub from the config

sriflags Sets the debug flag in cmdline to a specified value

3HE 16113 AAAA TQZZA

45

Zero Touch Provisioning SOFTWARE INSTALLATION GUIDE
Release 20.6

Table 6 describes examples of ztp option commands and available arguments.

Table 6 ZTP CLI: ztp option command examples
Command and Command syntax
description
autoboot ztp option autoboot --status [enable |
Enable or disable the disable]

auto-boot flag

bootintf

Specify the specific boot
interface to send DHCP
over

ztp option bootintf --intf <name of interfaces

bootintf ztp option bootintf --remove

Remove the previously
set boot interface

duration ztp option duration --timeout <integer in
Set the ZTP timeout seconds>

value Default=3600, Range=200-3600

duration ztp option duration --retry <integers

Set the number of ZTP Default=3, range=1-10
retry attempts

clientid ztp option clientid --type mac

Set the client ID to a
chassis MAC address

clientid ztp option clientid --type serialid

Set the client ID to a

seriallD

nosinstall ztp option nosinstall --status [enable |
Enable or disable NOS disable]

upgrade flag

list ztp option list

Display the current value
of each option

The following is an example output of the ztp option list command:

ztp option list

46 3HE 16113 AAAA TQZZA Edition: 2

SOFTWARE INSTALLATION GUIDE
Release 20.6

Zero Touch Provisioning

| autoboot | False

| nosinstall | False

| bootintf | mgmto

| timeout | 3600

| retry | 3

| clientid | serialid
| downgrade | True

| formatovl | False

| formatsrlopt | True

| formatsrletc | False

| srlflags | None

B R +

5.4.5 Managing images using ZTP CLI

The ZTP CLI ztp image command can be used to activate, delete, list, or perform an
upgrade at the console. The following command format is used:

ztp image <command> [<argumentss]

where command must be one of the following:

Command Description

activate Activate a specific image

bootorder Configure a grub entry to match the boot order as passed
delete Delete a specific image

list List all available NOS images

upgrade Perform an upgrade based on provided parameters
version Extract the version from a specific flename

Table 7 describes examples of ztp image commands and available arguments.

Table 7 ZTP CLI: ztp image command examples
Command and Command syntax
description
Activate ztp image activate --version <build versions> [-
Activate a specific NOS | -no-reboot]
image Note: - -no-reboot means do not reboot after activate to take
new build into use.

Edition: 2 3HE 16113 AAAA TQZZA 47

Zero Touch Provisioning

SOFTWARE INSTALLATION GUIDE
Release 20.6

48

Table 7 ZTP CLI: ztp image command examples (Continued)
Command and Command syntax
description
bootorder ztp image bootorder --version <build version 1>

Configure the bootorder

--version <build version 2> --version <build
version 3>

Note: --version means the image version order that booting is
attempted, which allows up to 3 versions.

Delete

Delete a specific NOS
image

ztp image delete --version <build version>

Warning: Active image must not be deleted.

List
List all available NOS
images

ztp image list

upgrade

Download an image for
NOS upgrade

ztp image upgrade --imageurl <URL to download
image>

upgrade

Download an md5 file for
NOS upgrade

ztp image upgrade --md5url <URL to download md5
file>

upgrade
Do not reboot after an
upgrade install

ztp image upgrade --no-reboot

version
Extract a version

ztp image version --filename <filename path> [-
-format <format types]

Example commands:
ztp image version --filename ./config --format json
ztp image version --filename ./srlinux-20.6.1-12617.tar

Example output (list images):

[root@localhost ~]# ztp image list

[1638.035200] EXT4-

fs (sdb2): mounted filesystem with ordered data mode. Opts: (null)

| 20.6.1-10654% |
| 20.6.1-10587 |
| 20.6.1 |

3HE 16113 AAAA TQZZA Edition: 2

SOFTWARE INSTALLATION GUIDE Zero Touch Provisioning

Release 20.6

Edition: 2

Example output (activate image):

[root@localhost ~]# ztp image list
[227.172007] EXT4-
fs (sdb2): mounted filesystem with ordered data mode. Opts: (null)

| 20.6.1-10587* |
| 20.6.1-10654 |
| 20.6.1 |

Example output (version):

[root@localhost ~]# ztp image version --filename ./srlinux-20.6.1-12617.tar
Fmmm - L +
| version | message |
tmm e m to—m - +
| 20.6.1-12617 | None |
do-mmmmm - Fommmmm - +

5.4.6 Configuring the NOS using ZTP CLI

The ZTP CLI image command can be used to push the configuration from the
console when SR Linux is not operational.

The following is an example showing how to configure the SR Linux with a
configuration downloaded with a user-provided URL:

ztp configure-nos --configurl <URL to download configurations

5.4.7 Redownloading the executable files with ZTP CLI

Executable files (RPMs, scripts, and configs) can be redownloaded if required. This
can be performed at the console using the ZTP CLI.

The following is an example showing how to run the provisioning script with a user-
provided URL:

ztp provision --url <URL where files should be downloaded from>

3HE 16113 AAAA TQZZA 49

Zero Touch Provisioning

SOFTWARE INSTALLATION GUIDE
Release 20.6

50

5.4.8 Starting, stopping, and restarting a ZTP process
using ZTP CLI

The ZTP process can be manually started, stopped, and restarted using a ZTP CLI
command at the console. The following command format is used:

ztp service <command>

[<argumentss>]

where command must be one of the following:

Command Description

canstart Indicates whether ZTP can be started in current condition
start Starts ZTP process if not currently running

stop Stops ZTP process if already running

restart Stops ZTP process (if running), and then restarts the process

Table 8 describes examples of ztp service commands and available arguments.

Table 8 ZTP CLI: ztp service command examples

Command and
description

Command syntax

canstart
Verify whether ZTP
can start in current
condition

ztp

service

canstart

start
Start the ZTP process

ztp

service

start

start

Startthe ZTP process
and enable/disable
auto-boot

ztp

service

start --autoboot [enable | disable]

stop
Stop the ZTP process

ztp

service

stop

stop

Stop the ZTP process
and disable auto-boot

ztp

service

stop --autoboot disable

restart

Restart the ZTP
process

ztp

service

restart

3HE 16113 AAAA TQZZA Edition: 2

SOFTWARE INSTALLATION GUIDE Zero Touch Provisioning

Release 20.6

Edition: 2

Table 8 ZTP CLI: ztp service command examples (Continued)
Command and Command syntax
description
restart ztp service restart --autoboot [enable | disable]

Restart the ZTP
process and enable/

disable auto-boot

5.4.9 Checking the status of aZTP process using ZTP CLI

The ZTP process status can be manually checked using the ZTP CLI command at
the console.

The following is an example showing how to check the status of the ZTP process:
ztp service status

Output Example:

ztp service status

et B e +
| Service | Status |
R R e +
| ztp | Active |
mmmmmmm oo oo mm oo +

5.4.10 Configuring options in the grub.cfg using SR Linux

CLI

Several auto-boot related options can be manually configured in the grub.cfg using
the SR Linux CLI when SR Linux is operational. The command has the following
format:

system boot autoboot <command> [<argumentss>]

where command must be one of the following:

Command Description
admin-state Enables or disables the auto-boot functionality
interface Sets the interface used for the auto-boot functionality
3HE 16113 AAAA TQZZA 51

Zero Touch Provisioning SOFTWARE INSTALLATION GUIDE

Release 20.6
Command Description
timeout Sets the timeout for each auto-boot attempt
attempts Sets the amount of auto-boot executions to try before rebooting
the system
client-id Sets the client ID to use on outgoing DHCP requests

Table 9 describes examples of SR Linux commands and available arguments.

Table 9 SR Linux CLI: autoboot commands for grub.cfg update
examples
Command and Command syntax
description
admin-state system boot autoboot admin-state [enable |
Enable or disable the disable]
auto-boot flag Default=enable
interface system boot autoboot interface <name of

Specify the specific boot | interface>
interface to send DHCP Default=mgmt0

over

timeout system boot autoboot timeout <integer in
Set the ZTP timeout seconds>

value Default=3600, Range=200-3600

attempts system boot autoboot attempts <integers

Set the number of ZTP Default=3, range=1-10
retry attempts

client-id system boot autoboot client-id [serial | mac]
Set the client ID to a Default=serial

serial ID or a chassis
MAC address

5.4.11 Specifying the image, kernel, or RAM to boot the
system using SR Linux CLI

Users can specify an ordered list of local images, kernels, or initial RAM disks to boot
the system using the SR Linux CLI when SR Linux is operational. This directly
translates into boot configuration in the grub, where the images or kernels are tried
in the order specified by the user. The command has the following format:

52 3HE 16113 AAAA TQZZA Edition: 2

SOFTWARE INSTALLATION GUIDE Zero Touch Provisioning
Release 20.6

system boot <command> [<argumentss]

where command must be the following:

Command Description
image User-specified ordered list of local images used to boot the
system

Table 10 describes an example of the SR Linux command and available argument.

Table 10 SR Linux CLI: image and kernel boot command example
Command and Command syntax
description
image system boot image <ordered list of images>

Specify an ordered list of | Note: Up to 3 files can be specified.
images to boot the
system

5.4.12 Starting, stopping, and restarting a ZTP process
using the SR Linux CLI

The ZTP process can be manually started, stopped, and restarted using the SR
Linux CLI when SR Linux is operational. The following command format is used:

tools system boot autoboot <commands

where command must be one of the following:

Command Description

execute-script Executes a specified script as if it were received during auto-boot
start Starts a ZTP process if not currently running

stop Stops a ZTP process if already running

restart Stops an in progress auto-boot process, then initiates another

Table 11 describes examples of SR Linux commands and available arguments.

Edition: 2 3HE 16113 AAAA TQZZA 53

Zero Touch Provisioning

SOFTWARE INSTALLATION GUIDE
Release 20.6

54

Table 11 SR Linux CLI: start, stop, and restart process command
examples

Command and
description

Command syntax

execute-script

Execute a specified
script

tools system boot autoboot execute-script <URL to
the scripts>

start
Start the ZTP process

tools system boot autoboot start

stop
Stop the ZTP process

tools system boot autoboot stop

restart

Restart the ZTP
process

tools system boot autoboot restart

Linux CLI

5.4.13 Checking the status of a ZTP process using the SR

The ZTP process status can be manually checked using the SR Linux CLI when SR

Linux is operational.

The following is an example showing how to check the status of the ZTP process:

tools system boot autoboot status

3HE 16113 AAAA TQZZA Edition: 2

SOFTWARE INSTALLATION GUIDE Zero Touch Provisioning
Release 20.6

5.5 References

5.5.1 ZTP CLI command structure

The following ZTP CLI commands are available at the console:

ztp
— chassis
— control
— [--format table | json]
— linecards
— [--format table | json]
— configure-nos
— --configurl <URL to download configuration>
— image
— activate
— -=version <build version>
— [--no-reboot]
— bootorder
— --version <up to 3 build versions>
— delete
— -=version <build version>
— list
— [--format table | json]
— upgrade
— --imageurl <URL to download image> --md5url <URL to download md5 file>
— [--no-reboot]
— [--skip-check]
— [--not-active]
— version
— -filename <name>
— [--format table | json]
— option
— autoboot
— --status enable | disable
— bootintf
— --intf <boot interface>
— clientid
— --type serialid
— downgrade
— --status enable | disable
— duration
— --timeout <seconds> --retry <integer>
— formatall
— --status enable | disable
— formatovl
— --status enable | disable
— formatsrletc
— --status enable | disable

Edition: 2 3HE 16113 AAAA TQZZA 55

Zero Touch Provisioning SOFTWARE INSTALLATION GUIDE

Release 20.6

— formatsriopt
— --status enable | disable
— grubopt
— [--key <text>]
— [--value <text>]
— [--delete]
— list
— [--format table | json]
— nosinstall
— --status enable | disable
— reload
— sriflags
— [--value <text>]
— [--delete]
— provision
— =-url <URL to download provisioning script>
— service
— canstart
— [--format table | json]
— restart
— --autoboot enable | disable
— start
— --autoboot enable | disable
— status
— [--format table | json]
— stop
— --autoboot enable | disable

5.5.2 SR Linux CLI command structure

The following SR Linux auto-boot related tool commands are available when the SR

Linux is operational:

system
— boot

— autoboot
— admin-state
— attempts
— client-id
— interface
— status
— timeout

— image

tools
— system
— boot
— autoboot
— execute-script
— restart

56 3HE 16113 AAAA TQZZA

Edition: 2

SOFTWARE INSTALLATION GUIDE Zero Touch Provisioning
Release 20.6

— start
— status
— stop

Refer to the SR Linux Data Model Reference for additional information about SR
Linux commands and parameter descriptions.

Edition: 2 3HE 16113 AAAA TQZZA 57

Zero Touch Provisioning SOFTWARE INSTALLATION GUIDE
Release 20.6

58 3HE 16113 AAAA TQZZA Edition: 2

SOFTWARE INSTALLATION GUIDE Appendix: ZTP Python library

Release 20.6

Edition: 2

Appendix: ZTP Python library

This appendix describes the importable ZTP Python library.

For additional information about the ZTP process, see Zero Touch Provisioning.

ZTPClient

The ZTPClient communicates with the SR Linux ZTP process. The APIClient is the
core object of ZTPClient. Each use of the ZTPClient passes through a call to one of
its methods.

The path to the API client class:
class ztpclient.ztpclient. APIClient(base_url=None)

Example:

import ztpclient
class ZTP(object) :

def init (self):
self.client = ztpclient.APIClient ()
def get option(self, item):
ret = self.client.option list()
return ret['message'].get (item, None)
def find current version (self):
response = self.client.image list()
if response
image = response|['message']
if image and isinstance(image, list) and len(list) > O0:
return image [0] .replace('*', '')
return None
def perform ztp(self):
self.nos_install()
self.nos_configure ()
def nos_install (self):
ret = self.client.image upgrade (srlinux image url, srlinux image md5_url)
if ret:
return int (ret['status'])
return -1
def nos_configure (self) :
ret = self.client.configure(srlinux config url)
if ret:
return int (ret['status'])
return -1
if name_ == '_main_ ':
ztp = ZTP()
ztp.perform ztp ()

3HE 16113 AAAA TQZZA 59

Appendix: ZTP Python library SOFTWARE INSTALLATION GUIDE

Release 20.6

Information
Arguments
Returns

Example

Information
Arguments
Returns

Example

60

Functions

chassis_control()

Lists control card information.

Description

(dict) The API response as a Python dictionary. The status attribute is set to 0 if successful,
or a non-zero value otherwise. The message attribute contains dictionary with control card
information.

>>> client.chassis control ()
{u'status': 0, u'message': {u'operation': u'active'}}
>>> client.chassis control ()
{

{u'status': 0, u'message': {u'operation': u'standby'}}

chassis_linecards|()

Lists line card information of the chassis.

Description

(dict) The API response as a Python dictionary. The status attribute is set to 0 if successful, or
a non-zero value otherwise. The message attribute contains list of dicts, where list item is dict
with line card information.

>>> client.chassis linecards ()

{u'status': 0, u'message': [{u'card type': 127, u'card name': u'imm32-
100g-gsfp28+4-400g-gsfpdd', u'slot num': 1}, {u'card type': 0,

u'card name': u'empty', u'slot num': 2}, {u'card type': 0,

u'card name': u'empty', u'slot num': 3}, {u'card type': 127,

u'card name': u'imm32-100g-gsfp28+4-400g-gsfpdd', u'slot num': 4}]}

configure(configurl)

Downloads the configuration from a specific configurl and applies the
configuration to SR Linux. If SR Linux service(s) is not running, the service(s) are
started and the configuration is applied.

3HE 16113 AAAA TQZZA Edition: 2

SOFTWARE INSTALLATION GUIDE

Appendix: ZTP Python library

Release 20.6
Information Description
Arguments configurl (string): The URL from where the configuration will be downloaded.
Returns (dict) The API response as a Python dictionary. The status attribute is set to 0 if successful, or
a non-zero value otherwise.
Example —
image_activate(version)
Reboots the chassis to the image version provided. If the current active version is the
same as the specified version, then no action is performed. If there is no image in
the chassis of specific version, then no action is performed. If the specified
version is available, then chassis will be rebooted to that version.
Information Description
Arguments version (string): The image version.
Returns (dict) The API response as a Python dictionary. The status attribute is set to 0 if successful,
or a non-zero value otherwise.
Note: This APl may result in a chassis reboot to activate the image version.
Examples >>> client.image list ()
{u'status': 0, u'message': [u'20.6.1-18836*', u'20.6.1-17740",
u'20.6.1-17738']}
>>> client.image activate('20.6.1-3333")
{u'status': 127, u'message': u'20.6.1-3333 is not available'}
>>> client.image activate('20.6.1-18836")
{u'status': 127, u'message': u'20.6.1-18836 is current active version.
No additional change required'}
image_bootorder(bootorder)
Sets the image bootorder in the Grub configuration. On next reboot, the chassis
reboots to the first image in the list.
Information Description
Arguments bootorder (list): The image version list.
Returns (dict) The API response as a Python dictionary. The status attribute is set to 0 if successful, or
a non-zero valuse otherwise.
Edition: 2 3HE 16113 AAAA TQZZA 61

Appendix: ZTP Python library

SOFTWARE INSTALLATION GUIDE
Release 20.6

Information
Examples

Information
Arguments
Returns

Examples

Information
Arguments
Returns

Examples

62

Description

>>> client.image bootorder (['20.6.1-18836','20.6.1-17740','20.6.1-
17738'1)

{urstatus':
>>> client.image bootorder('20.6.1-18836,20.6.1-17740,20.6.1-17738")
{u'status': 0, u'message':

0, u'message': None}

None }

image_delete(version)

Removes the specific image version from the chassis. If the specified version is
not available in the chassis, then no action is performed. If the specified versionis
the current active version in the chassis, then no action is performed.

Description
version (string): The image version.

(dict) The API response as a Python dictionary. The status attribute is set to 0 if successful,
or a non-zero value otherwise.

>>> client.image list()
{u'status': 0, u'message':
u'20.6.1-17738']1}

>>> client.image delete('20.6.1-3333"')

{u'status': 0, u'message': u'20.6.1-3333 version not available'}
>>> client.image delete('20.6.1-18836")

{u'status': 127, u'message':

[u'20.6.1-18836*', u'20.6.1-17740",

u'Cannot remove active version'}

image_list()
Lists all currently available image versions on the hardware.

Description

(dict) The API response as a Python dictionary. The status attribute is set to 0 if successful,
or a non-zero value otherwise. The message attribute contains the list of images. The item in
list = indicates the current active image version.

Note: The image 1list does not indicate the boot order.
>>> client.image list()
{u'status': 0, u'message':
u'20.6.1-17738']}

[u'20.6.1-18836*', u'20.6.1-17740",

3HE 16113 AAAA TQZZA Edition: 2

SOFTWARE INSTALLATION GUIDE Appendix: ZTP Python library

Release 20.6

Information
Arguments

Returns

Examples

Information
Arguments

Returns

Examples

Edition: 2

image_upgrade(image_url, md5_url, options)
Performs an image upgrade.

Description
image_url (string): The URLfrom where the image should be downloaded.

md5_url (string): The URL from where the pre-calculated md5sum of the image should be
downloaded. Once image is downloaded, the calculated md5sum is checked against the
downloaded md5sum. If the values do not match, then image upgrade is discarded.

no_reboot (boolean): If set to true, a chassis reboot is not triggered after an image upgrade. The
new image will not be taken into use until the next reboot. The default is false.

Skip_check (boolean): If set to true, skip status of autoboot parameter and a forced upgrade
is performed. If set to false, the image upgrade will only be performed if autoboot is enabled.
The default is false.

not_active (boolean): If set to true, after an image install, the image will not be marked as the
active image (that is, will not reboot to the upgrade image). The current working image is still
marked as active. The default is false.

Note: Based on the setting and outcome, the chassis can be rebooted when invoking this API.
Note: To perform ZTP, the autoboot flag must be enabled

(dict) The API response as a Python dictionary. The status attribute is set to 0 if successful,
or a non-zero value otherwise.

option_autoboot(status)

Sets the autoboot option status. This option determines if autoboot should be
performed during ZTP. If disabled, ZTP skips all steps and starts the SR Linux
application.

Description

status (ZtpStatus): ztpclient.ZtpStatus.enable to enable the option,
ztpclient.ZtpStatus.disable otherwise.

(dict) The API response as a Python dictionary. The status attribute is set to 0 if successful,
or a non-zero value otherwise.

>>> client.option autoboot (ztpclient.ZtpStatus.enable)
{u'status': 0, u'message': None}

3HE 16113 AAAA TQZZA 63

Appendix: ZTP Python library SOFTWARE INSTALLATION GUIDE

Release 20.6

Information
Arguments
Returns

Examples

Information
Arguments
Returns

Examples

Information
Arguments

Returns

64

option_bootintf(interface)

Sets the interface to be used by ZTP in various procedures. Default value is mgmt 0.

Description
interface (string): The Linux network interface name.

(dict) The API response as a Python dictionary. The status attribute is set to 0 if successful,
or a non-zero value otherwise.

>>> client.option bootintf ('mgmt0')
{u'status': 0, u'message': None}

option_clientid(type)

Sets the client ID used by ZTP when performing a DHCP Request. The possible
values are serialid and mac. When serialid is selected, the chassis serial
number is used as the client ID in the DHCP Request. When mac is selected, the
Linux interface hardware address (chassis MAC address) is used as client identifier.

Description
type (ZtpClientld): The client identifier type.

(dict) The API response as a Python dictionary. The status attribute is set to 0 if successful,
or a non-zero value otherwise.

>>> client.option clientid(ztpclient.ZtpClientId.serialid)
{u'status': 0, u'message': None}

>>> client.option clientid(ztpclient.ZtpClientId.mac)
{u'status': 0, u'message': None}

option_downgrade(status)

Sets the downgrade option status of ZTP. When enabled, the option allows ZTP to
perform a downgrade of the image (that is, move from higher version image to lower
version). When the option is disabled, only upgrades are allowed.

Description

status (ZtpStatus): ztpclient.ZtpStatus.enable to enable the option,
ztpclient.ZtpStatus.disable otherwise.

(dict) The API response as a Python dictionary. The status attribute is set to 0 if successful,
or a non-zero value otherwise.

3HE 16113 AAAA TQZZA Edition: 2

SOFTWARE INSTALLATION GUIDE Appendix: ZTP Python library

Release 20.6

Information
Examples

Information
Arguments

Returns

Examples

Information
Arguments

Returns

Examples

Edition: 2

Description

>>> client.option_ downgrade (ztpclient.ZtpStatus.enable)
{u'status': 0, u'message': None}

option_duration(timeout, retry)

Sets the timeout and retry parameters of the ZTP process. If not successful, the
ZTP process keeps re-trying for the specified timeout seconds. Once the timeout
is reached, the process stops. If the number of attempts are equal to the retry
value, then the specified action is taken. The default action is to reboot.

Description
timeout (int): The number of seconds to perform ZTP before it is marked as failed.
retry (int): The number of attempts before stopping the ZTP process.

(dict) The API response as a Python dictionary. The status attribute is set to 0 if successful,
or a non-zero value otherwise.

>>> client.option duration (3600, 3)
{u'status': 0, u'message': None}

option_formatovl(status)

Sets the formatovl option status of ZTP. When enabled, the option sets the
srl.formatovl flag in the Grub configuration. On the next reboot, if the
srl.formatovl flag is enabled, the NOKIA-DATA overlay file system is formatted.
Any change performed on the overlay file system will be removed.

Description

status (ZtpStatus): ztpclient.ZtpStatus.enable to enable the option,
ztpclient.ZtpStatus.disable otherwise.

(dict) The API response as a Python dictionary. The status attribute is set to 0 if successful,
or a non-zero value otherwise.

>>> client.option_ formatovl (ztpclient.ZtpStatus.enable)
{u'status': 0, u'message': None}

3HE 16113 AAAA TQZZA 65

Appendix: ZTP Python library SOFTWARE INSTALLATION GUIDE

Release 20.6

Information
Arguments

Returns

Examples

Information
Arguments

Returns

Examples

Information
Arguments
Returns

66

option_formatsrletc(status)

Sets the formatsrletc option status of ZTP. When enabled, the option sets the
srl.formatetc flag in the Grub configuration. On the next reboot, if the
srl.formatetc flag is enabled, the NOKIA-ETC overlay file system is formatted.
Any change performed on the overlay file system will be removed.

Description

status (ZtpStatus): ztpclient.ZtpStatus.enable to enable the option,
ztpclient.ZtpStatus.disable otherwise.

(dict) The API response as a Python dictionary. The status attribute is set to 0 if successful,
or a non-zero value otherwise.

>>> client.option formatsrletc(ztpclient.ZtpStatus.enable)
{u'status': 0, u'message': None}

option_formatsriopt(status)

When enabled, the option sets the sr1. formatopt flag in the Grub configuration.
On the next reboot, if the sr1 . formatopt flag is enabled, the NOKIA-OPT overlay
file system is formatted. Any change performed on the overlay file system will be
removed.

Description

status (ZtpStatus): ztpclient.ZtpStatus.enable to enable the option,
ztpclient.ZtpStatus.disable otherwise.

(dict) The API response as a Python dictionary. The status attribute is set to 0 if successful,
or a non-zero value otherwise.

>>> client.option formatsrlopt (ztpclient.ZtpStatus.enable)
{u'status': 0, u'message': None}

option_list()

Lists all the options of the ZTP process.

Description

(dict) The API response as a Python dictionary. The status attribute is set to 0 if successful,
or a non-zero value otherwise.

3HE 16113 AAAA TQZZA Edition: 2

SOFTWARE INSTALLATION GUIDE Appendix: ZTP Python library

Release 20.6
Information Description
Examples >>> client.option list ()
{u'status': 0, u'message': {u'formatsrletc': False, u'retry': 3,
u'bootintf': u'mgmt0', u'clientid': u'serialid', u'autoboot': False,
u'srlflags': u'no-reboot', u'formatovl': False, u'formatsrlopt':
False, u'timeout': 3600, u'downgrade': True, u'nosinstall': False}}
option_nosinstall(status)
Sets the nosinstall option status. This option determines if an image upgrade
should be performed during ZTP. Only the image upgrade step is skipped. All other
steps of ZTP are still performed.
Information Description
Arguments status (ZtpStatus): ztpclient.ZtpStatus.enable to enable the option,
ztpclient.ZtpStatus.disable otherwise.
Returns (dict) The API response as a Python dictionary. The status attribute is set to 0 if successful,
or a non-zero value otherwise.
Examples >>> client.option nosinstall (ztpclient.ZtpStatus.enable)
{u'status': 0, u'message': None}
provision(provisionurl)
Downloads the provision script from a specific provisionurl and executes the
script. The script could be either Python or Bash.
Information Description
Arguments provisionurl (string): The URL from where the provisioning script will be downloaded.
Returns (dict) The API response as a Python dictionary. The status attribute is set to 0 if successful,
or a non-zero value otherwise.
Note: If the script returns a non-zero exit code, then the status attribute in the return dictionary
is set to non-zero. It could be possible that the provisioning script has a chassis reboot command
and a chassis will reboot while executing this API.
Note: To perform ZTP, the autoboot flag must be enabled
Examples >>> client.provision('http://135.227.248.118/duts/IDNS1833F0766/
srlinux ztp.py')
Edition: 2 3HE 16113 AAAA TQZZA 67

Appendix: ZTP Python library

Information
Arguments
Returns

Examples

Information
Arguments
Returns

Examples

Information
Arguments
Returns

Examples

68

service_restart()

Restarts the ZTP service.

Description

(dict) The API response as a Python dictionary, including the service status in message
attribute. status attribute is set to 0 if successful, non-zero otherwise.
>>> client.service restart ()

{u'status': 0, u'message': {u'status': u'Service started'}}

service_start()

Starts the ZTP service (if not already running).

Description

(dict) The API response as a Python dictionary, including the service status in message
attribute. The status attribute is set to 0 if successful, or a non-zero value otherwise.
>>> client.service start()

{u'status': 0, u'message': {u'status': u'Service started'}}

service_status()

Gets the current status of the ZTP service. The ZTP service will be running as
systemd service. It can be checked manually by running ‘systemctl status ztp’.

Description

(dict) The API response as a Python dictionary, including the service status in message
attribute. The status attribute is set to 0 if successful, or a non-zero value otherwise.

>>> client.service status()

{u'status': 0, u'message': {u'status': u'Inactive'}}

>>> client.service status()
{u'status': {u'status"':

0, u'message': u'Active'}}

3HE 16113 AAAA TQZZA

SOFTWARE INSTALLATION GUIDE
Release 20.6

Edition: 2

SOFTWARE INSTALLATION GUIDE Appendix: ZTP Python library
Release 20.6

service_stop()

Stops the ZTP service (if already running).

Information Description
Arguments —
Returns (dict) The API response as a Python dictionary, including the service status in message
attribute. The status attribute is set to 0 if successful, or a non-zero value otherwise.
Examples >>> client.service stop()
{u'status': 0, u'message': {u'status': u'Service stopped'}}

Edition: 2 3HE 16113 AAAA TQZZA 69

Appendix: ZTP Python library SOFTWARE INSTALLATION GUIDE
Release 20.6

70 3HE 16113 AAAA TQZZA Edition: 2

Customer Document and Product Support

Customer Documentation

Customer Documentation Welcome Page

Technical Support

Product Support Portal

Documentation Feedback

Customer Documentation Feedback

https://documentation.nokia.com
https://customer.nokia.com/support/s/
mailto:documentation.feedback@nokia.com

© 2020 Nokia.
3HE 16113 AAAA TQZZA

	SOFTWARE INSTALLATION GUIDE Release 20.6
	Table of contents
	1 Getting started
	1.1 About this document
	1.2 Summary of changes
	1.3 Precautionary messages
	1.4 Conventions

	2 Introduction
	2.1 File system layout
	2.2 Boot process

	3 Installing containers
	3.1 Container installation prerequisites
	3.2 Launching a container manually
	3.3 Launching a container topology
	3.4 Destroying an existing topology

	4 Installing software
	4.1 Installation concepts
	4.1.1 7250 IXR installation concepts
	4.1.2 7220 IXR-D installation concepts
	4.1.3 Software image

	4.2 Installing the software manually on a 7250 IXR
	4.3 Installing the software manually on a 7220 IXR-D
	4.3.1 Manual bootstrapping

	4.4 Upgrading the software

	5 Zero Touch Provisioning
	5.1 Applicability
	5.2 Overview
	5.2.1 Network requirements

	5.3 Process information
	5.3.1 DHCP discovery and solicitation
	5.3.1.1 Auto-provisioning options
	5.3.1.2 DHCP server Option 42 (IPv4) and 56 (IPv6) for NTP

	5.3.2 DHCP offer
	5.3.2.1 Default gateway route configuration for IPv4
	5.3.2.2 DHCP relay

	5.3.3 Python provisioning script
	5.3.4 Auto-provisioning failures
	5.3.5 ZTP log files

	5.4 Configuring ZTP
	5.4.1 ZTP CLI versus SR Linux CLI
	5.4.2 Configuring the Python provisioning script
	5.4.3 Configuring the ZTP timeout value using the provisioning script
	5.4.4 Configuring options in the grub.cfg using ZTP CLI
	5.4.5 Managing images using ZTP CLI
	5.4.6 Configuring the NOS using ZTP CLI
	5.4.7 Redownloading the executable files with ZTP CLI
	5.4.8 Starting, stopping, and restarting a ZTP process using ZTP CLI
	5.4.9 Checking the status of a ZTP process using ZTP CLI
	5.4.10 Configuring options in the grub.cfg using SR Linux CLI
	5.4.11 Specifying the image, kernel, or RAM to boot the system using SR Linux CLI
	5.4.12 Starting, stopping, and restarting a ZTP process using the SR Linux CLI
	5.4.13 Checking the status of a ZTP process using the SR Linux CLI

	5.5 References
	5.5.1 ZTP CLI command structure
	5.5.2 SR Linux CLI command structure

	Appendix: ZTP Python library
	Customer Document and Product Support

