7210 SAS X OS
Quality of Service Guide

Software Version: 7210 SAS X OS 5.0 Rev. 02
December 2012
Document Part Number: 93-0414-01-02
Table of Contents

Preface ... 11

Getting Started
Alcatel-Lucent 7210 SAS-Series Services Configuration Process 16

QoS Policies
QoS Overview ... 18
QoS Policies .. 19
Service and Network QoS Policies 22
Network QoS Policies ... 23
Network Queue QoS Policies .. 28
Meter Parameters .. 29
Queue Parameters .. 35
Service Ingress QoS Policies .. 40
Hierarchical Ingress Policing ... 45
Service Egress QoS Policies ... 46
Access Egress QoS Policies ... 51
Buffer Pools ... 52
Queue Management Policies .. 59
Queue Management Policy Parameters 60
Remark Policy ... 61
Egress Port Rate Limiting .. 62
Forwarding Classes .. 64
QoS Policy Entities ... 65

Port Level Egress Rate-Limiting
Overview ... 68
Applications ... 68
Affect of Port Level Rate-Limiting on Queue Functionality 69
Basic Configurations .. 70
Modifying Port Level Egress-Rate Command 71
Removing Port Level Egress-Rate Command 72
Default Egress-Rate Values ... 73

Frame Based Accounting
Overview ... 78
Affects of Enabling Ingress Frame Based Accounting on Ingress Meter Functionality 78
Affects of Egress Frame Based Accounting on Queue Functionality 78
Accounting and Statistics .. 78
Basic Configurations .. 79
Enabling and Disabling Frame-Based Accounting 80
Default Frame-Based-Accounting Values 80
Frame Based Accounting Command Reference 81
Configuration Commands .. 82
Table of Contents

Show Commands ... 83

Network QoS Policies

Overview ... 88
- Normal QoS Operation ... 90
- Network Qos Policy (ip-interface type) Functionality .. 91
- Upgrading from Release 3.0 to Release 4.0 .. 93
- DSCP Marking CPU Generated Traffic ... 94
- Default DSCP Mapping Table .. 96

- Basic Configurations ... 97
 - Create a Network QoS Policy .. 97
 - Default Network Policy Values ... 100

- Service Management Tasks ... 104
 - Deleting QoS Policies .. 104
 - Remove a Policy from the QoS Configuration ... 105
 - Copying and Overwriting Network Policies ... 105
 - Editing QoS Policies ... 106
 - Resource Allocation for Network QoS policy ... 107
 - Network QoS Policies Resource Usage Examples 109
 - Network QoS Policy Command Reference ... 117

Network Queue QoS Policies

Overview ... 154
- Network Queue Parent Scheduler .. 154

- Basic Configurations ... 156
 - Create a Network Queue QoS Policy .. 156
 - Applying Network Queue Policies .. 158
 - Ethernet Ports ... 158

- Default Network Queue Policy Values .. 159

- Service Management Tasks ... 162
 - Deleting QoS Policies .. 162
 - Copying and Overwriting QoS Policies ... 163
 - Editing QoS Policies ... 165
 - Network Queue QoS Policy Command Reference 167

Service Ingress QoS Policies

Overview ... 180
- Resource Allocation for SAP ingress queuing policy 180
- Configuration Guidelines for SAP ingress Queuing and Shaping 181
 - Default SAP Ingress Policy .. 182
 - SAP Ingress Policy Defaults ... 183

 - SAP Ingress queues ... 183
 - Use of Index file by SAP QoS Ingress ... 186
 - Service Ingress Meter Selection Rules ... 188

 - Service Ingress Policy Configuration Considerations 191
 - Resource Allocation for Service Ingress QoS policies 192
 - Computation of resources used per SAP ingress policy 194

 - Basic Configurations ... 198
 - Create Service Ingress QoS Policies ... 198
Table of Contents

Remark Policy Command Reference ... 363

Multipoint Bandwidth Management
 Overview .. 384
 Configuration Guidelines .. 385
 Multipoint Bandwidth Management Command Reference 387

Standards and Protocol Support .. 401

Index .. 405
LIST OF TABLES

Getting Started
Table 1: Configuration Process ... 16

QoS Policies
Table 2: QoS Policy Types and Descriptions .. 21
Table 3: QoS Policy Types and Descriptions .. 21
Table 4: Default Network QoS Policy (type = ip-interface) Egress Marking .. 24
Table 5: Default Network QoS Policy (type = ip-interface) to FC Mapping .. 25
Table 6: Default Network QoS Policy of type ’port’ Egress Marking .. 26
Table 7: Default Network QoS Policy of Type Port - Dot1p/DSCP to FC Mapping .. 27
Table 8: Default Network Queue Policy Definition 28
Table 9: Supported Hardware rates and burst step sizes for CIR and PIR values .. 31
Table 10: Administrative Rate Example .. 32
Table 11: Supported Hardware Rates and CIR/PIR Values 38
Table 12: Supported Hardware Rates and CIR/PIR Values 38
Table 13: .. 42
Table 14: .. 42
Table 15: Service Ingress QoS Policy IP Match Criteria 42
Table 16: Service Ingress QoS Policy MAC Match Criteria Service Ingress QoS Policy IPv6 Match Criteria in network mode .. 42
Table 17: MAC Match Ethernet Frame Types ... 43
Table 18: MAC Match Criteria Frame Type Dependencies 43
Table 19: Default Service Ingress Policy ID 1 Definition 43
Table 20: Default SAP Egress Policy ID 1 Definition 48
Table 21: TAF Impact on Shared Buffer Average Utilization Calculation .. 57
Table 22: Default Slope Policy Definition .. 59
Table 23: Slope Policy Defaults ... 60
Table 24: Forwarding Classes .. 62
Table 25: Forwarding Class to Queue-ID Map ... 63

Port Level Egress Rate-Limiting

Frame Based Accounting

Network QoS Policies
Table 26: DSCP and Dot1p Marking .. 94
Table 27: Network Policy Defaults .. 100
Table 28: Default Network QoS Policy of Type IP Interface, LSP EXP to FC Mapping on Ingress (Color aware policing is supported on network ingress.) .. 101
Table 29: Default DSCP Names to DSCP Value Mapping Table .. 135
Table 30: Default Class Selector Code Points to DSCP Value Mapping Table .. 135
Table 31: Show QoS Network Output Fields .. 146
Table 32: Show QoS Network Output Fields .. 151

Network Queue QoS Policies
List of Tables

Table 33: pir-level Assignment to queue based on the cir-level 155
Table 34: Network Queue Labels and Descriptions .. 176

Service Ingress QoS Policies
Table 35: SAP Ingress Policy Defaults ... 183

Access Egress QoS Policies

SAP Egress Policies
Table 36: FC to Queue Map ... 310

QoS Schedulers
Table 37: pir-level Assignments ... 332
Table 38: Scheduling Order when Multiple SAPs are Configured on a Port 335
Table 39: Scheduling Order when Multiple SAPs are Configured on a Port 337
Table 40: Scheduling Order for Queues within an SAP ... 337
Table 41: Scheduling Order when Multiple SAPs Configured on a Port 338

Queue Management Policies
Table 42: Show Queue Management Policy Output Fields 353

Remark Policies
Table 43: Summary of remark policy and attachment points 358
Table 44: Show Remark Policy Output Fields ... 373

Multipoint Bandwidth Management
Table 45: FC Queue Table .. 391
Table 46: Show Multipoint-management Policy Output Fields 394
LIST OF FIGURES

QoS Policies
Figure 1: 7210 SAS X Traffic Types ... 22
Figure 2: Traffic Queuing Model for Forwarding Classes 41
Figure 3: RED Slope Characteristics ... 56

Port Level Egress Rate-Limiting

Frame Based Accounting

Network QoS Policies

Network Queue QoS Policies

Service Ingress QoS Policies

Access Egress QoS Policies

SAP Egress Policies

QoS Schedulers
Figure 4: FC based scheduling (without SAP aggregate shaper) 334
Figure 5: SAP Based Scheduling (with SAP aggregate shaper) 336
Figure 6: Network Port Egress Scheduling .. 338

Queue Management Policies

Remark Policies

Multipoint Bandwidth Management
About This Guide

This guide describes the Quality of Service (QoS) provided by the 7210-SAS X OS and presents examples to configure and implement various protocols and services.

This document is organized into functional chapters and provides concepts and descriptions of the implementation flow, as well as Command Line Interface (CLI) syntax and command usage.

Audience

This manual is intended for network administrators who are responsible for configuring the 7210 SAS-Series routers. It is assumed that the network administrators have an understanding of networking principles and configurations. Protocols, standards, and services described in this manual include the following:

- CLI concepts
- Quality of Service (QoS) policies and profiles
List of Technical Publications

The 7210-SAS M, X OS documentation set is composed of the following books:

- **7210-SAS M, X OS Basic System Configuration Guide**
 This guide describes basic system configurations and operations.

- **7210-SAS M, X OS System Management Guide**
 This guide describes system security and access configurations as well as event logging and accounting logs.

- **7210-SAS M, X OS Interface Configuration Guide**
 This guide describes card, Media Dependent Adapter (MDA), and port provisioning.

- **7210-SAS M, X OS Router Configuration Guide**
 This guide describes logical IP routing interfaces and associated attributes such as an IP address, port, link aggregation group (LAG) as well as IP and MAC-based filtering.

- **7210 SAS X OS Services Guide**
 This guide describes how to configure service parameters such as customer information, and user services.

- **7210-SAS M, X OS OAM and Diagnostic Guide**
 This guide describes how to configure features such as service mirroring and Operations, Administration and Management (OAM) tools.

- **7210 SAS X OS Quality of Service Guide**
 This guide describes how to configure Quality of Service (QoS) policy management.

- **7210-SAS M, X OS MPLS Guide**
 This guide describes how to configure Multiprotocol Label Switching (MPLS) and Label Distribution Protocol (LDP).

- **7210-SAS M, X OS OS Routing Protocols Guide**
 This guide provides an overview of routing concepts and provides configuration examples for OSPF, IS-IS, and route policies.
Technical Support

If you purchased a service agreement for your 7210 SAS device and related products from a distributor or authorized reseller, contact the technical support staff for that distributor or reseller for assistance. If you purchased an Alcatel-Lucent service agreement, contact your welcome center.

Web: http://www1.alcatel-lucent.com/comps/pages/carrier_support.jhtml
Getting Started

In This Chapter

This chapter provides process flow information to configure Quality of Service (QoS) policies and provision services.
Table 1 lists the tasks necessary to configure and apply QoS policies. This guide is presented in an overall logical configuration flow. Each section describes a software area and provides CLI syntax and command usage to configure parameters for a functional area.

Table 1: Configuration Process

<table>
<thead>
<tr>
<th>Area</th>
<th>Task</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy configuration</td>
<td>Configuring QoS Policies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Egress Rate</td>
<td>Port Level Egress Rate-Limiting on page 67</td>
</tr>
<tr>
<td></td>
<td>• Accounting Mode</td>
<td>Frame Based Accounting on page 77</td>
</tr>
<tr>
<td></td>
<td>• Network</td>
<td>Network QoS Policies on page 87</td>
</tr>
<tr>
<td></td>
<td>• Network queue</td>
<td>Network Queue QoS Policies on page 153</td>
</tr>
<tr>
<td></td>
<td>• SAP ingress</td>
<td>Service Ingress QoS Policies on page 179</td>
</tr>
<tr>
<td></td>
<td>• SAP egress</td>
<td>SAP Egress Policies on page 309</td>
</tr>
<tr>
<td></td>
<td>• Scheduler Policies</td>
<td>QoS Schedulers on page 331</td>
</tr>
<tr>
<td></td>
<td>• Queue Management</td>
<td>Queue Management Policies on page 339</td>
</tr>
<tr>
<td></td>
<td>• Remark Policies</td>
<td>Remark Policies on page 357</td>
</tr>
<tr>
<td></td>
<td>• Multipoint Bandwidth Management</td>
<td>Multipoint Bandwidth Management on page 383</td>
</tr>
<tr>
<td></td>
<td>• Slope</td>
<td>Slope QoS Policies on page 389</td>
</tr>
<tr>
<td>Reference</td>
<td>• List of IEEE, IETF, and other proprietary entities</td>
<td>Standards and Protocol Support on page 423</td>
</tr>
</tbody>
</table>
QoS Policies

In This Chapter

This chapter provides information about Quality of Service (QoS) policy management.

Topics in this chapter include:

- QoS Overview on page 18
- Service and Network QoS Policies on page 22
 - Network QoS Policies on page 23
 - Network Queue QoS Policies on page 28
 - Service Ingress QoS Policies on page 40
 - Queue Parameters on page 35
- Queue Management Policies on page 53
- QoS Policy Entities on page 64
- Configuration Notes on page 65
The 7210 SAS X is designed with QoS mechanisms on both ingress and egress to support multiple services per physical port. The 7210 SAS X has extensive and flexible capabilities to classify, police, shape, and mark traffic.

In the Alcatel-Lucent service router’s service model, a service is provisioned on the provider-edge (PE) equipment. Service data is encapsulated and then sent in a service tunnel to the far-end Alcatel-Lucent service router where the service data is delivered.

The operational theory of a service tunnel is that the encapsulation of the data between the two Alcatel Lucent service routers appear like a Layer 2 path to the service data although it is really traversing an IP or IP/MPLS core. The tunnel from one edge device to the other edge device is provisioned with an encapsulation and the services are mapped to the tunnel that most appropriately supports the service needs.

The 7210 SAS supports eight forwarding classes internally named: Network-Control, High-1, Expedited, High-2, Low-1, Assured, Low-2 and Best-Effort. The forwarding classes are discussed in more detail in Forwarding Classes on page 62.

7210 SAS use QoS policies to control how QoS is handled at distinct points in the service delivery model within the device. There are different types of QoS policies that cater to the different QoS needs at each point in the service delivery model. QoS policies are defined in a global context in the 7210 SAS and only take effect when the policy is applied to a relevant entity.

QoS policies are uniquely identified with a policy ID number or name. Policy ID 1 or Policy ID “default” is reserved for the default policy which is used if no policy is explicitly applied.

The QoS policies within the 7210 SAS can be divided into three main types:

- QoS policies are used for classification, ingress policing, egress queue attributes, and marking.
- Queue management policies define buffer allocations and WRED slope definitions.
- Scheduler policies determine how queues are scheduled.
QoS Policies

7210 SAS X QoS policies are applied on service ingress, service egress, network port ingress and egress, and network IP interfaces.

- Classification rules for how traffic is mapped to forwarding classes
- Forwarding class association with meters and meter parameters used for policing (rate-limiting).
- Queuing parameters for shaping, scheduling, and buffer allocation
- QoS marking/interpretation

There are several types of QoS policies:

- Service ingress
- Service egress
- Network (for ingress and egress)
- Network queue (for egress)
- Scheduler
- Queue Management
- Remark policies

Service ingress QoS policies are applied to the customer-facing Service Access Points (SAPs). Traffic that enters through the SAP is classified to map it to a Forwarding Class (FC). Forwarding class is associated with meters on ingress. The mapping of traffic to meters can be based on combinations of customer QoS marking (IEEE 802.1p bits), IP and MAC criteria. The characteristics of the forwarding class meters are defined within the policy as to the number of forwarding class meters for unicast traffic and the meter characteristics (like CIR, PIR, etc.). Each of the forwarding classes can be associated with different unicast parameters. A service ingress QoS policy also defines up to three (3) meters per forwarding class to be used for multipoint traffic for multipoint services. There can be up to 16 meters in total per Service ingress QoS policies. In the case of the VPLS, four types of forwarding are supported (which is not to be confused with forwarding classes); unicast, multicast, broadcast, and unknown. Multicast, broadcast, and unknown types are flooded to all destinations within the service while the unicast forwarding type is handled in a point-to-point fashion within the service.

Service egress QoS policies are applied to SAPs and map forwarding classes to service egress queues for a service. The system allocates 8 queues per SAP for the 8 forwarding classes. A service egress QoS policy also defines how to remark the forwarding class to IEEE 802.1p bits in the customer traffic.

There are two types of network QoS policies, one applied to a network IP interface and the other type is applied to a network port. On ingress, the policy applied to an IP interface maps incoming
values to forwarding class and profile state for the traffic received from the core network. On egress, the policy maps forwarding class and profile state to values for traffic to be transmitted into the core network. The network policy applied to a network port maps incoming IP packets, DSCP or Dot1p values, to the forwarding class and the profile state for the traffic received from the core network. On egress, the policy maps forwarding class and profile state to DSCP and/or Dot1p values for IP traffic to be transmitted into the core network.

Network queue policies are applied on egress to ports. The policies define the forwarding class queue characteristics for these entities. The FCs are mapped onto the queues. There are 8 queues at the port level. FC-to-queue mapping is static and is not configurable. The number of queues are static and service are always 8 queues at the port level.

Service ingress, service egress, and network QoS policies are defined with a scope of either template or exclusive. Template policies can be applied to multiple entities (such as SAPs and ports) whereas exclusive policies can only be applied to a single entity.

One service ingress and one service egress QoS policy can be applied to a specific SAP. One network QoS policy can be applied to a specific IP interface or network port based on the type of network QoS policy. A network QoS policy defines both ingress and egress behavior. One network queue policy can be applied to the network port.

If no QoS policy is explicitly applied to a SAP, port or interface, a default QoS policy is applied.
A summary of the major functions performed by the QoS policies is listed in Table 2.

Table 2: QoS Policy Types and Descriptions

<table>
<thead>
<tr>
<th>Policy Type</th>
<th>Applied at...</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Ingress</td>
<td>SAP ingress</td>
<td>• Defines up to 32 forwarding class meters and meter parameters for traffic classification.</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Defines match criteria to map flows to the meters based on any one of the criteria (IP or MAC).</td>
<td></td>
</tr>
<tr>
<td>Service Egress</td>
<td>SAP Egress</td>
<td>• Defines up to 8 forwarding class queues.</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Maps forwarding classes to the queues.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Define Queue parameters for the queues.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Defines FC to remarking values.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Defines CIR levels and PIR weights that determines how the queue gets prioritized by the scheduler.</td>
<td></td>
</tr>
<tr>
<td>Network</td>
<td>IP interface</td>
<td>Packets are marked using QoS policies on edge devices. Invoking a QoS policy on a network port allows for the packets that match the policy criteria to be remarked.</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Used for classification/marking of MPLS packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• At ingress, defines MPLS LSP-EXP to FC mapping and 12 meters used by FCs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• At egress, defines FC to MPLS LSP-EXP marking.</td>
<td></td>
</tr>
<tr>
<td>Network</td>
<td>Ports</td>
<td>• Used for classification/marking of IP packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• At ingress, defines DSCP or Dot1p to FC mapping and 8 meters.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• At egress, defines FC to DSCP or Dot1p marking or both.</td>
<td></td>
</tr>
<tr>
<td>Network Queue</td>
<td>Network ports</td>
<td>• Defines forwarding class mappings to network queues and queue characteristics for the queues.</td>
<td>28</td>
</tr>
<tr>
<td>Queue Management</td>
<td>Queues at service egress and network egress</td>
<td>• Defines the CBS and MBS parameters for the queues.</td>
<td>53</td>
</tr>
<tr>
<td>Policies</td>
<td></td>
<td>• Enables or disables the high-slope and low-slope parameters for the queues.</td>
<td></td>
</tr>
<tr>
<td>Remark</td>
<td>SAP egress</td>
<td>• Defines the forwarding class to remarking values.</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Network egress</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Service and Network QoS Policies

The QoS mechanisms within the 7210 SAS X are specialized for the type of traffic on the interface. For customer interfaces, there is service ingress and egress traffic, and for IP interfaces, there is network ingress and network egress traffic (Figure 1).

The 7210 SAS uses QoS policies applied to a SAP for a service or to a network IP interface or a network port to define the queuing, queue attributes, and QoS marking/interpretation.

The 7210 SAS supports four types of service and network QoS policies:

- Service ingress QoS policies
- Service egress QoS policies
- Network QoS policies
- Network Queue QoS policies
Network QoS Policies

Two types of network QoS policies can be defined, **ip-interface** and **port**. By default, when a network QoS policy is created, it is an **ip-interface** type.

A network QoS policy of type **ip-interface** is created in the `configure>qos>network network-policy-id create` context.

A network QoS policy of type **port** is created in the `configure>qos>network network-policy-type port create` context.

When a network QoS policy of type **ip-interface** is applied to IP interface, it is used for classification of MPLS packets based on LSP-EXP bits.

When a network QoS policy of type **port** is applied to port, it is used for classification of IP packets based on DSCP or Dot1p bits.

Network QoS policies (**ip-interface** type) define ingress forwarding class meters and maps traffic to those meters for IP interfaces. When a network QoS policy is created, it always has two meters defined that cannot be deleted, one for the all unicast traffic and one for all multipoint traffic. These meters exist within the definition of the policy. The meters only get instantiated in hardware when the policy is applied to an IP interface. A remarking policy can be specified to define the forwarding class to EXP bit marking, on the egress.

- **Ingress**
 - Defines EXP value mapping to forwarding classes.
 - Defines forwarding class to meter mapping.
- **Egress**
 - Specifies a remark policy that defines the forwarding class to EXP value markings.
 - Remarking of QoS bits can be enabled or disabled.

The required elements to be defined in a network QoS policy are:

- A unique network QoS policy ID.
- Specifies a remark policy to define the forwarding class to value mappings for each forwarding class.
- A default ingress forwarding class and in-profile/out-of-profile state.
- At least one default unicast forwarding class meter. The parameters that can be configured for a meter are discussed in **Meter Parameters on page 29**.
- At least one multipoint forwarding class meter.

Optional network QoS policy elements include:
• Additional unicast meters up to the maximum number allowed for network ingress.
• Additional multipoint meters up to the maximum number allowed for network ingress.
• EXP value to forwarding class and profile state mappings for all EXP values received.

Network policy ID 2 is reserved as the default network QoS policy of type IP interface. The default policy cannot be deleted or changed.

Default network QoS policy 2 is applied to all IP interfaces which do not have another network QoS policy explicitly assigned.

Note that FC to Dot1p marking is used to mark IP and MPLS traffic sent out through that port, if marking is enabled and remark policy specifies the values for both.

The network QoS policy applied at network egress (for example, on an IP interface) determines how or if the profile state is marked in packets transmitted into the service core network. If the profile state is marked in the service core packets, out-of-profile packets are preferentially dropped over in-profile packets at congestion points in the core network. For network egress, traffic remarking in the network QoS policy is disabled. Table 5 lists the default mapping of forwarding class to EXP values.

Table 4: Default Network QoS Policy (type = ip-interface) Egress Marking

<table>
<thead>
<tr>
<th>FC-ID</th>
<th>FC Name</th>
<th>FC Label</th>
<th>Egress EXP Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>In-Profile</td>
</tr>
<tr>
<td>7</td>
<td>Network Control</td>
<td>nc</td>
<td>111 - 7</td>
</tr>
<tr>
<td>6</td>
<td>High-1</td>
<td>h1</td>
<td>110 - 6</td>
</tr>
<tr>
<td>5</td>
<td>Expedited</td>
<td>ef</td>
<td>101 - 5</td>
</tr>
<tr>
<td>4</td>
<td>High-2</td>
<td>h2</td>
<td>100 - 4</td>
</tr>
<tr>
<td>3</td>
<td>Low-1</td>
<td>l1</td>
<td>011 - 3</td>
</tr>
<tr>
<td>2</td>
<td>Assured</td>
<td>af</td>
<td>011-3</td>
</tr>
<tr>
<td>1</td>
<td>Low-2</td>
<td>l2</td>
<td>001 - 1</td>
</tr>
<tr>
<td>0</td>
<td>Best Effort</td>
<td>be</td>
<td>000 - 0</td>
</tr>
</tbody>
</table>
For network ingress, Table 5 lists the default mapping of EXP values to forwarding class and profile state for the default network QoS policy.

Table 5: Default Network QoS Policy (type = ip-interface) to FC Mapping

<table>
<thead>
<tr>
<th>Value</th>
<th>7210 FC Ingress</th>
<th>Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>be</td>
<td>Out</td>
</tr>
<tr>
<td>1</td>
<td>l2</td>
<td>In</td>
</tr>
<tr>
<td>2</td>
<td>af</td>
<td>Out</td>
</tr>
<tr>
<td>3</td>
<td>af</td>
<td>In</td>
</tr>
<tr>
<td>4</td>
<td>h2</td>
<td>In</td>
</tr>
<tr>
<td>5</td>
<td>ef</td>
<td>In</td>
</tr>
<tr>
<td>6</td>
<td>h1</td>
<td>In</td>
</tr>
<tr>
<td>7</td>
<td>nc</td>
<td>In</td>
</tr>
</tbody>
</table>

“port” Type Network QoS Policy

Network QoS policy of type port defines ingress forwarding class meters and maps traffic to those meters for only IP traffic received on network ports. When a network policy of this type is created it has a single unicast meter which cannot be deleted. These meters exist within the definition of the policy. The meters get instantiated in hardware, only when the policy is applied to a network port. It also defines the forwarding class to DSCP and/or Dot1p marking to be used for packets sent out through that port.

A network QoS policy of type port defines both the ingress and egress handling of QoS on the network port.

The following functions are defined:

- Ingress
 - Defines DSCP or Dot1p value mapping to forwarding classes. Only one type supported, such as DSCP or Dot1p, per policy.
 - Defines forwarding class to meter mapping.
- Egress
 - Specifies remark policy that defines forwarding class to DSCP or Dot1p (or both) value markings.
 - Remarkting of QoS bits is always disabled
The required elements to be defined in a network QoS policy of port type are:

- A unique network QoS policy ID and network-policy-type set to **port**.
- Egress forwarding class to DSCP or Dot1p (or both) value mappings for each forwarding class.
- A default ingress forwarding class and in-profile/out-of-profile state.
- At least one default unicast forwarding class meter. The parameters that can be configured for a meter are discussed in Meter Parameters on page 25.

Optional network QoS policy elements include:

- Additional unicast meters up to a total of 8.
- A DSCP or Dot1p (or both) value to forwarding class and profile state mappings for all DSCP or Dot1p values received.

Network policy ID 1 is reserved as the default network QoS policy of type port. The default policy cannot be deleted or changed.

The default network QoS policy is applied to all network ports which do not have another network QoS policy explicitly assigned.

Table 6 lists the default mapping of forwarding class to Dot1p and DSCP values.

Table 6: Default Network QoS Policy of type 'port' Egress Marking

<table>
<thead>
<tr>
<th>FC-ID</th>
<th>FC Name</th>
<th>FC Label</th>
<th>Egress DSCP Marking</th>
<th>Egress Dot1p Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>In-Profile</td>
<td>Out-of-Profile</td>
</tr>
<tr>
<td>7</td>
<td>Network Control</td>
<td>nc</td>
<td>nc2</td>
<td>nc2</td>
</tr>
<tr>
<td>6</td>
<td>High-1</td>
<td>h1</td>
<td>nc1</td>
<td>nc1</td>
</tr>
<tr>
<td>5</td>
<td>Expedited</td>
<td>ef</td>
<td>ef</td>
<td>ef</td>
</tr>
<tr>
<td>4</td>
<td>High-2</td>
<td>h2</td>
<td>af41</td>
<td>af41</td>
</tr>
<tr>
<td>3</td>
<td>Low-1</td>
<td>l1</td>
<td>af21</td>
<td>af22</td>
</tr>
<tr>
<td>2</td>
<td>Assured</td>
<td>af</td>
<td>af11</td>
<td>af12</td>
</tr>
<tr>
<td>1</td>
<td>Low-2</td>
<td>l2</td>
<td>cs1</td>
<td>cs1</td>
</tr>
<tr>
<td>0</td>
<td>Best Effort</td>
<td>be</td>
<td>be</td>
<td>be</td>
</tr>
</tbody>
</table>
For network ingress, Table 7 lists the default mapping of Dot1p/DSCP values to forwarding class and profile state for the default network QoS policy of type port. Color aware policing is supported on network ingress.

Table 7: Default Network QoS Policy of Type Port - Dot1p/DSCP to FC Mapping

<table>
<thead>
<tr>
<th>DSCP Value</th>
<th>Dot1p Value</th>
<th>FC Ingress</th>
<th>Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>be</td>
<td>0</td>
<td>be</td>
<td>In, Out</td>
</tr>
<tr>
<td>cs1</td>
<td>1</td>
<td>l2</td>
<td>In, Out</td>
</tr>
<tr>
<td>af12</td>
<td>2</td>
<td>af</td>
<td>Out</td>
</tr>
<tr>
<td>af11</td>
<td>3</td>
<td>af</td>
<td>In</td>
</tr>
<tr>
<td>af41</td>
<td>4</td>
<td>h2</td>
<td>In, Out</td>
</tr>
<tr>
<td>ef</td>
<td>5</td>
<td>ef</td>
<td>In, Out</td>
</tr>
<tr>
<td>nc1</td>
<td>6</td>
<td>h1</td>
<td>In, Out</td>
</tr>
<tr>
<td>nc2</td>
<td>7</td>
<td>nc</td>
<td>In, Out</td>
</tr>
</tbody>
</table>
Network Queue QoS Policies

Network queue policies define the network forwarding class queue characteristics. Network queue policies are applied on egress on network ports. The system allocates 8 queues for the network port and FCs are mapped to these 8 queues. FC to queue mapping is not a configurable entity. All policies will use eight queues like the default network queue policy.

The queue characteristics that can be configured on a per-forwarding class basis are:

- Peak Information Rate (PIR) as a percentage of egress port bandwidth
- Committed Information Rate (CIR) as a percentage of egress port bandwidth
- Committed burst size (CBS)
- Maximum burst size (MBS)
- CIR-Level and PIR-Weight
- Adaptation rules for CIR/PIR
- WRED Slope Parameters (using the queue-management policy)

Network queue policies are identified with a unique policy name which conforms to the standard 7210 SAS alphanumeric naming conventions.

The system default network queue policy is named default and cannot be edited or deleted. CBS values cannot be provisioned. CBS is set to 750KB and MBS is set to 1750KB for all the queues. Table 8 describes the default network queue policy definition.

Table 8: Default Network Queue Policy Definition.

<table>
<thead>
<tr>
<th>Forwarding Class</th>
<th>Queue</th>
<th>Definition</th>
</tr>
</thead>
</table>
| Network-Control (nc) | Queue 8 | - PIR = 10%
- CIR = 10%
- CIR-Level 8
- PIR-Weight 1
- % |
| High-1 (h1) | Queue 7 | - PIR = 100%
- CIR = 10%
- CIR-Level 7
- PIR-Weight 1 |
| Expedited (ef) | Queue 6 | - PIR = 100%
- CIR = 100%
- CIR-Level 6
- PIR-Weight 1
CBS = |
Table 8: Default Network Queue Policy Definition. (Continued)

<table>
<thead>
<tr>
<th>Forwarding Class</th>
<th>Queue</th>
<th>Definition (Continued)</th>
</tr>
</thead>
</table>
| High-2 (h2) | Queue 5 | • PIR = 100%
| | | • CIR = 100%
| | | • CIR-Level 5
| | | • PIR-Weight 1 |
| Low-1 (l1) | Queue 4 | • PIR = 100%
| | | • CIR = 25%
| | | • CIR-Level 4
| | | • PIR-Weight 1 |
| Assured (af) | Queue 3 | • PIR = 100%
| | | • CIR = 25%
| | | • CIR-Level 3
| | | • PIR-Weight 1 |
| Low-2 (l2) | Queue 2 | • PIR = 100%
| | | • CIR = 25%
| | | • CIR-Level 2
| | | • PIR-Weight 1 |
| Best-Effort (be)| Queue 1 | • PIR = 100%
| | | • CIR = 0%
| | | • CIR-Level 1
| | | • PIR-Weight 1 |

Meter Parameters

This section describes the meter parameters provisioned on access and network meters provisioned on IP interfaces for QoS.

The meter parameters are:

- Meter ID on page 30
- Committed Information Rate on page 30
- Peak Information Rate on page 30
Meter ID

The meter ID is used to uniquely identify the meter. The meter ID is only unique within the context of the QoS policy within which the meter is defined.

Committed Information Rate

The committed information rate (CIR) for a meter is the long term average rate at which traffic is considered as conforming traffic or in-profile traffic. The higher the rate, the greater the throughput user can expect. The user will be able to burst above the CIR and up to PIR for brief periods of time. The time and profile of the packet is decided based on the burst sizes as explained in the following sections.

When defining the CIR for a meter, the value specified is the administrative CIR for the meter. The 7210 SAS X has a number of native rates in hardware that it uses to determine the operational CIR for the meter. The user has some control over how the administrative CIR is converted to an operational CIR should the hardware not support the exact CIR and PIR combination specified. Refer to the interpretation of the administrative CIR in Adaptation Rule for Meters on page 31.

The CIR for meter is provisioned on service ingress and network ingress within service ingress QoS policies and network QoS policies, respectively.

Peak Information Rate

The peak information rate (PIR) defines the maximum rate at which packets are allowed to exit the meter. It does not specify the maximum rate at which packets may enter the meter; this is governed by the meter's ability to absorb bursts and is defined by its maximum burst size (MBS).

When defining the PIR for a meter, the value specified is the administrative PIR for the meter. The 7210 SAS X has a number of native rates in hardware that it uses to determine the operational PIR for the meter. The user has some control over how the administrative PIR is converted to an operational PIR should the hardware not support the exact CIR and PIR combination specified. Refer to the interpretation of the administrative PIR in Adaptation Rule for Meters on page 31.
The PIR for meter is provisioned on service ingress and network ingress within service ingress QoS policies and network QoS policies, respectively.

Adaptation Rule for Meters

The adaptation rule provides the QoS provisioning system with the ability to adapt the administrative rates provisioned for CIR and PIR, to derive the operational rates based on the underlying capabilities of the hardware. The administrative CIR and PIR rates are translated to actual operational rates enforced by the hardware meter. The rule provides a constraint, when the exact rate is not available due to hardware capabilities.

The hardware rate step-size is provided in table **Table 9**:

<table>
<thead>
<tr>
<th>Rate (kbits/sec)</th>
<th>Burst (kbits_burst)</th>
<th>Rate Step Size (bits)</th>
<th>Burst Step Size (bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4194296</td>
<td>0-16773</td>
<td>8000</td>
<td>4096</td>
</tr>
<tr>
<td>4194297-8388592</td>
<td>16774-33546</td>
<td>16000</td>
<td>8192</td>
</tr>
<tr>
<td>8388593-16777184</td>
<td>33547-67092</td>
<td>32000</td>
<td>16384</td>
</tr>
<tr>
<td>16777185-33554368</td>
<td>67093-134184</td>
<td>64000</td>
<td>32768</td>
</tr>
<tr>
<td>33554369-67108736</td>
<td>134185-268369</td>
<td>128000</td>
<td>65536</td>
</tr>
<tr>
<td>67108737-134217472</td>
<td>268370-536739</td>
<td>256000</td>
<td>131072</td>
</tr>
<tr>
<td>134217473-268434944</td>
<td>536739-1073479</td>
<td>512000</td>
<td>262144</td>
</tr>
<tr>
<td>268434945-536869888</td>
<td>1073480-2146959</td>
<td>1024000</td>
<td>524288</td>
</tr>
</tbody>
</table>

The system attempts to find the best operational rate depending on the defined constraint. The supported constraints are listed below:

- Minimum: Find the next multiple of step-size that is equal to or greater than the specified rate.
- Maximum: Find the next multiple of step-size that is equal to or less than the specified rate.
- Closest: Find the next multiple of step-size that is closest to the specified rate.

Table 10 lists the rate values configured in the hardware when different PIR or CIR rates are specified in the CLI.
If user has configured any value greater than 0 and less than 8 then operation rate configured on hardware would be 8 kbps irrespective of the constraint used.

Note: The burst size configured by the user affects the rate step-size used by the system. The system uses the step size in a manner that both the burst-size and rate parameter constraints are met. For example, if the rate specified is less than 4Gbps but the burst size configured is 17Mbits, then the system uses rate step-size of 16Kbits and burst step-size of 8192bits (refer to Table 9, row#2)

Committed Burst Size

The committed burst size parameter specifies the maximum burst size that can be transmitted by the source at the CIR while still complying with the CIR. If the transmitted burst is lower than the CBS value then the packets are marked as in-profile by the meter to indicate that the traffic is complying meter configured parameters.

The operational CBS set by the system is adapted from the user configured value by using the minimum constraint.

Maximum Burst Size

For trTCM, the maximum burst size parameter specifies the maximum burst size that can be transmitted by the source at the PIR while complying with the PIR. If the transmitted burst is lower than the MBS value then the packets are marked as out-profile by the meter to indicate that the traffic is not complying with CIR, but complying with PIR.

For srTCM, the maximum burst size parameter specifies the maximum burst size that can be transmitted by the source while not complying with the CIR. If the transmitted burst is lower than the MBS value then the packets are marked as out-profile by the meter to indicate that the traffic is not complying with CIR.

If the packet burst is higher than MBS then packets are marked as red are dropped.

Table 10: Administrative Rate Example

<table>
<thead>
<tr>
<th>Administrative Rate</th>
<th>Operation Rate (Min)</th>
<th>Operation Rate (Max)</th>
<th>Operation Rate (Closest)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>118085</td>
<td>11808</td>
<td>11800</td>
<td>11808</td>
</tr>
<tr>
<td>46375</td>
<td>46376</td>
<td>46368</td>
<td>46376</td>
</tr>
</tbody>
</table>
The operational MBS set by the system is adapted from the user configured value by using the minimum constraint.

Meter Counters

The 7210 SAS X maintains following counters for meters within the system for granular billing and accounting. Each meter maintains the following counters:

- Counters for packets or octets marked as in-profile by meter
- Counters for packets or octets marked as out-of-profile by meter

Meter Modes

The 7210 SAS X supports following meter modes:

- srtcm: Single Rate Three Color Marking
- trtcn: Two Rate Three Color Marking
- trtcn1:Two Rate Three Color Marking1 (Applicable only for Service Ingress QoS Policies)
- trtcn2:Two Rate Three Color Marking2 (Applicable only for Service Ingress QoS Policies)

In srtcm the CBS and MBS Token buckets are replenished at single rate, that is, CIR where as in case of trtcn CBS and MBS buckets are individually replenished at CIR and PIR rates, respectively. trtcn1 implements the policing algorithm defined in RFC2698 and trtcn2 implements the policing algorithm defined in RFC4115.

Color Aware Policing

The 7210 SAS X supports Color Aware policing at the network ingress, where as at service ingress policing is color blind. In color aware policing user can define the color of the packet using the classification and feed those colored packets to the meter. A color aware meter would treat those packets with respect to the color defined.

- If the packet is pre-colored as in-profile (or also called as Green colored packets) then depending on the burst size of the packet meter can either mark it in-profile or out-profile.
- If the packet is pre-colored as out-profile (also called as Yellow colored packets) then even if the packet burst is lesser than the current available CBS, it would not be marked as in-profile and remain as out-profile.
• If the packet burst is higher than the MBS then it would be marked as Red and would be dropped by meter at ingress.

The profile marked by the meter is used to determine the packets eligibility to be enqueued into a buffer at the egress (when a slope policy is configured at the egress).
Queue Parameters

This section describes the queue parameters provisioned on service queues access and network queues for QoS.

The queue parameters are:

- Queue ID on page 35
- Committed Information Rate on page 36
- Peak Information Rate on page 37
- Adaptation Rule for Queues on page 38
- Committed Burst Size and the Maximum Burst Size (MBS) on page 40

Queue ID

The queue ID is used to uniquely identify the queue. The queue ID is only unique within the context of the QoS policy within which the queue is defined. On 7210 SAS X, the queue ID is not a user configurable entity but the queue ID is statically assigned to the 8 Queues on the port according to FC-QID map table shown in Table 25.
Committed Information Rate

The committed information rate (CIR) for a queue performs two distinct functions:

1. Minimum bandwidth guarantees — the CIR setting provides the bandwidth which will be given to this queue as compared to other queues on the port competing for a share of the available link bandwidth. The queue CIR does not necessarily guarantee bandwidth in all scenarios and also depends on factors such as CIR oversubscription and link port bandwidth capacity. For each packet in an egress queue, the CIR is checked with the current transmission rate of the queue. If the current rate is at or below the CIR threshold, the queue is considered in-profile. If the current rate is above the threshold, the queue is considered out-of-profile. This in and out profile state of queue is linked to scheduler prioritizing behavior as discussed below.

2. Scheduler queue priority metric — The scheduler serving a group of egress queues prioritizes individual queues based on their current CIR and PIR states. Queues operating below their CIR are always served before those queues operating at or above their CIR.

Queues at the egress never marks the packets as in-profile or out-profile based on the queue CIR, PIR values. The in-profile and out-profile state of the queue interacts with the scheduler mechanism and provides the minimum and maximum bandwidth guarantees.

When defining the CIR for a queue, the value specified is the administrative CIR for the queue. The user has some control over how the administrative CIR is converted to an operational CIR should the hardware not support the exact CIR and PIR combination specified. The interpretation of the administrative CIR is discussed below in Adaptation Rule for Queues on page 38.

Although the 7210 SAS is flexible in how the CIR can be configured, there are conventional ranges for the CIR based on the forwarding class of a queue. A queue associated with the high-priority class normally has the CIR threshold equal to the PIR rate although the 7210 SAS allows the CIR to be provisioned to any rate below the PIR should this behavior be required.

The CIR for a queue is provisioned on egress within service egress QOS policy.

The CIR for the network queues are defined within network queue policies based on the forwarding class. The CIR for the network queues is specified as a percentage of the network interface bandwidth.
Peak Information Rate

The peak information rate (PIR) defines the maximum rate at which packets are allowed to exit the queue. It does not specify the maximum rate at which packets may enter the queue; this is governed by the queue's ability to absorb bursts. The actual transmission rate of a egress queue depends on more than just its PIR. Each queue is competing for transmission bandwidth with other queues. Each queue's PIR, CIR and the relative priority and/or weight of the scheduler serving the queue, all combine to affect a queue's ability to transmit packets.

The PIR is provisioned on service egress queues within service egress QoS policies.

The PIR for network queues are defined within network queue policies based on the forwarding class. The PIR for the queues is specified as a percentage of the network interface bandwidth.

When defining the PIR for a queue, the value specified is the administrative PIR for the queue. The user has some control over how the administrative PIR is converted to an operational PIR should the hardware not support the exact CIR and PIR values specified. The interpretation of the administrative PIR is discussed below in Adaptation Rule for Queues on page 38.
Adaptation Rule for Queues

The adaptation rule provides the QoS provisioning system with the ability to adapt specific CIR and PIR defined administrative rates to the underlying capabilities of the hardware the queue will be created on to derive the operational rates. The administrative CIR and PIR rates are translated to actual operational rates enforced by the hardware queue. The rule provides a constraint used when the exact rate is not available due to hardware implementation trade-offs.

For the CIR and PIR parameters individually, the system will attempt to find the best operational rate depending on the defined constraint. The supported constraints are:

- Minimum — Find the hardware supported rate that is equal to or higher than the specified rate.
- Maximum — Find the hardware supported rate that is equal to or lesser than the specified rate.
- Closest — Find the hardware supported rate that is closest to the specified rate.

Depending on the hardware upon which the queue is provisioned, the actual operational CIR and PIR settings used by the queue will be dependant on the method the hardware uses to implement and represent the mechanisms that enforce the CIR and PIR rates.

The 7210 SAS EX uses a rate step value based on the configured rate to define the granularity for both the CIR and PIR rates (Please see the Table 12 Supported Hardware Rates and CIR/PIR values for details). The adaptation rule controls the method the system uses to choose the rate step based on the administrative rates defined by the rate command.

<table>
<thead>
<tr>
<th>Hardware Rate Steps</th>
<th>Rate Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kb/sec</td>
<td>0 to 1 Gb/sec</td>
</tr>
</tbody>
</table>

Table 11: Supported Hardware Rates and CIR/PIR Values

<table>
<thead>
<tr>
<th>Hardware Rate Steps</th>
<th>Rate Range (kbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.359619</td>
<td>0 to 3151</td>
</tr>
<tr>
<td>24.719238</td>
<td>3152 to 6303</td>
</tr>
<tr>
<td>49.438477</td>
<td>6304 to 12606</td>
</tr>
<tr>
<td>98.876953</td>
<td>12607 to 25213</td>
</tr>
<tr>
<td>197.753906</td>
<td>25214 to 50427</td>
</tr>
<tr>
<td>395.507812</td>
<td>50428 to 100854</td>
</tr>
<tr>
<td>791.015625</td>
<td>100855 to 201708</td>
</tr>
</tbody>
</table>

Table 12: Supported Hardware Rates and CIR/PIR Values
To illustrate how the adaptation rule constraints minimum, maximum and closest are evaluated in determining the operational CIR or PIR for the 7210 SAS, assume there is a queue where the administrative CIR and PIR values are 90Kbps and 150 Kbps, respectively.

If the adaptation rule is minimum, the operational CIR and PIR values will be 99 Kbps and 161 Kbps (The hardware rate step is 12.359619) respectively as it is the native hardware rate greater than or equal to the administrative CIR and PIR values.

If the adaptation rule is maximum, the operational CIR and PIR values will be 87 Kbps and 149 Kbps.

If the adaptation rule is closest, the operational CIR and PIR values will be 87 Kbps and 149 Kbps, respectively, as those are the closest matches for the administrative values that are even multiples of the 12.359619 Kbps rate step.

Queue Priority and Weight

The priority for the queue can be specified by using the cir-level parameter. The system maps the cir-level to a pir-level and it is not user configurable. Cir-level parameter defines the scheduling priority of the queue in the CIR loop and the PIR loop (the system assigns the priority for the queue based on its cir-level).

Cir-level value of 8, represents the highest priority. Additionally the scheduler always provides the configured bandwidth (CIR = PIR) for the queues assigned this value (if bandwidth is available), irrespective of the whether the CIR of other queues are met or not. In other words, CIR rate of level-8 queues in the system are satisfied first before satisfying the CIR rate of queues at other levels. PIR configured for queues at this level are ignored by the system.

User can specify the weight for the queue. The weight parameter is used to determine the proportion of the available bandwidth that is allocated to the queues vying for bandwidth at the same priority.
Committed Burst Size and the Maximum Burst Size (MBS)

The committed burst size and maximum burst size (CBS and MBS) parameters specify the amount of buffers reserved for a queue and up to how much of buffers a queue can contend for in the shared buffer space respectively. Once the reserved buffers for a given queue have been used, the queue contends with other queues for shared buffer resources up to the maximum burst size.

The CBS and MBS for the queues are configurable entities for the access and network ports and access uplink ports. The CBS and MBS value for the queues is set to appropriate default values which take care of specific FC needs in terms of maintaining the differential treatment.

Service Ingress QoS Policies

Service ingress QoS policies define ingress service forwarding class and map flows to those. When a service ingress QoS policy is created, it always has two defined that cannot be deleted: one for the traffic and one for multipoint traffic. These exist within the definition of the policy. The only get instantiated in hardware when the policy is applied to a SAP. In the case where the service does not have multipoint traffic, the multipoint will not be instantiated.

In the simplest service ingress QoS policy, all traffic is treated as a single flow and mapped to a single, and all flooded traffic is treated with a single multipoint. The required elements to define a service ingress QoS policy are:

- A unique service ingress QoS policy ID.
- A QoS policy scope of template or exclusive.
- The number of classification and meter resources to allocate for this policy.
- Allocates resources from the ingress internal CAM resource pool for use for service ingress QoS policies. Additionally, allocate resources to the appropriate classification match criteria.
- At least one default forwarding class. The parameters that can be configured for a are discussed in Meter Parameters on page 29.

Optional service ingress QoS policy elements for include:

- Additional unicast meters up to a total of 8.
- Additional multipoint meters up to 31. QoS policy match criteria to map packets to a forwarding class.
- Additional unicast queues up to maximum of 8 queues.
- QoS policy match criteria to map packets to a forwarding class.
• Forwarding class can be configured to use either a queue or a meter (but not both at the same time). Only unicast traffic can use queues. BUM traffic types can only use a meter (and cannot use a queue).

• By default, no queues are assigned to any FC. User needs to explicitly assign the queue to a FC, if desired.

Each meter or a queue can have unique meter or queue parameters to allow individual policing or shaping of the flow mapped to the forwarding class. depicts service traffic being classified into three different forwarding classes.

![Figure 2: Traffic Queuing Model for Forwarding Classes](image)

Mapping flows to forwarding classes is controlled by comparing each packet to the match criteria in the QoS policy. The ingress packet classification to forwarding class is subject to a classification policy provisioned.

Table 13 lists the classification rules that are available. Only a single classification policy can be provisioned for an entity.

The IP and MAC match criteria can be very basic or quite detailed. IP and MAC match criteria are constructed from policy entries. An entry is identified by a unique, numerical entry ID. A single entry cannot contain more than one match value for each match criteria. Each match entry has an action which specifies: the forwarding class of packets that match the entry.

The entries are evaluated in numerical order based on the entry ID from the lowest to highest ID value. The first entry that matches all match criteria has its action performed.
The MAC match criteria that can be used for an Ethernet frame depends on the frame’s format. See Table 17.
Table 17: MAC Match Ethernet Frame Types

<table>
<thead>
<tr>
<th>Frame Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.3</td>
<td>IEEE 802.3 Ethernet frame. Only the source MAC, destination MAC and IEEE 802.1p value are compared for match criteria.</td>
</tr>
<tr>
<td>Ethernet-II</td>
<td>Ethernet type II frame where the 802.3 length field is used as an Ethernet type (Etype) value. Etype values are two byte values greater than 0x5FF (1535 decimal).</td>
</tr>
</tbody>
</table>

Table 18 lists the criteria that can be matched for the various MAC frame types.

Table 18: MAC Match Criteria Frame Type Dependencies

<table>
<thead>
<tr>
<th>Frame Format</th>
<th>Source MAC</th>
<th>Dest MAC</th>
<th>IEEE 802.1p Value</th>
<th>Etype Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.3</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>ethernet-II</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Service ingress QoS policy ID 1 is reserved for the default service ingress policy. The default policy cannot be deleted or changed.

The default service ingress policy is implicitly applied to all SAPs which do not explicitly have another service ingress policy assigned. In the default policy no queues are defined. All traffic is mapped to the default forwarding class which uses a meter by default. The characteristics of the default policy are listed in Table 19.

Table 19: Default Service Ingress Policy ID 1 Definition

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Item</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meter 1</td>
<td>1 (one) all unicast traffic:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Forward Class: best-effort (be)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CIR = 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• PIR = max (4000000 kbps in case of a LAG with four member ports)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• MBS, CBS = default (values derived from applicable policy)</td>
<td></td>
</tr>
</tbody>
</table>
The available ingress CAM hardware resources can be allocated as per user needs for use with different QoS classification match criteria. By default, the system allocates resources to maintain backward compatibility with release 4.0. Users can modify the resource allocation based on their need to scale the number of entries or number of associations (that is, number of SAPs using a policy that uses a particular match criterion). If no resources are allocated to a particular match criteria used in the policy, then the association of that policy to a SAP will fail. Allocation of classification entries also allocates meter resources, used to implement the per FC per traffic type policing function. Please refer to the Resource Allocation for Service Ingress QoS policies on page 192 to know more about resource usage and allocation to SAP ingress policies.

An aggregate SAP shaper is available for use per SAP. The aggregate shaper limits the rate of unicast queued traffic across all the FCs configured on SAP ingress.
Hierarchical Ingress Policing

Hierarchical ingress policing allows the users to specify the amount of traffic admitted into the system per SAP. It also allows the user to share the available bandwidth per SAP among the different FCs of the SAP. For example, user can allow the packets classified as Internet data to use the entire SAP bandwidth when other forwarding classes do not have traffic.

It provides an option to configure SAP aggregate policer per SAP on SAP ingress. The user should configure the PIR rate of the aggregate policer. The user can optionally configure the burst size of the aggregate policer.

The aggregate policer monitors the traffic on different FCs and determines if the packet has to be forwarded to an identified profile or dropped. The final disposition of the packet is based on the operating rate of the following:

- Per FC policer
- Per SAP aggregate policer

For more information on the final color assigned of the packet, refer to the command description of "aggregate-meter-rate" command in the 7210 SAS X Services Guide.

A new meter mode “trtcM2” (RFC 4115) is introduced for use only on SAP ingress. When the SAP aggregate policer is configured, the per FC policer can be only configured in “trtcM2” mode. The existing meter mode “trtcM” is re-named as “trtcM1” (RFC 2698). The meter modes “srtCM” and “trtcM1” are used in the absence of aggregate meter.

NOTE: Before use of per SAP aggregate policer/meter, meter resources must be allocated using the CLI command config> system> resource-profile> ingress-internal-tcam> sap-aggregate-meter. Change to the amount of resources allocated for SAP aggregate meter requires a reboot of the node to take effect. For more information, see the 7210 Basic System Guide.
Service Egress QoS Policies

Service egress queues are implemented at the transition from the service core network to the service access network. The advantages of per-service queuing before transmission into the access network are:

- Per-service egress subrate capabilities especially for multipoint services.
- More granular, fairer scheduling per-service into the access network.
- Per-service statistics for forwarded and discarded service packets.

The subrate capabilities and per-service scheduling control are required to make multiple services per physical port possible. Without egress shaping, it is impossible to support more than one service per port. There is no way to prevent service traffic from bursting to the available port bandwidth and starving other services.

For accounting purposes, per-service statistics can be logged. When statistics from service ingress queues are compared with service egress queues, the ability to conform to per-service QoS requirements within the service core can be measured. The service core statistics are a major asset to core provisioning tools.

Service egress QoS policies define egress queues and map forwarding class flows to queues. The system allocates 8 queues to service egress by default. To define a basic egress QoS policy, the following are required:

- A unique service egress QoS policy ID.
- A QoS policy scope of template or exclusive.
- The parameters that can be configured for a queue are discussed in Queue Parameters on page 35.

Optional service egress QoS policy elements include:

- Specify remark policy that defines IEEE 802.1p priority value remarking based on forwarding class.

In 7210 SAS-X, the 'sap-qos-marking' command is provided that allows option for the user to configure SAP-based marking and port-based marking. In SAP-based marking, the remark policy defined in the SAP egress policy associated with each SAP is used to mark the packets egressing out of SAP if marking is enabled. In port-based marking, the remark policy defined in the access-egress policy associated with the access port determines the marking values to use for all the SAPs defined on that port. More information is available in the section on Access Egress policies in this guide.

Each queue in a policy is associated with one of the forwarding classes. Each queue can have its individual queue parameters allowing individual rate shaping of the forwarding class(es) mapped to the queue.
The forwarding class determination per service egress packet is determined at ingress. If the packet ingressed the service on the same 7210 SAS X, the service ingress classification rules determine the forwarding class of the packet. If the packet is received, the forwarding class is marked in the tunnel transport encapsulation.

Service egress QoS policy ID 1 is reserved as the default service which do not have another service egress policy explicitly assigned. The characteristics of the default policy are listed in the following table.
Table 20: Default SAP Egress Policy ID 1 Definition

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Item</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queues</td>
<td>Queue 1-8</td>
<td>1 (one) queue defined for each traffic class</td>
</tr>
<tr>
<td>Queues</td>
<td>Queue 8</td>
<td>CIR=0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PIR=max (line rate)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cir-Level 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pir-Weight 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Queue-Management Policy : default</td>
</tr>
<tr>
<td>High-1 (h1)</td>
<td>Queue 7</td>
<td>CIR=0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PIR=max (line rate)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cir-Level 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pir-Weight 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Queue-Management Policy : default</td>
</tr>
<tr>
<td>Expedited (ef)</td>
<td>Queue 6</td>
<td>CIR = 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PIR = max (line rate)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cir-Level 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pir-Weight 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Queue-Management Policy : default</td>
</tr>
<tr>
<td>High-2 (h2)</td>
<td>Queue 5</td>
<td>CIR = 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PIR = max (line rate)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cir-Level 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pir-Weight 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Queue-Management Policy : default</td>
</tr>
<tr>
<td>Low-1 (l1)</td>
<td>Queue 4</td>
<td>CIR = 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PIR = max (line rate)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cir-Level 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pir-Weight 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Queue-Management Policy : default</td>
</tr>
<tr>
<td>Assured (af)</td>
<td>Queue 3</td>
<td>CIR = 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PIR = max (line rate)</td>
</tr>
</tbody>
</table>
Table 20: Default SAP Egress Policy ID 1 Definition (Continued)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Item</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• Cir-Level 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Pir-Weight 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Queue-Management Policy : default</td>
</tr>
<tr>
<td>Low-2 (l2)</td>
<td>Queue 2</td>
<td>• CIR = 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PIR = max (line rate)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cir-Level 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Pir-Weight 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Queue-Management Policy : default</td>
</tr>
<tr>
<td>Best-Effort (be)</td>
<td>Queue 1</td>
<td>• CIR = 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PIR = max (line rate)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cir-Level 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Pir-Weight 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Queue-Management Policy : default</td>
</tr>
<tr>
<td>Flows</td>
<td>Default</td>
<td>All FCs are mapped to corresponding Queues and Dot1p values are marked as follows:</td>
</tr>
<tr>
<td>Action</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 20: Default SAP Egress Policy ID 1 Definition (Continued)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Item</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>In-Profile</td>
</tr>
<tr>
<td>Network-Control (nc)</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>High-1 (h1)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Expedited (ef)</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>High-2 (h2)</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Low-1 (l1)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Assured (af)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Low-2 (l2)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Best-Effort (be)</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
Access Egress QoS Policies

An access egress policy defines marking values for the traffic egressing towards the customer on the access ports. Access egress QoS policies map forwarding class flows to marking values to use.

7210 SAS-X supports SAP-based egress marking and port-based egress marking on access ports. Users have an option to turn on either sap-based marking or port-based marking using the command 'sap-qos-marking' under the configure>port>ethernet>access>egress context. In SAP-based marking the remark policy defined in the SAP egress policy associated with each SAP is used to mark the packets egressing out of SAP if marking is enabled. In port-based marking, the remark policy defined in the access-egress policy associated with the access port determines the marking values to use for all the SAPs defined on that port. SAP-based marking is only supported for L2 SAPs, i.e. SAPs configured in Epipe, VPLS and PBB (I-SAPs only) service. Port-based marking is supported for L3 SAPs (i.e. SAPs configured in VPRN services), PBB B-SAPs and other L2 SAPs configured on the port. The access egress policy is used only when port-based marking has been enabled (i.e. sap-qos-marking is set to disable). More information on the CLI command ‘sap-qos-marking’ is available in the 7210 SAS Interfaces guide.

A remarking policy can be defined for each access egress policy and remarking is disabled by default. Only remarking policy of type dot1p, dot1p-lsp-exp-shared, dscp or dot1p-dscp can be used with access-egress policy.

To define a basic access egress QoS policy, the following are required:

- A unique service access QoS policy ID.
- A QoS policy scope of template or exclusive.
- A remark policy of appropriate type for remarking based on forwarding class.

Remarking by default is disabled. It can be enabled by the remarking command present under access egress context.

Access egress QoS policy ID 1 is reserved as the default access egress policy. The default policy cannot be deleted or changed. The default access egress policy is applied to all access ports which do not have another access egress policy explicitly assigned. By default sap-qos-marking is enabled. The default access-egress policy is as shown below:

```
*A:Dut-A>config>qos>access-egress# info detail
----------------------------------------------------------
description "Default Access egress QoS policy."
no remarking
remark 2
----------------------------------------------------------
```
Buffer Pools

The 7210 SAS X has a single buffer pool per node, the system pool. All the queues created by the system are allocated buffers from this system pool. Queues come up with default buffers, and the buffers change accordingly when they are associated with a network port or SAP. Queue management policies allow the user to specify the parameters that determine buffer allocation to the queues.
Queue Management Policies

Queue management policies allow the user to define the queue buffer and WRED slope parameters.

The 7210 SAS supports a single buffer pool per node. All the queues created in the system are allocated buffers from this system pool. The default buffers are allocated to the queues accordingly when they are associated with a SAP or a network port.

Queue management policies allow the user to define the CBS, MBS and WRED parameters for use by the queue. The CBS and MBS parameters are used to allocate the appropriate amount of buffers from the system pool to the queues. The WRED parameters allow the user to define the WRED slope characteristics. User can define a high-slope and a low-slope for each of the queues. High-slope is used for in-profile packets being enqueued into the queues and low-priority slope is used for out-of-profile packets being enqueued into the queues.

By default each queue is associated with a default queue-management policy. The default policy allocates the appropriate amount of CBS and MBS buffers based on whether the queue is associated with a SAP or network port.
WRED SLOPES

Operation and Configuration

The 7210 SAS provides a single system buffer pool for use by all the queues created in the system. Each queue supports a high-priority WRED slope, and a low-priority WRED slope. The high-priority WRED slope manages access to the shared portion of the buffer pool for high-priority or in-profile packets. The low-priority WRED slope manages access to the shared portion of the buffer pool for low-priority or out-of-profile packets.

By default, the high-priority and low-priority slopes are disabled.

In the 7210 SAS X, WRED is supported. WRED uses average queue lengths, queue thresholds provisioned, and drop probability to calculate the packet’s eligibility to be enqueued. The committed portion of the buffer pool is exclusively used by a queue to enqueue traffic within committed rate.

In the 7210 SAS X, WRED is supported. WRED uses average queue lengths, queue thresholds provisioned, and drop probability to calculate the packet’s eligibility to be enqueued. The committed portion of the buffer pool is exclusively used by a queue to enqueue traffic within committed rate.

For the queues within a buffer pool, packets are either queued using committed burst size (CBS) buffers or shared buffers. The CBS buffers are simply buffer memory that has been allocated to the queue while the queue depth is at or below its CBS threshold. The amount of CBS assigned to all queues is dependent upon the number of queues created, the setting of the default CBS as defined in the policy, and any CBS values set per queue within a QoS policy. However, from a functional perspective, the buffer pool does not keep track of the total of the CBS assigned to queues serviced by the pool. CBS subscription on the pool is an administrative function that must be monitored by the queue provisioner.

For each queue, the amount of access and network buffer pools, the percentage of the buffers that are to be reserved for CBS buffers is configured by the usersoftware (cannot be changed by user). This setting indirectly assigns the amount of shared buffers on the pool. This is an important function that controls the ultimate average and total shared buffer utilization value calculation used for WRED slope operation. The CBS setting can be used to dynamically maintain the buffer space on which the WRED slopes operate.

When a queue depth exceeds the queue’s CBS, packets received on that queue must contend with other queues exceeding their CBS for shared buffers. To resolve this contention, the buffer pool uses two WRED slopes to determine buffer availability on a packet by packet basis. A packet that was either classified as high priority or considered in-profile is handled by the high-priority WRED slope. This slope should be configured with WRED parameters that prioritize buffer
availability over packets associated with the low-priority WRED slope. Packets that had been
classified as low priority or out-of-profile are handled by this low-priority WRED slope.

The following is a simplified overview of how a WRED slope determines shared buffer
availability on a packet basis:

1. The WRED function keeps track of shared buffer utilization and shared buffer average utiliza-
tion.
2. At initialization, the utilization is 0 (zero) and the average utilization is 0 (zero).
3. When each packet is received, the current average utilization is plotted on the slope to deter-
mine the packet’s discard probability.
4. A random number is generated associated with the packet and is compared to the discard
probability.
5. The lower the discard probability, the lower the chances are that the random number is within
the discard range.
6. If the random number is within the range, the packet is discarded which results in no change
to the utilization or average utilization of the shared buffers.
7. A packet is discarded if the utilization variable is equal to the shared buffer size or if the uti-
lized CBS (actually in use by queues, not just defined by the CBS) is oversubscribed and has
stolen buffers from the shared size, lowering the effective shared buffer size equal to the
shared buffer utilization size.
8. If the packet is queued, a new shared buffer average utilization is calculated using the time-
average-factor (TAF) for the buffer pool. The TAF describes the weighting between the pre-
vious shared buffer average utilization result and the new shared buffer utilization in deter-
mining the new shared buffer average utilization. (See Tuning the Shared Buffer Utilization
Calculation on page 56.)
9. The new shared buffer average utilization is used as the shared buffer average utilization next
time a packet’s probability is plotted on the WRED slope.
10. When a packet is removed from a queue (if the buffers returned to the buffer pool are from
the shared buffers), the shared buffer utilization is reduced by the amount of buffers returned.
If the buffers are from the CBS portion of the queue, the returned buffers do not result in a
change in the shared buffer utilization.
A RED slope itself is a graph with an X (horizontal) and Y (vertical) axis. The X-axis plots the percentage of shared buffer average utilization, going from 0 to 100 percent. The Y-axis plots the probability of packet discard marked as 0 to 1. The actual slope can be defined as four sections in (X, Y) points (Figure 3):

1. Section A is (0, 0) to (start-avg, 0). This is the part of the slope that the packet discard value is always zero, preventing the RED function from discarding packets when the shared buffer average utilization falls between 0 and start-avg.
2. Section B is (start-avg, 0) to (max-avg, max-prob). This part of the slope describes a linear slope where packet discard probability increases from zero to max-prob.
3. Section C is (max-avg, max-prob) to (max-avg, 1). This part of the slope describes the instantaneous increase of packet discard probability from max-prob to one. A packet discard probability of 1 results in an automatic discard of the packet.
4. Section D is (max-avg, 1) to (100%, 1). On this part of the slope, the shared buffer average utilization value of max-avg to 100% results in a packet discard probability of 1.

Plotting any value of shared buffer average utilization will result in a value for packet discard probability from 0 to 1. Changing the values for start-avg, max-avg and max-prob allows the adaptation of the RED slope to the needs of the access or network queues using the shared portion of the buffer pool, including disabling the RED slope.

Figure 3: RED Slope Characteristics

Tuning the Shared Buffer Utilization Calculation

The 7210 SAS X allows tuning the calculation of the Shared Buffer Average Utilization (SBAU) after assigning buffers for a packet entering a queue as used by the RED slopes to calculate a packet’s drop probability. The 7210 SAS X implements a time average factor (TAF) parameter in the buffer policy which determines the contribution of the historical shared buffer utilization and the instantaneous Shared Buffer Utilization (SBU) in calculating the SBAU. The TAF defines a
weighting exponent used to determine the portion of the shared buffer instantaneous utilization and the previous shared buffer average utilization used to calculate the new shared buffer average utilization. To derive the new shared buffer average utilization, the buffer pool takes a portion of the previous shared buffer average and adds it to the inverse portion of the instantaneous shared buffer utilization (SBU). The formula used to calculated the average shared buffer utilization is:

\[
SBAU_n = (SBU \times \frac{1}{2^{TAF}}) + \left(SBAU_{n-1} \times \frac{2^{TAF} - 1}{2^{TAF}} \right)
\]

where:

- \(SBAU_n \) = Shared buffer average utilization for event n
- \(SBAU_{n-1} \) = Shared buffer average utilization for event \((n-1)\)
- \(SBU \) = The instantaneous shared buffer utilization
- \(TAF \) = The time average factor

Table 21 shows the effect the allowed values of TAF have on the relative weighting of the instantaneous SBU and the previous SBAU \((SBAU_{n-1})\) has on the calculating the current SBAU \((SBAU_n)\).

<table>
<thead>
<tr>
<th>TAF</th>
<th>(2^{TAF})</th>
<th>Equates To</th>
<th>Shared Buffer Instantaneous Utilization Portion</th>
<th>Shared Buffer Average Utilization Portion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(2^0)</td>
<td>1</td>
<td>1/1 (1)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>1</td>
<td>(2^1)</td>
<td>2</td>
<td>1/2 (0.5)</td>
<td>1/2 (0.5)</td>
</tr>
<tr>
<td>2</td>
<td>(2^2)</td>
<td>4</td>
<td>1/4 (0.25)</td>
<td>3/4 (0.75)</td>
</tr>
<tr>
<td>3</td>
<td>(2^3)</td>
<td>8</td>
<td>1/8 (0.125)</td>
<td>7/8 (0.875)</td>
</tr>
<tr>
<td>4</td>
<td>(2^4)</td>
<td>16</td>
<td>1/16 (0.0625)</td>
<td>15/16 (0.9375)</td>
</tr>
<tr>
<td>5</td>
<td>(2^5)</td>
<td>32</td>
<td>1/32 (0.03125)</td>
<td>31/32 (0.96875)</td>
</tr>
<tr>
<td>6</td>
<td>(2^6)</td>
<td>64</td>
<td>1/64 (0.015625)</td>
<td>63/64 (0.984375)</td>
</tr>
<tr>
<td>7</td>
<td>(2^7)</td>
<td>128</td>
<td>1/128 (0.0078125)</td>
<td>127/128 (0.9921875)</td>
</tr>
<tr>
<td>8</td>
<td>(2^8)</td>
<td>256</td>
<td>1/256 (0.00390625)</td>
<td>255/256 (0.99609375)</td>
</tr>
</tbody>
</table>
Table 21: TAF Impact on Shared Buffer Average Utilization Calculation (Continued)

<table>
<thead>
<tr>
<th>TAF</th>
<th>2^{TAF}</th>
<th>Equates To</th>
<th>Shared Buffer Instantaneous Utilization Portion</th>
<th>Shared Buffer Average Utilization Portion</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>2^9</td>
<td>512</td>
<td>$1/512$ (0.001953125)</td>
<td>$511/512$ (0.998046875)</td>
</tr>
<tr>
<td>10</td>
<td>2^{10}</td>
<td>1024</td>
<td>$1/1024$ (0.0009765625)</td>
<td>$1023/1024$ (0.9990234375)</td>
</tr>
<tr>
<td>11</td>
<td>2^{11}</td>
<td>2048</td>
<td>$1/2048$ (0.00048828125)</td>
<td>$2047/2048$ (0.99951171875)</td>
</tr>
<tr>
<td>12</td>
<td>2^{12}</td>
<td>4096</td>
<td>$1/4096$ (0.000244140625)</td>
<td>$4095/4096$ (0.999755859375)</td>
</tr>
<tr>
<td>13</td>
<td>2^{13}</td>
<td>8192</td>
<td>$1/8192$ (0.0001220703125)</td>
<td>$8191/8192$ (0.999877926875)</td>
</tr>
<tr>
<td>14</td>
<td>2^{14}</td>
<td>16384</td>
<td>$1/16384$ (0.00006103515625)</td>
<td>$16383/16384$ (0.99993896484375)</td>
</tr>
<tr>
<td>15</td>
<td>2^{15}</td>
<td>32768</td>
<td>$1/32768$ (0.000030517578125)</td>
<td>$32767/32768$ (0.999969482421875)</td>
</tr>
</tbody>
</table>

The value specified for the TAF affects the speed at which the shared buffer average utilization tracks the instantaneous shared buffer utilization. A low value weights the new shared buffer average utilization calculation more to the shared buffer instantaneous utilization. When TAF is zero, the shared buffer average utilization is equal to the instantaneous shared buffer utilization. A high value weights the new shared buffer average utilization calculation more to the previous shared buffer average utilization value. The TAF value applies to all high and low priority RED slopes for ingress and egress buffer pools controlled by the buffer policy.
Queue Management Policy Parameters

The elements required to define a queue management policy are:

- A unique policy ID
- The high and low RED slope shapes for the queue: the start-avg, max-avg and maxprob settings for the high-priority and low-priority RED slopes.
- The TAF weighting factor to use for the SBAU calculation for determining RED slope drop probability.

Queue management policy ID `default` is reserved for the default queue management policy. The default policy cannot be deleted or changed. The default policy is implicitly applied to all queues which do not have another queue management policy explicitly assigned.

Table 22 lists the default values for the default slope policy.

Table 22: Default Slope Policy Definition

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy ID</td>
<td>Queue management policy ID</td>
<td>default (for default queue manage-ment policy)</td>
</tr>
<tr>
<td>CBS</td>
<td>Committed Burst size</td>
<td>Default (in kilobytes)</td>
</tr>
<tr>
<td>MBS</td>
<td>Maximum Burst size</td>
<td>Default (in kilobytes)</td>
</tr>
<tr>
<td>High (RED) slope</td>
<td>Administrative state</td>
<td>Shutdown</td>
</tr>
<tr>
<td></td>
<td>start-avg</td>
<td>70% utilization</td>
</tr>
<tr>
<td></td>
<td>max-avg</td>
<td>90% utilization</td>
</tr>
<tr>
<td></td>
<td>max-prob</td>
<td>75%</td>
</tr>
<tr>
<td>Low (RED) slope</td>
<td>Administrative state</td>
<td>Shutdown</td>
</tr>
<tr>
<td></td>
<td>start-avg</td>
<td>50% utilization</td>
</tr>
<tr>
<td></td>
<td>max-avg</td>
<td>75% utilization</td>
</tr>
<tr>
<td></td>
<td>max-prob</td>
<td>75%</td>
</tr>
</tbody>
</table>
Remark Policy

This policy allows the user to define the forwarding class to egress marking values. Based on the packet encapsulation used to send out the service packets, the remark policy allows the user to define and associate appropriate policies to service egress and network egress QoS policies. 7210 supports the following types of remark policies:

- dot1p (for use in service egress and network qos [port type] policies)
- dscp (for use in network qos [port type] policies)
- lsp-exp (for use in network qos [ip-interface type] policies)
- dot1p-dscp (for use in network qos [port type] policies)
- dot1p-lsp-exp-shared (for use in service egress and network qos [ip-interface type] policies)

Each of these remark policy type can be associated with only appropriate Qos policies as listed above.

The required elements to define a remark QoS policy are:

- A unique remark QoS policy ID.
- Forwarding class to appropriate marking values

Table 23: Slope Policy Defaults

<table>
<thead>
<tr>
<th>Field</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>description</td>
<td>Default slope policy</td>
</tr>
<tr>
<td>high (RED) slope</td>
<td></td>
</tr>
<tr>
<td>Administrative state</td>
<td>shutdown</td>
</tr>
<tr>
<td>start-threshold</td>
<td>75% utilization</td>
</tr>
<tr>
<td>queue 1 — 8 drop-rate</td>
<td>1 (6.25% drop rate)</td>
</tr>
<tr>
<td>low (RED) slope</td>
<td></td>
</tr>
<tr>
<td>Administrative state</td>
<td>shutdown</td>
</tr>
<tr>
<td>start-threshold</td>
<td>50% utilization</td>
</tr>
<tr>
<td>queue 1 — 8 drop-rate</td>
<td>0 (100% drop rate)</td>
</tr>
</tbody>
</table>
Egress Port Rate Limiting

The 7210 SAS supports port egress rate limiting. This feature allows the user to limit the bandwidth available on the egress of the port to a value less than the maximum possible link bandwidth. It also allows the user to control the amount of burst sent out.
Forwarding Classes

7210 SAS support multiple forwarding classes and class-based queuing, so the concept of forwarding classes is common to all of the QoS policies.

Each forwarding class (also called Class of Service (CoS)) is important only in relation to the other forwarding classes. A forwarding class provides network elements a method to weigh the relative importance of one packet over another in a different forwarding class.

Queues are created for a specific forwarding class to determine the manner in which the queue output is scheduled. The forwarding class of the packet, along with the in-profile or out-of-profile state, determines how the packet is queued and handled (the per hop behavior (PHB)) at each hop along its path to a destination egress point. 7210 SAS support eight (8) forwarding classes (Table 24).

Table 24: Forwarding Classes

<table>
<thead>
<tr>
<th>FC-ID</th>
<th>FC Name</th>
<th>FC Designation</th>
<th>DiffServ Name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Network Control</td>
<td>NC</td>
<td>NC2</td>
<td>Intended for network control traffic.</td>
</tr>
<tr>
<td>6</td>
<td>High-1</td>
<td>H1</td>
<td>NC1</td>
<td>Intended for a second network control class or delay/jitter sensitive traffic.</td>
</tr>
<tr>
<td>5</td>
<td>Expedited</td>
<td>EF</td>
<td>EF</td>
<td>Intended for delay/jitter sensitive traffic.</td>
</tr>
<tr>
<td>4</td>
<td>High-2</td>
<td>H2</td>
<td>AF4</td>
<td>Intended for delay/jitter sensitive traffic.</td>
</tr>
<tr>
<td>3</td>
<td>Low-1</td>
<td>L1</td>
<td>AF2</td>
<td>Intended for assured traffic. Also is the default priority for network management traffic.</td>
</tr>
<tr>
<td>2</td>
<td>Assured</td>
<td>AF</td>
<td>AF1</td>
<td>Intended for assured traffic.</td>
</tr>
<tr>
<td>1</td>
<td>Low-2</td>
<td>L2</td>
<td>CS1</td>
<td>Intended for BE traffic.</td>
</tr>
<tr>
<td>0</td>
<td>Best Effort</td>
<td>BE</td>
<td>BE</td>
<td></td>
</tr>
</tbody>
</table>

Note that Table 24 presents the default definitions for the forwarding classes. The forwarding class behavior, in terms of ingress marking interpretation and egress marking, can be changed by a Network QoS Policies on page 23. All forwarding class queues support the concept of in-profile and out-of-profile.
Forwarding-Class To Queue-ID Map

There are 8 forwarding classes supported on 7210 SAS X. Each of these FC is mapped to a specific queue while traffic is flowing on the egress port. By mapping FC to different queues the differential treatment is imparted to various classes of traffic.

The 7210 SAS allocates 8 queues to SAP and network by default. The queues cannot be created or deleted by the user. CLI commands are available for the user to configure the queue parameters.

The queue ID 1 to 8 are assigned to each of the 8 queues. Queue-ID 8 is the highest priority and queue-id 1 is the lowest priority. FCs are correspondingly mapped to these queue IDs according to their priority. The system defined map is as shown in Table 25. This mapping is not user configurable.

Table 25: Forwarding Class to Queue-ID Map

<table>
<thead>
<tr>
<th>FC-ID</th>
<th>FC Name</th>
<th>FC Designation</th>
<th>Queue-ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Network control</td>
<td>NC</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>High-1</td>
<td>H1</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>Expedited</td>
<td>EF</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>High-2</td>
<td>H2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Low-1</td>
<td>L1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Assured</td>
<td>AF</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>Low-2</td>
<td>L2</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>Best-Effort</td>
<td>BE</td>
<td>1</td>
</tr>
</tbody>
</table>
QoS Policy Entities

Services are configured with default QoS policies. Additional policies must be explicitly created and associated. There is one default service ingress QoS policy, one default service egress QoS policy, one default network QoS policy, and default network queue policy. Only one ingress QoS policy and one egress QoS policy can be applied to a SAP or IP interface, or network port.

When you create a new QoS policy, default values are provided for most parameters with the exception of the policy ID, descriptions. Each policy has a scope, default action, a description, and meters for ingress policies and queues for egress policies. The queue is associated with a forwarding class.

QoS policies can be applied to the following service types:

- **Epipe** — SAP ingress and egress policies are supported on an Epipe service access point (SAP).
- **VPLS** — SAP ingress and egress policies are supported on a VPLS SAP.
- **VPRN** — Only ingress policies are supported on a VPRN SAP.

QoS policies can be applied to the following entities:

- SAP ingress and egress policies on access SAPs.
- Network QoS Policy (ingress) on Network Port and/or Network IP Interface.
- Network Queue Policy on Network port.
- Multipoint bandwidth management policies to manage multipoint traffic (per system).

Default Access QoS policies map all traffic with equal priority and allow an equal chance of transmission (Best Effort (be) forwarding class) and an equal chance of being dropped during periods of congestion. QoS prioritizes traffic according to the forwarding class and uses congestion management to control access ingress, access egress, and network traffic with queuing according to priority.
Configuration Notes

The following information describes QoS implementation caveats:

• Creating additional QoS policies is optional.
• Default policies are created for service ingress, service egress, network-ingress, network-egress, queue-management and multipoint bandwidth management.
• Associating a service or ports with a QoS policy other than the default policy is optional.
Port Level Egress Rate-Limiting

In This Section

This section provides information to configure port level egress-rate using the command line interface.

Topics in this section include:

- Overview on page 68
- Basic Configurations on page 70
- Configuration Commands on page 74
Overview

Egress port rate limiting allows the device to limit the traffic that egresses through a port to a value less than the available link bandwidth. This feature is supported on the 7210 SAS-Series platforms.

Applications

This feature is useful when connecting the 7210 SAS to an Ethernet-over-SDH (EoSDH) (or microwave) network, where the network allocates predetermined bandwidth to the nodes connecting into it, based on the transport bandwidth requirement. When connecting to such a network it is important that the traffic sent into the SDH node does not exceed the configured values, since the SDH network does not have QoS capabilities and buffers required to prioritize the ingress traffic.

Egress rate attributes include:

- Allows for per port configuration of the maximum egress port rate, using the egress-rate CLI command.
- Ethernet ports support this feature.
- The scheduler distributes the available maximum egress bandwidth based on the CIR/PIR configuration parameters provisioned for the queues.
- Provides support for a burst parameter to control the amount of burst the egress port can generate.
- When ports are members of a LAG, all the ports use the same value for the egress-rate and the max-burst parameters.
- If frame overhead accounting is enabled, then queue scheduler accounts for the Ethernet frame overhead.
Affect of Port Level Rate-Limiting on Queue Functionality

• When an egress-rate sub-rate value is given, the queue rates that are specified using percentages will use the egress-rate value instead of the port bandwidth to configure the appropriate queue rates. Configuration of egress port rate to different values will result in a corresponding dynamic adjustment of rates for the queues configured on ports.

• When the egress-rate sub-rate value is set, CBS/MBS of the associated network queues will not change.
Basic Configurations

To apply port level rate-limiting, perform the following:

- The `egress-rate` command is present in the `*A:Dut-1>config>port>ethernet` context.
- The `egress-rate` configures the maximum rate (in kbps) for the port. The value should be between 1 and 1000000 kbps and between 1 and 10000000 kbps for 10G port.
- The `max-burst` command configures a maximum-burst (in kilo-bits) associated with the egress-rate. This is optional parameter and if not defined then, by default, it is set to 32kb for a 1G port and 66kb for a 10G port. User cannot configure max-burst without configuring egress-rate. The value should be between 32 and 16384 or default.
- By default there is no egress-rate command set on port. By default egress-rate for a port is maximum (equal to line-rate).

The following displays the egress-rate configuration for a port:

```
*A:Dut-1>config>port# info
----------------------------------------------
eternet
        egress-rate 120000 max-burst 234
        exit
        no shutdown
----------------------------------------------
*A:Dut-1>config>port#
```
Modifying Port Level Egress-Rate Command

To modify egress-rate parameters you can simply apply an egress-rate command with new egress-rate and max-burst value.

The following displays the egress-rate configuration for a port:

```
*A:Dut-1>config>port# ethernet egress-rate 10000 max-burst default
*A:Dut-1>config>port# info
----------------------------------------------
eternet
    egress-rate 10000
exit
no shutdown
----------------------------------------------
*A:Dut-1>config>port#
```
Removing Port Level Egress-Rate Command

To remove egress-rate command from a port, use the no option with the egress-rate command. The rate for the egress-rate option and max-burst should not be used in this case.

CLI Syntax: config>port>ethernet# no egress-rate

The following displays the removal of egress-rate configuration from a port:

```
*A:Dut-1>config>port# no ethernet egress-rate
*A:Dut-1>config>port# info
----------------------------------------------
ethernet
exit
no shutdown
----------------------------------------------
*A:Dut-1>config>port#
```

Default Egress-Rate Values

By default no egress-rate is configured for a port.
Port Level Egress-Rate Command Reference

Command Hierarchies

Configuration Commands

config
 ─ port
 ─ ethernet
 └── egress-rate sub-rasub-rate [max-burst size-in-kbits]
 └── no egress-rate

Show Commands

show
 ─ port [port-id]
Configuration Commands

egress-rate

Syntax

```
egress-rate <sub-rate> [max-burst <size-in-kbits>]
no egress-rate
```

Context

config>port>ethernet

Description

This command configures maximum rate and corresponding burst value for a port. The egress-rate is configured as kbps while max-burst is configured as kilo-bits while max-burst should be between 32 and 16384 or default.

The `no` form of the command removes egress-rate from the port.

Default

No egress-rate and max-burst is configured for the port.

Parameters

- `sub-rate` — Specifies an integer value between 1 and 1000000 kbps and between 1 and 10000000 kbps for 10G port.
- `max-burst size-in-kbits` — Specifies an integer value, in kilo-bits, between 32 and 16384 or default.
Show Commands

port

Syntax
\texttt{port [port-id]}

Context
show

Description
This command displays Egress-Rate and Max-Burst value set for port along with other details of the port.

Parameters
\texttt{port-id} — Displays information about the specific port ID.

Sample Output

```
*A:Dut-1>config>port>ethernet# show port 1/1/23
-----------------------------------------------------------------------------------------------
Ethernet Interface
-----------------------------------------------------------------------------------------------
Description        : 10/100/Gig Ethernet SFP
Interface          : 1/1/23                     Oper Speed       : 100 mbps
Link-level         : Ethernet                   Config Speed     : 1 Gbps
Admin State        : up                         Oper Duplex      : full
Oper State         : up                         Config Duplex    : full
Physical Link      : Yes                        MTU              : 9212
IfIndex            : 36405248                   Hold time up     : 0 seconds
Last State Change  : 03/12/2001 03:31:09        Hold time down   : 0 seconds
Last Cleared Time  : N/A
Configured Mode    : network                    Encap Type       : null
Dot1Q Ethertype    : 0x8100                     QinQ Ethertype   : 0x8100
Net. Egr. Queue Pol: default                    Access Egr. Qos *: n/a
Egr. Sched. Pol    : default                    Network Qos Pol  : 1
Auto-negotiate     : true                       MDI/MDX          : MDX
Accounting Policy  : None                       Collect-stats    : Disabled
Egress Rate        : 100000                     Max Burst        : 8000
Down-when-looped   : Disabled                   Keep-alive       : 10
Loop Detected      : False                      Retry            : 120
Configured Address : 00:f7:d6:5e:98:18         Hardware Address : 00:f7:d6:5e:98:18
Cfg Alarm          :                          Alarm Status     :
Transceiver Data
Transceiver Type    : SFF                     
Model Number        : 3HE00062AAAA01 ALA IPUIAEHDA6
TX Laser Wavelength: 0 nm                        Diag Capable     : no
Connector Code      : Unknown                   Vendor OUI       : 00:90:65
```

7210 SAS X OS Quality of Service Guide
<table>
<thead>
<tr>
<th>Port Level Egress-Rate Command Reference</th>
</tr>
</thead>
</table>

Manufacture date : 2008/09/11
Serial Number : PEB2WGH
Part Number : FCMJ-8521-3-A5
Optical Compliance : GIGE-T
Link Length support: 100m for copper

===

Traffic Statistics
===

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octets</td>
<td>15028477</td>
</tr>
<tr>
<td>Packets</td>
<td>16729</td>
</tr>
<tr>
<td>Errors</td>
<td>0</td>
</tr>
</tbody>
</table>

* indicates that the corresponding row element may have been truncated.

===

Port Statistics
===

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unicast Packets</td>
<td>11611</td>
</tr>
<tr>
<td>Multicast Packets</td>
<td>359</td>
</tr>
<tr>
<td>Broadcast Packets</td>
<td>4759</td>
</tr>
<tr>
<td>Discards</td>
<td>0</td>
</tr>
<tr>
<td>Unknown Proto Discards</td>
<td>0</td>
</tr>
</tbody>
</table>

===

Ethernet-like Medium Statistics
===

Alignment Errors	0	Sngl Collisions	0
	0	Mult Collisions	0
SQE Test Errors	0	Late Collisions	0
	0	Excess Collsins	0
Too long Frames	0	Int MAC Tx Errs	0
Symbol Errors	0	Int MAC Rx Errs	0

*A:MTU-T2>config>port>ethernet#
Frame Based Accounting

In This Section

This section provides information to configure frame-based accounting using the command line interface.

Topics in this section include:

- Overview on page 78
- Basic Configurations on page 79
- Configuration Commands on page 82
Overview

This feature when enabled lets QoS policies to accounts for the Ethernet frame overhead (for example, it accounts for the IFG (inter-frame gap) and the preamble). Typically, the IFG and preamble constitutes about 12 + 8 = 20 bytes. The overhead for Ethernet ports uses this value.

A configurable CLI command enables accounting of the frame overhead at ingress. This is a system wide parameter and affects the behavior of the ingress meter. By default, frame-based accounting is disabled on ingress. Frame overhead is always accounted for at the egress (queue rates and egress rate) and user has no option of disabling it.

Affects of Enabling Ingress Frame Based Accounting on Ingress Meter Functionality

To enable system-wide consistency in configuring QoS queue and meter rate parameters, the meters used on the system ingress might need to account for Ethernet frame overhead. Ingress and service ingress meters account for Ethernet frame overhead. A configurable CLI command can enable or disable the frame overhead accounting. This is a system-wide parameter affecting the behavior of all the meters in the system.

Affects of Egress Frame Based Accounting on Queue Functionality

Because of frame overhead accounting consideration, queue scheduler accounts for the Ethernet frame overhead. The maximum egress bandwidth accounts for the Ethernet frame overhead (it accounts for the IFG (inter-frame gap) and the preamble). Typically, the IFG and preamble constitutes about 12 + 8 = 20 bytes. The overhead for Ethernet ports uses this value.

Accounting and Statistics

Accounting logs and statistics do not account for frame overhead.
Basic Configurations

To enable frame-based accounting, you must perform the following:

- The **frame-based-accounting** command is in the *A:Dut-1> config>qos>frame-based-accounting* context.
- The **ingress-enable** command enables frame-based-accounting for ingress metering.

The following displays the frame-based accounting configuration:

*A:Dut-1>config>qos>frame-based-accounting# info detail
--
 no ingress-enable
*A:Dut-1>config>qos>frame-based-accounting#
Enabling and Disabling Frame-Based Accounting

To enable frame-based-accounting for ingress, you can simply use the `ingress-enable` command. To disable frame-based-accounting for ingress, execute the `no ingress-enable` command.

CLI Syntax:
```
config>qos>frame-based-accounting
```

The following output displays the enabling of frame-based-accounting:
```
*A:Dut-1>config>qos>frame-based-accounting# ingress-enable
*A:Dut-1>config>qos>frame-based-accounting# info
----------------------------------------------
ingress-enable
*A:Dut-1>config>qos>frame-based-accounting#
```

The following output displays the disabling of frame-based-accounting:
```
*A:Dut-1>config>qos>frame-based-accounting# no ingress-enable
*A:Dut-1>config>qos>frame-based-accounting#
*A:Dut-1>config>qos>frame-based-accounting# info detail
----------------------------------------------
no ingress-enable
*A:Dut-1>config>qos>frame-based-accounting#
```

Default Frame-Based-Accounting Values

By default frame-based-accounting is disabled for ingress. By default frame-based-accounting is enabled for egress and it cannot be disabled.
Frame Based Accounting Command Reference

Command Hierarchies

Configuration Commands

```
config
  qos
    frame-based-accounting
      [no] ingress-enable
```

Show Commands

```
show
  qos
    network [policy-id] [detail]
    network-queue [network-queue-policy-name] [detail]
    sap-egress [policy-id] [association|detail]
    sap-ingress [policy-id] [association|match-criteria|detail]
```
Configuration Commands

ingress-enable

Syntax [no] ingress-enable
Context config>qos>frame-based-accounting
Description This command enables the frame-based-accounting for sap-ingress and network QoS.

The no form of the command disables frame-based-accounting for sap-ingress and network QoS.

Default disabled
Show Commands

sap-ingress

Syntax sap-ingress [policy-id] [association|match-criteria|detail]
Context show>qos
Description This command displays accounting status of a sap-ingress policy along with other details of the policy. When frame-based-accounting is enabled accounting is shown as frame-based otherwise packet-based.

Parameters policy-id — Displays information about the specific policy ID.
associations — Displays the associations of the sap-ingress policy.
match-criteria — Displays the match criteria of the sap-ingress policy.
detail — Displays the detailed information of the sap-ingress policy.

Sample Output

*A:Dut-1# show qos sap-ingress 1
===
QoS Sap Ingress
===

Sap Ingress Policy (1)

Policy-id : 1 Scope : Template
Default FC : be
Criteria-type : None
Accounting : frame-based
Classifiers Allowed: 16 Meters Allowed : 8
Classifiers Used : 2 Meters Used : 2
Description : Default SAP ingress QoS policy.
===
*A:Dut-1#

network

Syntax network [policy-id] [detail]
Context show>qos
Description This command displays the accounting status of a network qos policy along with other details of the policy. When frame-based-accounting is enabled accounting is shown as frame-based otherwise packet-based.
Parameters

policy-id — Displays information about the specific policy ID.
detail — Displays the detail policy information.

Sample Output

*A:Dut-1# show qos network 1
===
QoS Network Policy
===
Network Policy (1)
===
Policy-id : 1 Remark : False
Forward Class : be Profile : Out
Attach Mode : l2 Config Mode : l2+mpls
Scope : Template Policy Type : port
Accounting : frame-based
Description : Default network-port QoS policy.
===
Meter Mode CIR Admin CIR Rule PIR Admin PIR Rule CBS MBS

1 TrTcm_CA 0 closest max closest 32 128

FC UCastM MCastM

No FC-Map Entries Found.

Port Attachments

Port-id : 1/1/3
Port-id : 1/1/6
Port-id : 1/1/7
Port-id : 1/1/8
Port-id : 1/1/9
Port-id : 1/1/10
Port-id : 1/1/11
Port-id : 1/1/12
Port-id : 1/1/13
Port-id : 1/1/14
Port-id : 1/1/15
Port-id : 1/1/16
Port-id : 1/1/17
Port-id : 1/1/18
Port-id : 1/1/19
Port-id : 1/1/20
Port-id : 1/1/21
Port-id : 1/1/22
Port-id : 1/1/23
Port-id : 1/1/24
===
*A:Dut-1#
sap-egress

Syntax sap-egress [policy-id] [association|detail]

Context show>qos

Description This command displays accounting status of an sap-egress policy along with other details of the policy. When frame-based-accounting is enabled accounting is shown as frame-based otherwise packet-based.

Parameters

- policy-id — Displays information about the specific policy ID.
- association — Displays the policy associations.
- detail — Displays the policy information in detail.

Sample Output

*A:SAS-X-C# show qos sap-egress 1

===
QoS Sap Egress
===

Sap Egress Policy (1)

Scope : Template
Remark : False Remark Pol Id : 2
Accounting : frame-based
Description : Default SAP egress QoS policy.
===

network-queue

Syntax network-queue [network-queue-policy-name] [detail]

Context show>qos

Description This command displays accounting status of a network-queue policy along with other details of the policy. When frame-based-accounting is enabled accounting is shown as frame-based otherwise packet-based.

Parameters

- network-queue-policy-name — Displays information about the specific Network queue policy.
- detail — Displays the detailed policy information.

Sample Output

*A:Dut-1# show qos network-queue default

Scope : Template
Remark : False Remark Pol Id : 2
Accounting : frame-based
Description : This is a default network queue QoS policy.

QoS Network Queue Policy
--

Network Queue Policy (default)
--
Policy : default
Accounting : frame-based
Description : Default network queue QoS policy.
--
Associations
--
Port-id : 1/1/6
Port-id : 1/1/7
Port-id : 1/1/8
Port-id : 1/1/9
Port-id : 1/1/10
Port-id : 1/1/11
Port-id : 1/1/12
Port-id : 1/1/13
Port-id : 1/1/14
Port-id : 1/1/15
Port-id : 1/1/16
Port-id : 1/1/17
Port-id : 1/1/18
Port-id : 1/1/20
Port-id : 1/1/21
Port-id : 1/1/22
Port-id : 1/1/23
Port-id : 1/1/24
--
*A:Dut-1#
Network QoS Policies

In This Section

This section provides information to configure network QoS policies using the command line interface.

Topics in this section include:

- Overview on page 88
- Basic Configurations on page 97
- Default Network Policy Values on page 100
- Service Management Tasks on page 104
Overview

The network QoS policy consists of an ingress and egress component. There are two types of network QoS policies, network QoS policy of type port and network QoS policy of type ip-interface. A port network policy is applied to network ports, used for classification/remarking of IP traffic using DSCP or Dot1p values. Either DSCP or Dot1p can be used for ingress classification but not both. Both DSCP and Dot1p can be configured at egress for remarking. The ip-interface type network policy is applied to IP Interface, used for classification/remarking of MPLS traffic using EXP values. Note that the FC to Dot1p marking values configured on the port, is also used to mark the Dot1p in the VLAN tag, if any, used for MPLS traffic.

The ingress component of the policy defines how EXP, DSCP or Dot1p bits are mapped to internal forwarding class and profile state. The forwarding class and profile state define the Per Hop Behavior (PHB) or the QoS treatment through the 7210 SAS. From release 4.0, the profile mapping is defined using a new policy mpls-lsp-exp-profile-map. The mpls-lsp-exp-profile-map defines the mapping between the LSP EXP bits and the profile (in or out) to be associated with a packet. The mapping on each ip-interface or port defaults to the mappings defined in the default network QoS policy until an explicit policy is defined for the IP interface or port. It also defines the rate-limiting parameters for the traffic mapped to each forwarding classes. Traffic mapped to each forwarding class can be rate limited using separate meters for each unicast and multipoint traffic (multipoint is used only for IP Interface for MPLS traffic).

The total number of QoS resources available for network IP interfaces are 512 entries and 256 meters. The software allocates these resources to an IP interface on a first-come first-served basis. The number of IP interfaces that can be successfully configured, varies based on the number of meters and entries utilised per IP interface. Irrespective of the QoS resource allocation, the system enforces the limit of maximum number of IP interfaces to 64.

The total number of QoS resources, that is ingress classification entries and policers, available for use with IP interfaces is limited. The software allocates these resources to an IP interface on a first come first serve basis. The number of resources used per IP interface limits the total number of IP interfaces configured on the system (the total number of IP interfaces allowed is also subject to a system limit).

The egress component of the network QoS policy defines the LSP EXP, DSCP or Dot1p bits marking values associated with each forwarding class.

By default, network qos policy remarking is always disabled. If the egressing packet originated on an ingress SAP, the egress EXP bit marking based on the forwarding class and the profile state. The default map of FC-EXP marking is as shown in default network qos policy, policy id 2. All non-default network qos policies inherits the FC-EXP map.

By default, all ports configured in network mode use Default network policy "1" and all network port IP interfaces use Default network policy "2". Default network policies "1" and "2" cannot be modified or deleted.
Network policy-id 2 exists as the default policy that is applied to all IP interface by default. The network policy-id 2 cannot be modified or deleted. It defines the default LSP EXP-to-FC mapping and default meters for unicast and multipoint meters for the ingress MPLS packets. For the egress, it defines eight forwarding classes which defines LSP EXP values and the packet marking criteria.

New (non-default) network policy parameters can be modified. The no form of the command reverts the object to the default values.

Changes made to a policy are applied immediately to all IP interface where the policy is applied. For this reason, when a policy requires several changes, it is recommended that you copy the policy to a work area policy-id. The work-in-progress copy can be modified until all the changes are made and then the original policy-id can be overwritten with the config qos copy command.

For information about the tasks and commands necessary to access the command line interface and to configure and maintain your devices, refer to CLI Usage chapter in the OS Basic System Configuration Guide.
Normal QoS Operation

The following types of QoS mapping decisions are applicable on a network ingress IP interface:

- MPLS LSP EXP value mapping to FC (if defined)
- Default QoS mapping
- MPLS LSP EXP mapping to profile

The default QoS mapping always exists on an ingress IP interface and every received packet will be mapped to this default if another explicitly defined matching entry does not exist.
Network Qos Policy (ip-interface type) Functionality

When no ldp-local-fc-enable is in use, the following restrictions apply (compatible with behavior in release 3.0 and before):

- For LDP LSP traffic, the system uses a single policy (default network policy 2) to assign the FC & profile to the packet. User cannot modify the EXP bits to FC mapping defined in the default policy. Using MPLS EXP bits received in the packet to match the EXP bits configured in the network policy, the policer to use is known. Thus, the system in effect supports only a single system-defined classification policy for all IP interfaces for LDP LSPs though policers with different rates can be used. It does not allow for the flexibility to use different classification policy on different IP interfaces for LDP LSP traffic.

- When using only LDP LSPs, user needs to be aware that the LSP EXP bits to FC classification specified in the global policy is used by the system and not the classification map specified in the network qos policy. Only the meter/policer is used from the network qos policy. It does not cause any issues when only LDP is in use, though the way the policies have been defined currently, its usage is not intuitive to user and can potentially result in confusion.

- There are only 32 unique hardware resources available to map the MPLS EXP bits to profile values. Hence, in release 3.0, only 32 unique network policies could be associated with IP interfaces, though the platform supports more number of IP interfaces. In other words, in release 3.0, multiple IP interfaces needed to share network policies. Though it is sufficient and meets most of the network deployment scenarios, some of the IP interfaces need to share a single network policy. IP interfaces that share the policy will use the same EXP bits to FC mapping.

- If a user receives traffic on RSVP LSP and a LDP LSP with the same value in the EXP bits and on the same IP interface, then potentially, the system can classify packets received on a RSVP LSP to one FC and classify packets received on a LDP LSP to another different FC. This is possible as LDP LSPs use the global network policy for classification and RSVP LSPs used the network policy associated with the IP interface for classification. If both of these policies specify the same EXP to FC mapping then there are no issues. With release 3.0, it is good practice to setup the EXP bits to FC map, to be the same in the default network policy and user-defined network policy when both LDP and RSVP protocols are in use. This is required to ensure that all packets received on an IP interface with a similar value of LSP EXP bit is classified to the same FC and a single policer is used for all them. This ensures that all MPLS packets received with the same EXP bits receive the same QoS treatment in the system.

Executing the command ldp-use-local-fc-enable, changes the mode of system behavior for network qos policies, which allows more flexibility and removes some of the restrictions listed above. After executing ldp-use-local-fc-enable, the following is possible:

- LSPs setup using LDP uses a global mpls-lsp-exp-profile-map policy. By default, the system assigns a default mpls-lsp-exp-profile-map policy. User has an option to change
the global policy to use. A new policy mpls-lsp-exp-profile-map policy allows the user to assign different profile value for MPLS EXP bits for MPLS packets received over different IP interface. This is helpful for use with primarily RSVP LSP with FRR 1:1. For LDP LSPs or when using FRR facility it is recommended to use a single mpls-lsp-exp-profile-map policy for all IP interfaces.

• The new policies separate the profile mapping and FC mapping. The FC used is always picked from the network policy. The new policy syntax allows for flexibility and is intuitive.

• Each IP interface can define a unique network policy for it use, each possibly using a different mapping for MPLS LSP EXP bits to forwarding class (FC). It allows for use of more than 32 distinct network policies, provided network classification resources are available for use.

• If user receives traffic on RSVP LSP and LDP LSP with the same value in the EXP bits, the system provides the same QoS treatment. The system always uses the FC and the meter from the network Qos policy for all MPLS traffic received on an IP interface irrespective of whether its LDP or RSVP LSP.

User cannot execute 'no ldp-use-local-fc-enabled' after executing 'ldp-use-local-fc-enable'.
Upgrading from Release 3.0 to Release 4.0

User can use a release 3.0 config file and bootup with release 4.0. The system takes care of the following automatically:

1. System executes the command "no ldp-use-local-fc-enable" and continues to operate with release 3.0 behavior.

2. System changes user defined network policies present in the configuration file to use the new release 4.0 policy commands and parameters. For every network policy, the system creates a new mpls-lsp-exp-profile-map policy with same ID as the network policy ID and associates it with the network policy (using the command mpls-lsp-exp-profile in the network policy ingress context). User cannot modify this association with no ldp-use-local-fc-enable in use.

3. System sets the value of the use-global-mpls-lsp-exp-profile to the default mpls-lsp-exp-profile-map policy "1". The user cannot modify it with no ldp-use-local-fc-enable in use.

4. User is all set to go. They can continue with release 3.0 behavior and continue to use the network policies as before with the restrictions it imposes. It is highly recommended to use the new behavior, as release 3.0 behavior will be deprecated in a future release.

5. User can execute the command 'ldp-use-local-fc-enable' to use the flexibility provided by the new policies. Please take a backup of the existing configuration file before this since once this command is executed and user modifies the existing policies, they cannot use the command 'no ldp-use-local-fc-enable' (release 3.0 behavior) anymore.
DSCP Marking CPU Generated Traffic

DSCP marking for CPU generated traffic is not configurable by the user. The default values are given in Table 26:

Table 26: DSCP and Dot1p Marking

<table>
<thead>
<tr>
<th>Protocol</th>
<th>IPv4</th>
<th>DSCP Marking</th>
<th>Dot1P Marking</th>
<th>Default FC</th>
<th>DSCP Values</th>
<th>DOT1P Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPF</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>NC</td>
<td>48</td>
<td>7</td>
</tr>
<tr>
<td>ISIS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>NC</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>TLDP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>NC</td>
<td>48</td>
<td>7</td>
</tr>
<tr>
<td>RSVP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>NC</td>
<td>48</td>
<td>7</td>
</tr>
<tr>
<td>SNMP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>H2</td>
<td>34</td>
<td>4</td>
</tr>
<tr>
<td>NTP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>NC</td>
<td>48</td>
<td>7</td>
</tr>
<tr>
<td>TELNET</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>H2</td>
<td>34</td>
<td>4</td>
</tr>
<tr>
<td>FTP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>H2</td>
<td>34</td>
<td>4</td>
</tr>
<tr>
<td>TFTP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>H2</td>
<td>34</td>
<td>4</td>
</tr>
<tr>
<td>SYSLOG</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>H2</td>
<td>34</td>
<td>4</td>
</tr>
<tr>
<td>TACACS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>H2</td>
<td>34</td>
<td>4</td>
</tr>
<tr>
<td>RADIUS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>H2</td>
<td>34</td>
<td>4</td>
</tr>
<tr>
<td>SSH</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>H2</td>
<td>34</td>
<td>4</td>
</tr>
<tr>
<td>ICMP Req</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>NC</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>ICMP Res</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>NC</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>ICMP Unreach</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>NC</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>SCP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>H2</td>
<td>34</td>
<td>4</td>
</tr>
<tr>
<td>STP</td>
<td>NA</td>
<td>NA</td>
<td>Yes</td>
<td>NC</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>CFM</td>
<td>NA</td>
<td>NA</td>
<td>Yes</td>
<td>NC</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>ARP</td>
<td>NA</td>
<td>NA</td>
<td>Yes</td>
<td>NC</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>Trace route</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>NC</td>
<td>0</td>
<td>7</td>
</tr>
</tbody>
</table>
Table 26: DSCP and Dot1p Marking (Continued)

<table>
<thead>
<tr>
<th>Protocol</th>
<th>IPv4</th>
<th>DSCP Marking</th>
<th>Dot1P Marking</th>
<th>Default FC</th>
<th>DSCP Values</th>
<th>Dot1P Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>TACPLUS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>H2</td>
<td>34</td>
<td>4</td>
</tr>
<tr>
<td>DNS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>H2</td>
<td>34</td>
<td>4</td>
</tr>
<tr>
<td>BGP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>NC</td>
<td>48</td>
<td>7</td>
</tr>
</tbody>
</table>

Note: DSCP and Dot1P values in the table are applicable when remarking is disabled at port level.
Default DSCP Mapping Table

<table>
<thead>
<tr>
<th>DSCP Name</th>
<th>DSCP Value</th>
<th>DSCP Value</th>
<th>DSCP Value</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>0</td>
<td>0x00</td>
<td>0b000000</td>
<td>be</td>
</tr>
<tr>
<td>nc1</td>
<td>48</td>
<td>0x30</td>
<td>0b110000</td>
<td>h1</td>
</tr>
<tr>
<td>nc2</td>
<td>56</td>
<td>0x38</td>
<td>0b111000</td>
<td>nc</td>
</tr>
<tr>
<td>ef</td>
<td>46</td>
<td>0x2e</td>
<td>0b101110</td>
<td>ef</td>
</tr>
<tr>
<td>af11</td>
<td>10</td>
<td>0x0a</td>
<td>0b001010</td>
<td>assured</td>
</tr>
<tr>
<td>af12</td>
<td>12</td>
<td>0x0c</td>
<td>0b001100</td>
<td>assured</td>
</tr>
<tr>
<td>af13</td>
<td>14</td>
<td>0x0e</td>
<td>0b001110</td>
<td>assured</td>
</tr>
<tr>
<td>af21</td>
<td>18</td>
<td>0x12</td>
<td>0b010010</td>
<td>l1</td>
</tr>
<tr>
<td>af22</td>
<td>20</td>
<td>0x14</td>
<td>0b010100</td>
<td>l1</td>
</tr>
<tr>
<td>af23</td>
<td>22</td>
<td>0x16</td>
<td>0b010110</td>
<td>l1</td>
</tr>
<tr>
<td>af31</td>
<td>26</td>
<td>0x1a</td>
<td>0b011010</td>
<td>l1</td>
</tr>
<tr>
<td>af32</td>
<td>28</td>
<td>0x1c</td>
<td>0b011100</td>
<td>l1</td>
</tr>
<tr>
<td>af33</td>
<td>30</td>
<td>0x1d</td>
<td>0b011110</td>
<td>l1</td>
</tr>
<tr>
<td>af41</td>
<td>34</td>
<td>0x22</td>
<td>0b100010</td>
<td>h2</td>
</tr>
<tr>
<td>af42</td>
<td>36</td>
<td>0x24</td>
<td>0b100100</td>
<td>h2</td>
</tr>
<tr>
<td>af43</td>
<td>38</td>
<td>0x26</td>
<td>0b100110</td>
<td>h2</td>
</tr>
</tbody>
</table>

The default forwarding class mapping is used for all DSCP names/values for which there is no explicit forwarding class mapping.
Basic Configurations

A basic network QoS policy must conform to the following:

- Each network QoS policy must have a unique policy ID.
- Specify the default-action.
- Have a QoS policy scope of template or exclusive.
- Have at least one default unicast forwarding class meter.
- Have at least one multipoint forwarding class meter.

Create a Network QoS Policy

Configuring and applying QoS policies other than the default policy is optional. A default network policy of the type `ip-interface` is applied to each of the `ip-interface` type.

To create a network QoS policy of type `ip-interface`, define the following:

- A network policy ID value. The system will not dynamically assign a value.
- Set the network-policy-type parameter to be `ip-interface`.
- Include a description. The description provides a brief overview of policy features.
- You can modify egress LSP EXP marking map. Otherwise, the default values are applied.
 - Remarking — When enabled, this command remarks ALL packets that egress on the specified network port. The remarking is based on the forwarding class to LSP EXP bit mapping defined in the remark policy and associated under the egress node of the network QoS policy.
 - Forwarding class criteria — The forwarding class name represents an egress queue. Specify forwarding class criteria to define the egress characteristics of the queue and the marking criteria of packets flowing through it.
 - LSP EXP — The EXP value is used for all MPLS labeled packets requiring marking that egress on this forwarding class queue that are *in* or *out* of profile.
- Ingress criteria —
 - Default action — Defines the default action to be taken for packets that have an undefined bits set. The default-action specifies the forwarding class to which such packets are assigned.
 - LSP EXP — Creates a mapping between the LSP EXP bits of the network ingress traffic and the forwarding class. Ingress traffic that matches the specified LSP EXP bits will be assigned to the corresponding forwarding class.
User has an option to specify the mapping of the LSP EXP bits to a profile (in/out). Ingress traffic that matches the specified EXP bits will be assigned the corresponding profile.

To create a network QoS policy of type **port**, define the following:

- A network policy ID value. The system will not dynamically assign a value.
- Set the network-policy-type parameter to 'port'
- Include a description. The description provides a brief overview of policy features.
- You can modify egress DSCP and Dot1p marking map. Otherwise, the default values are applied.
 - **Remarking** — When enabled, this command remarks ALL packets that egress on the specified network port. The remarking is based on the forwarding class to DSCP bit mapping defined in the remark policy and associated under the egress node of the network QoS policy for all IP traffic and forwarding class to Dot1p bit mapping for all IP and MPLS traffic.
 - **Forwarding class criteria** — The forwarding class name represents an egress queue. Specify forwarding class criteria to define the egress characteristics of the queue and the marking criteria of packets flowing through it.
 - **DSCP and Dot1p** — The DSCP and Dot1p value is used for all packets requiring marking that egress on this forwarding class queue that are in or out of profile.
- **Ingress criteria** — Specifies either DSCP or Dot1p (but not both) to forwarding class mapping for all packets.
 - **Default action** — Defines the default action to be taken for packets that have an undefined DSCP or Dot1p bits set. The default-action specifies the forwarding class to which such packets are assigned.
 - **DSCP or Dot1p** — Creates a mapping between the DSCP or Dot1p bits of the network ingress traffic and the forwarding class. Ingress traffic that matches the specified DSCP or Dot1p bits will be assigned to the corresponding forwarding class.

Use the following CLI syntax to create a network QoS policy:

CLI Syntax:
```bash
cfg>qos#
  network policy-id [network-policy-type network-policy-type] description description-string scope {exclusive|template} egress remarking
  remark <policy-id>
  ingress
  default-action fc {fc-name} profile {in|out}
  lsp-exp lsp-exp-value fc fc-name profile {in | out}
  fc {fc-name}
    meter {meter-id}
```
multicast-meter {id}
meter meter-id [multipoint]
adaptation-rule cir {closest | max | min} pir {closest | max | min}
cbs {size-in-kbits}
mbs {size-in-kbits}
mode {trtcm | srtcm}
rate cir cir-rate-in-kbps [pir pir-rate-in-kbps]
mls-lsp-exp-profile policy-id

config>qos>network# info
--
description "Network Qos policy 200"
ingress
 meter 1 create
 exit
 meter 9 multipoint create
 exit
 egress
 remarking
 exit
--
A:ALA-10config>qos>network#

The following output displays the configuration for router interface ALA-1-2 with network policy 600 applied to the interface.

A:ALA-7>config>router# info
#--
echo "IP Configuration"
#--
...
interface "ALA-1-2"
 address 10.10.4.3/24
 qos 600
 exit
...
#--
A:ALA-7>config>router#
Default Network Policy Values

The default network policy for IP interfaces is identified as policy-id 2. Default policies cannot be modified or deleted. The following displays default network policy parameters:

Table 27: Network Policy Defaults

<table>
<thead>
<tr>
<th>Field</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>description</td>
<td>Default network QoS policy.</td>
</tr>
<tr>
<td>scope</td>
<td>template</td>
</tr>
<tr>
<td>ingress</td>
<td></td>
</tr>
<tr>
<td>default-action</td>
<td>fc be profile out (default action profile out is applicable only for port policies and not for ip-interface policies)</td>
</tr>
<tr>
<td>egress</td>
<td></td>
</tr>
<tr>
<td>remarking</td>
<td></td>
</tr>
<tr>
<td>fc af:</td>
<td></td>
</tr>
<tr>
<td>lsp-exp-in-profile</td>
<td>3</td>
</tr>
<tr>
<td>lsp-exp-out-profile</td>
<td>2</td>
</tr>
<tr>
<td>fc be:</td>
<td></td>
</tr>
<tr>
<td>lsp-exp-in-profile</td>
<td>0</td>
</tr>
<tr>
<td>lsp-exp-out-profile</td>
<td>0</td>
</tr>
<tr>
<td>fc ef:</td>
<td></td>
</tr>
<tr>
<td>lsp-exp-in-profile</td>
<td>5</td>
</tr>
<tr>
<td>lsp-exp-out-profile</td>
<td>5</td>
</tr>
<tr>
<td>fc h1:</td>
<td></td>
</tr>
<tr>
<td>lsp-exp-in-profile</td>
<td>6</td>
</tr>
<tr>
<td>lsp-exp-out-profile</td>
<td>6</td>
</tr>
<tr>
<td>fc h2:</td>
<td></td>
</tr>
<tr>
<td>lsp-exp-in-profile</td>
<td>4</td>
</tr>
<tr>
<td>lsp-exp-out-profile</td>
<td>4</td>
</tr>
</tbody>
</table>
The default network policy for port is identified as policy-id 1. Default policies cannot be modified or deleted. The following output displays the parameters for default network policy of type **port**:

```
*ALAL>config>qos>network# info detail
```

```
description "Default network-port QoS policy."
scope template
  ingress
default-action fc be profile out
  meter 1 create
```

<table>
<thead>
<tr>
<th>LSP EXP Value</th>
<th>7210 FC Ingress</th>
<th>Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>be</td>
<td>Out</td>
</tr>
<tr>
<td>1</td>
<td>l2</td>
<td>In</td>
</tr>
<tr>
<td>2</td>
<td>af</td>
<td>Out</td>
</tr>
<tr>
<td>3</td>
<td>af</td>
<td>In</td>
</tr>
<tr>
<td>4</td>
<td>h2</td>
<td>In</td>
</tr>
<tr>
<td>5</td>
<td>ef</td>
<td>In</td>
</tr>
<tr>
<td>6</td>
<td>hl</td>
<td>In</td>
</tr>
<tr>
<td>7</td>
<td>nc</td>
<td>In</td>
</tr>
</tbody>
</table>

The default network policy for port is identified as policy-id 1. Default policies cannot be modified or deleted. The following output displays the parameters for default network policy of type **port**:
Basic Configurations

mode trtc
adaptation-rule cir closest pir closest
rate cir 0 pir max
mbs default
cbs default
exit
dscp be fc be profile out
dscp ef fc ef profile in
dscp cs1 fc l2 profile in
dscp nc1 fc h1 profile in
dscp nc2 fc nc profile in
dscp af11 fc af profile in
dscp af12 fc af profile out
dscp af41 fc h2 profile in
exit
egress
no remarking
remark 1
exit

*A:ALA>config>qos>network#

Default remark policy used for Dot1p and DSCP marking is as shown below:

fc af
dscp-in-profile af11
dscp-out-profile af12
no lsp-exp-in-profile
no lsp-exp-out-profile
no dot1p-lsp-exp-in-profile
no dot1p-lsp-exp-out-profile
dot1p-in-profile 3
dot1p-out-profile 2
exit
fc be
dscp-in-profile be
dscp-out-profile be
no lsp-exp-in-profile
no lsp-exp-out-profile
no dot1p-lsp-exp-in-profile
no dot1p-lsp-exp-out-profile
dot1p-in-profile 0
dot1p-out-profile 0
exit
fc ef
dscp-in-profile ef
dscp-out-profile ef
no lsp-exp-in-profile
no lsp-exp-out-profile
no dot1p-lsp-exp-in-profile
no dot1p-lsp-exp-out-profile
dot1p-in-profile 5
dot1p-out-profile 5
exit
fc h1
dscp-in-profile nc1
dscp-out-profile nc1
no lsp-exp-in-profile
no lsp-exp-out-profile
Network QoS Policies

no dot1p-lsp-exp-in-profile
no dot1p-lsp-exp-out-profile
dot1p-in-profile 6
dot1p-out-profile 6
exit
fc h2
dscp-in-profile af41
dscp-out-profile af41
no lsp-exp-in-profile
no lsp-exp-out-profile
no dot1p-lsp-exp-in-profile
no dot1p-lsp-exp-out-profile
dot1p-in-profile 4
dot1p-out-profile 4
exit
fc l1
dscp-in-profile af21
dscp-out-profile af22
no lsp-exp-in-profile
no lsp-exp-out-profile
no dot1p-lsp-exp-in-profile
no dot1p-lsp-exp-out-profile
dot1p-in-profile 3
dot1p-out-profile 2
exit
fc l2
dscp-in-profile cs1
dscp-out-profile cs1
no lsp-exp-in-profile
no lsp-exp-out-profile
no dot1p-lsp-exp-in-profile
no dot1p-lsp-exp-out-profile
dot1p-in-profile 1
dot1p-out-profile 1
exit
fc nc
dscp-in-profile nc2
dscp-out-profile nc2
no lsp-exp-in-profile
no lsp-exp-out-profile
no dot1p-lsp-exp-in-profile
no dot1p-lsp-exp-out-profile
dot1p-in-profile 7
dot1p-out-profile 7
exit
Deleting QoS Policies

A network policy is associated by default with IP interfaces and network ports.

You can replace the default policy with a non-default policy, but you cannot remove default policies from the configuration. When you remove a non-default policy, the policy association reverts to the appropriate default network policy.
Remove a Policy from the QoS Configuration

To delete a network policy, enter the following commands:

CLI Syntax:
```
cfg>qos# no network network-policy-id
```

Copying and Overwriting Network Policies

You can copy an existing network policy to a new policy ID value or overwrite an existing policy ID. The `overwrite` option must be specified or an error occurs if the destination policy ID exists.

Note: In "no ldp-local-fc-enable" mode, when an ip-interface qos policy is copied, a new mpls-lsp-exp-profile-map is created with the id same as dest-policy id and the mpls-lsp-exp-profile of the dest-policy points to it. In "ldp-local-fc-enable" mode, when an ip-interface qos policy is copied, the mpls-lsp-exp-profile of the dest-policy points to the mpls-lsp-exp-profile-map pointed to by the source-policy.

CLI Syntax:
```
cfg>qos# copy network source-policy-id dest-policy-id [overwrite]
```

The following output displays the copied policies:

```
A:ALA-12>config>qos# info detail
---------------------------------------------
... network 1 create
description "Default network QoS policy."
scope template
ingress
  default-action fc be profile out
... network 600 create
description "Default network QoS policy."
scope template
ingress
  default-action fc be profile out
... network 700 create
description "Default network QoS policy."
scope template
ingress
  default-action fc be profile out
... ---------------------------------------------
A:ALA-12>config>qos#```
Editing QoS Policies

You can change existing policies, except the default policies, and entries in the CLI. The changes are applied immediately to all network where the policy is applied. To prevent configuration errors use the copy command to make a duplicate of the original policy to a work area, make the edits, and then overwrite the original policy. The number of meters (TP) used are: 5 (Meters 1,2,3,9,12).
Resource Allocation for Network QoS policy

This section describes the allocation of QoS resources for network QoS policy (for type=ip interface only).

When an IP interface is created, a default network QoS policy is applied. For the default policy, two meters and two classification entries in hardware are allocated.

The resources are allocated to a network policy, only when a port is configured for the IP interface.

For every FC in use, the system allocates two classification entries in hardware. If multiple matchcriteria entries map to the same FC, then each of these are allocated two classification entries in hardware. For example, if there are two match-criteria entries that map to FC ‘af’, then a total of four classification entries are allocated in hardware and if there are four match-criteria entries that map to FC ‘af’, then a total of 8 classification entries are allocated in hardware.

For every meter or policer in use, the system allocates one meter in hardware. A meter or policer is considered to be in use when it is associated with an FC in use.

The number of IP interfaces allowed is limited to number of resources available in hardware, subject to system limit (a maximum of 64 IP interfaces are allowed). The system reserves a total of 512 classification entries and 256 meters in hardware for use by network policy associated with an IP interface.

For computing the number of QoS resources used by an IP interface:

- Determine number of match-criteria entries used to identify the FC.
- Determine number of FCs to use.

Only the FCs used by the match-criteria classification entries are to be considered for the 'number of FCs'. Therefore are referred to as ‘FC in use’.

Use the following rules to compute the number of classification entries per FC in use:

If a FC is in use and is created without explicit meters, use default meter#1 for unicast traffic and default meter #9 for all other traffic types (that is, broadcast, multicast and unknown-unicast). This requires two classification entries in hardware.

If a FC is in use and is created with an explicit unicast meter, use that meter for unicast traffic and use default meter #9 for all other traffic types. This requires two classification entries in hardware.

If a FC is in use and is created with an explicit unicast meter and explicit multicast meter, use the unicast meter for unicast traffic and multicast meter for all other kinds of traffic. This requires two classification entries in hardware.
Given the number of match criteria and the number of FCs used, use the equation given below to arrive at total number of classification entries per policy (for example TC):

\[ TC = \sum 2 \cdot E(i) \]
\[ i = nc, h1, ef, h2, l1, af, l2, be \]

Where,

E(i) is the number of match- criteria entries that classify packets to FCi. For 7210 platforms, the maximum number of classification entries per policy can be 64 (including default).

2 is the number of classification entries that are required by FCi.

Note: In any case, only 2 classification entries are used per FC in a network policy, as only two traffic-types are supported.

Determine number of policers or meters to use (for example TP). A maximum of 12 meters per network policy is available.

Only those meters that are associated with FCs need to be considered for number of meters. Note, that only FCs in use are considered.
Network QoS Policies Resource Usage Examples

Example 1

```
network 1 network-policy-type ip-interface create
 description "network-policy-1"
 ingress
 default-action fc be
 meter 1 create
 exit
 meter 9 multipoint create
 exit
 exit
 egress
 exit
```

The number of classification entries (TC) used is calculated, as follows:

\[(2 \times 0)nc + (2 \times 0)h1 + (2 \times 0)ef + (2 \times 0)h2 + (2 \times 0)l1 + (2 \times 0)af + (2 \times 0)l2 + (2 \times 1)be = 2\]

The number of meters (TP) used are: 2 (meter 1 and 9).

Example 2

```
network 2 network-policy-type ip-interface create
 description "network-policy-2"
 ingress
 default-action fc be
 meter 1 create
 exit
 meter 2 create
 exit
 meter 9 multipoint create
 exit
 meter 12 multipoint create
 exit
 fc "af" create
 meter 2
 multicast-meter 12
 exit
 lsp-exp 2 fc af
 exit
 egress
 exit
```

The number of classification entries (TC) used is calculated, as follows:
(2 * 0)nc + (2 * 0)h1 + (2 * 0)ef + (2 * 0)h2 + (2 * 0)l1 + (2 * 1)af + (2 * 0)l2 + (2 * 1)be = 4

The number of meters (TP) user are: 4 (Meters 1,2,9,12)

Example 3

network 3 network-policy-type ip-interface create
description "network-policy-3"
ingress
default-action fc be
meter 1 create
exit
meter 2 create
exit
meter 9 multipoint create
exit
meter 12 multipoint create
exit
fc "af" create
  meter 2
  multicast-meter 12
exit
fc "be" create
  meter 2
  multicast-meter 12
exit
lsp-exp 2 fc af
exit
egress
exit

The number of classification entries (TC) used are calculated, as follows:

(2 * 0)nc + (2 * 0)h1 + (2 * 0)ef + (2 * 0)h2 + (2 * 0)l1 + (2 * 1)af + (2 * 0)l2 + (2 * 1)be = 4

The number of meters (TP) user are: 2 (Meters 2,12).
Example 4

```bash
network 4 network-policy-type ip-interface create
description "network-policy-4"
ingress
default-action fc be
meter 1 create
exit
meter 9 multipoint create
exit
lsp-exp 1 fc l2
lsp-exp 2 fc af
lsp-exp 3 fc af
lsp-exp 4 fc h2
lsp-exp 5 fc ef
lsp-exp 6 fc h1
lsp-exp 7 fc nc
exit
egress
exit
exit
```

The number of Filter-Entries (TC) used is calculated, as follows:

\[
(2 \times 1)_{nc} + (2 \times 1)_{h1} + (2 \times 1)_{ef} + (2 \times 1)_{h2} + (2 \times 0)_{l1} + (2 \times 2)_{af} + (2 \times 1)_{l2} + (2 \times 1)_{be} = 16
\]

The number of meters (TP) used are: 2 (Meters 1,9).

Example 5

```bash
network 5 network-policy-type ip-interface create
description "network-policy-5"
ingress
default-action fc be
meter 1 create
exit
meter 2 create
exit
meter 9 multipoint create
exit
meter 12 multipoint create
exit
fc "af" create
exit
fc "be" create
exit
fc "ef" create
exit
fc "h1" create
exit
fc "h2" create
```
The number of classification entries (TC) used is calculated, as follows:

\[(2 \times 1) \text{nc} + (2 \times 1) \text{h1} + (2 \times 1) \text{ef} + (2 \times 1) \text{h2} + (2 \times 0) \text{l1} + (2 \times 2) \text{af} + (2 \times 1) \text{l2} + (2 \times 1) \text{be} = 16\]

The number of meters (TP) used are: 2 (Meters 1,9 – Note that meters 2 and 12 are not accounted for, since its not associated with any FC).
Example 6

```
network 6 network-policy-type ip-interface create
description "network-policy-6"

 ingress
 default-action fc be
 meter 1 create
 exit
 meter 2 create
 exit
 meter 3 create
 exit
 meter 9 multipoint create
 exit
 meter 12 multipoint create
 exit
 fc "af" create
 meter 2
 multicast-meter 12
 exit
 fc "be" create
 exit
 fc "ef" create
 exit
 fc "h1" create
 meter 3
 exit
 fc "h2" create
 exit
 fc "12" create
 exit
 fc "nc" create
 meter 3
 exit
 lsp-exp 1 fc l2
 lsp-exp 2 fc af
 lsp-exp 3 fc af
 lsp-exp 4 fc h2
 lsp-exp 5 fc ef
 lsp-exp 6 fc h1
 lsp-exp 7 fc nc
 exit
 egress
 exit
```

The number of classification entries (TC) used is calculated, as follows:

\[(2 \times 1)\text{nc} + (2 \times 1)\text{h1} + (2 \times 1)\text{ef} + (2 \times 1)\text{h2} + (2 \times 0)\text{l1} + (2 \times 2)\text{af} + (2 \times 1)\text{l2} + (2 \times 1)\text{be} = 16\]

The number of meters (TP) used are: 5 (Meters 1,2,3,9,12).
Example 7

```plaintext
network 2 network-policy-type ip-interface create
description "Default network QoS policy."
scope template
 ingress
default-action fc be
 meter 1 create
 mode trtc
 adaptation-rule cir closest pir closest
 rate cir 0 pir max
 mbs default
cbs default
 exit
 meter 9 multipoint create
 mode trtc
 adaptation-rule cir closest pir closest
 rate cir 0 pir max
 mbs default
cbs default
 exit
lsp-exp 0 fc be
lsp-exp 1 fc l2
lsp-exp 2 fc af
lsp-exp 3 fc af
lsp-exp 4 fc h2
lsp-exp 5 fc ef
lsp-exp 6 fc h1
lsp-exp 7 fc nc
exit
egress
 no remarking
exit
exit

The number of classification entries (TC) used is: 2.

The number of meters (TP) used is: 2.
```

Example 8

```plaintext
network 8 network-policy-type ip-interface create
description "network-policy-8"
 ingress
default-action fc nc
 meter 1 create
 exit
 meter 2 create
 exit
 meter 3 create
 exit
 meter 4 create
 exit
 meter 5 create
 exit
 meter 7 multipoint create
```

exit
meter 8 multipoint create
exit
meter 9 multipoint create
exit
meter 12 multipoint create
exit
fc "af" create
  meter 2
  multicast-meter 12
exit
fc "ef" create
  meter 4
  multicast-meter 8
exit
fc "h2" create
exit
fc "l2" create
  meter 3
  multicast-meter 7
exit
fc "nc" create
  meter 4
  multicast-meter 8
exit
lsp-exp 1 fc l2
lsp-exp 3 fc af
lsp-exp 5 fc ef
lsp-exp 7 fc nc
exit
egress
exit
exit

The number of classification entries (TC) used is calculated, as follows:

\[(2 * 2)nc + (2 * 0)h1 + (2 * 1)ef + (2 * 0)h2 + (2 * 0)l1 + (2 * 1)af + (2 * 1)l2 + (0 * 0)be = 10\]

The numbers of meters (TP) used is: 6 (Meters 2, 3, 4, 7, 8, 12).
Network QoS Policy Command Reference

Command Hierarchies

- Configuration Commands on page 117
- Operational Commands on page 118
- Show Commands on page 119

Configuration Commands

```
config
 qos
 [no] mpls-lsp-exp-profile-map policy-id [create]
 [description description-string]
 [no description]
 [lsp-exp lsp-exp-value profile {in|out}]
 [no lsp-exp]
 [no] ldp_local_fc_enable
 [no] use-global-mpls-lsp-exp-profile policy-id

config
 qos
 [no] network network-policy-id [network-policy-type {ip-interface | port}]
 [description description-string]
 [no description]
 [scope {exclusive | template}]
 [no scope]
 [egress]
 [no] remark policy-id
 [no] remarking
 [ingress]
 default-action fc fc-name profile {in | out}
 dot1p dot1p-priority fc fc-name profile {in | out}
 [no] dot1p dot1p-priority
 [no] fc fc-name [create]
 meter meter-id
 [no meter]
 [multicast-meter meter-id]
 [no multicast-meter]
 dscp dscp-name fc fc-name profile {in | out}
 [no dscp dscp-name]
 lsp-exp lsp-exp-value fc fc-name profile {in | out}
 [no lsp-exp lsp-exp-value]
 meter meter-id [multipoint] [create]
 [no meter meter-id]
 adaptation-rule [cir adaptation-rule] [pir adaptation-rule]
```
Operational Commands

```bash
config
 qos
 copy network src-pol dst-pol [overwrite]
```

---

Options:

- `no adaptation-rule`
- `cbs size-in-kbits`
- `no cbs`
- `mbs size-in-kbits`
- `no mbs`
- `mode {trtem | srtem}`
- `no mode`
- `rate cir-rate-in-kbps [pir pir-rate-in-kbps]`
- `no rate`
- `[no] mpls-lsp-exp-profile policy-id`
Show Commands

    show
        qos
            network policy-id [detail]
            mpls-bp-exp-profile [policy-id] [detail]
Configuration Commands

Generic Commands

description

Syntax  
description  description-string  
no  description

Context  
config>qos>network policy-id  
config>qos>mpls-lsp-exp-profile-map

Description  
This command creates a text description stored in the configuration file for a configuration context.

The `description` command associates a text string with a configuration context to help identify the context in the configuration file.

The `no` form of this command removes any description string from the context.

Default  
No description is associated with the configuration context.

Parameters  
`description-string` — A text string describing the entity. Allowed values are any string up to 80 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.
Operational Commands

copy

Syntax
```
copy network src-pol dst-pol [overwrite]
```

Context
```
config>qos
```

Description
This command copies existing QoS policy entries for a QoS policy-id to another QoS policy-id.

The `copy` command is used to create new policies using existing policies and also allows bulk modifications to an existing policy with the use of the `overwrite` keyword.

**Note:** In "no ldp-local-fc-enable" mode, when an ip-interface qos policy is copied, a new mpls-lsp-exp-profile-map is created with the id same as dest-policy id and the mpls-lsp-exp-profile of the dest-policy points to it. In "ldp-local-fc-enable" mode, when an ip-interface qos policy is copied, the mpls-lsp-exp-profile of the dest-policy points to the mpls-lsp-exp-profile-map pointed to by the source-policy.

Parameters
```
network src-pol dst-pol — Indicates that the source and destination policies are network policy IDs.

Specify the source policy that the copy command will copy and specify the destination policy to which the command will duplicate the policy to a new or different policy ID.

Values 1 — 65535

overwrite — Specifies to replace the existing destination policy. Everything in the existing destination policy will be overwritten with the contents of the source policy. If `overwrite` is not specified, an error will occur if the destination policy ID exists.
```

```
SR>config>qos# copy network 1 427
MINOR: CLI Destination "427" exists use {overwrite}.
SR>config>qos# copy network 1 427 overwrite
```

scope

Syntax
```
scope {exclusive | template}
no scope
```

Context
```
config>qos>network policy-id
```

Description
This command configures the network policy scope as exclusive or template.

The `no` form of this command sets the scope of the policy to the default of `template`.

Default
`template`
Parameters

**exclusive** — When the scope of a policy is defined as exclusive, the policy can only be applied to one interface. If a policy with an exclusive scope is assigned to a second interface an error message is generated. If the policy is removed from the exclusive interface, it will become available for assignment to another exclusive interface.

The system default policies cannot be put into the exclusive scope. An error will be generated if scope exclusive is executed in any policies with a policy-id equal to 1.

**template** — When the scope of a policy is defined as template, the policy can be applied to multiple interfaces on the router.

Default QoS policies are configured with template scopes. An error is generated if you try to modify the template scope parameter to exclusive scope on default policies.
Network QoS Policy Commands

**Syntax**

```plaintext
[no] network network-policy-id [network-policy-type {ip-interface | port}]
```

**Context**

`config>qos`

**Description**

This command creates or edits a QoS network policy. The network policy defines the treatment packets receive as they ingress and egress the network port.

The QoS network policy consists of an ingress and egress component. The ingress component of the policy defines how bits are mapped to internal forwarding class and profile state. The forwarding class and profile state define the Per Hop Behavior (PHB) or the QoS treatment through the 7210 SAS. The mapping on each network interface defaults to the mappings defined in the default network QoS policy until an explicit policy is defined for the network interface. It also defines the rate-limiting parameters for the traffic mapped to each forwarding classes. Traffic mapped to each forwarding class can be rate limited using separate meters for each uni-cast and multipoint traffic.

The egress component of the network QoS policy defines forwarding class and profile state to LSP EXP values for traffic to be transmitted into the core network. If the egressing packet originated on an ingress SAP, the parameter is for the network, the egress QoS policy also defines the bit marking based on the forwarding class and the profile state.

Network policy-id 2 exists as the default policy that is applied to all network interfaces IP interface by default. The network policy-id 2 cannot be modified or deleted. It defines the default LSP EXP-to-FC mapping and default meters for unicast and multipoint meters for the ingress MPLS packets. For the egress, it defines eight forwarding classes which defines LSP EXP values and the packet marking criteria.

Network policy-id 1 exists as the default policy that is applied to all network ports by default. This default policy cannot be modified or deleted. It defined the default DSCP-to-FC mapping and default unicast meters for ingress IP traffic. For the egress, if defines the forwarding class to Dot1p and DSCP values and the packet marking criteria.

If a new network policy is created (for instance, policy-id ), only the default action default meters for unicast and multipoint traffic and egress forwarding class parameters are identical to the default policy. A new network policy does not contain the default LSP EXP-to-FC mapping for network QoS policy of type ip-interface or the DSCP-to-FC mapping (for network QoS policy of type port). The default network policy can be copied (use the copy command) to create a new network policy that includes the default ingress LSP EXP or DSCP to FC mapping (as appropriate). You can modify parameters or use the no modifier to remove an object from the configuration.

Any changes made to an existing policy, using any of the sub-commands, will be applied immediately to all network ports where this policy is applied. For this reason, when many changes
are required on a policy, it is highly recommended that the policy be copied to a work area policy-id. That work-in-progress policy can be modified until complete and then written over the original policy-id. Use the config qos copy command to maintain policies in this manner.

The no form of this command deletes the network policy. A policy cannot be deleted until it is removed from all entities where it is applied. The default network policy policy-id 1 cannot be deleted.

Default

System Default Network Policy 1

Parameters

- **network-policy-id** — The policy-id uniquely identifies the policy on the.
  
  Default none
  
  Values 1— 65535

- **network-policy-type** — The type of the policy, either ip-interface or port. It defines where this network policy can be applied.

  - **ip-interface** — Specifies only EXP-based classification rules and marking values. It can only be associated with an IP interface.

  - **port** — Specifies only DSCP and Dot1p classification rules and marking values. It can only be associated with a portde.

**mpls-lsp-exp-profile-map**

**Syntax**

mpls-lsp-exp-profile-map policy-id [create]

no mpls-lsp-exp-profile-map

**Context**

config>qos

**Description**

This command allows the user to create a new mpls-lsp-exp-profile-map policy. The policy specifies the profile to assign to the packet based on the MPLS LSP EXP bits value matched in the MPLS packet received on a network IP interface.

The assigned profile is available for use by the meter/policer associated with FC in the network policy attached to this IP interface.

The policy is associated with network policy attached to a network IP interface.

When ‘no ldp-use-local-fc-enable’ is set, system creates the mpls-lsp-exp-profile-map automatically with same ID as the network policy ID. The values that map the lsp-exp bits to a profile value can be modified by the user. The system deletes the policy when the associated network policy is deleted.

When ldp-use-local-fc-enable is set, system does not create the mpls-lsp-exp-profile-map policies by default (except for the default policy “1”). User is allowed to create, delete, modify, copy the
Network QoS Policy Commands

policies. User needs to associate these policies with appropriate network policies as per their requirement.

**Default**

1 (default mpls-lsp-exp-profile-map policy “1”).

**Parameters**

policy-id — The policy-id uniquely identifies the policy on the 7210 SAS.

**Values**

1— 65535

create — The keyword used to create a policy.

**lsp-exp**

**Syntax**

lsp-exp lsp-exp-value profile {in|out}

no lsp-exp

**Context**

config>qos> mpls-lsp-exp-profile-map

**Description**

This command creates a mapping between the LSP EXP bits of the network ingress traffic and the profile.

Ingress traffic that matches the specified LSP EXP bits will be assigned the corresponding profile.

Multiple commands can be entered to define the association of some or all eight LSP EXP bit values to the profile. For undefined values, packets are assigned the profile value out.

The no form of this command removes the association of the LSP EXP bit value to the profile value. The default profile value ‘out’ then applies to that LSP EXP bit pattern.

**Default**

none

**Parameters**

lsp-exp-value — The 3-bit LSP EXP bit value, expressed as a decimal integer.

**Values**

0 — 7

profile — Assign the profile value to be assigned to this LSP EXP value.

**Default**

None, the lsp-exp command must define a profile state.

**Values**

Values in, out

**use-global-mpls-lsp-exp-profile**

**Syntax**

use-global-mpls-lsp-exp-profile policy-id

no use-global-mpls-lsp-exp-profile

**Context**

config>qos

**Description**

This command allows the user to associate the mpls-lsp-exp-profile-map policy for use with LDP LSPs. When color aware metering is in use for the IP interface, the policy specified here provides
the profile to assign to the MPLS packets received on any of the network IP interface in use in the system. The MPLS EXP bits in the received packet are matched for assigning the profile.

When ‘no ldp-use-local-fc-enable’ is set, system sets it to the default value. User cannot modify it.

When ldp-use-local-fc-enable is set, on system boot-up sets it to the default value. User can modify it to use the policy of their choice.

For LDP LSP traffic, the system always uses the global mpls-lsp-exp-profile-map policy. For RSVP LSP traffic, system uses the mpls-lsp-exp-profile-map policy associated with the network policy. It is highly recommended to use a single mpls-lsp-exp-profile-map policy for all the network policies when FRR facility is in use for consistent QoS treatment.

The no form of the command sets the policy to default policy.

Default
Default mpls-lsp-exp-profile-map policy “1” is used.

Parameters
- policy-id — The policy-id uniquely identifies the mpls-lsp-exp-profile-map policy to use.

Values 1 — 65535

mpls-lsp-exp-profile

Syntax mpls-lsp-exp-profile policy-id [create ]
no mpls-lsp-exp-profile

Context config>qos>network>ingress

Description Specify the mpls-lsp-exp-profile-map policy to use for assigning profile values for packets received on this IP interface.

When ‘no ldp-use-local-fc-enable’ is set, this policy is managed by the system. User is not allowed to modify it. The system assigns the same policy ID as the network policy ID. It is cannot be modified by the user.

When ‘ldp-use-local-fc-enable’ is set, by default the system assigns the default policy ID “1”. User can create new policies and specify the new policy instead of the default policy.

Note: For LDP LSP traffic, the system always uses the global mpls-lsp-exp-profile-map policy. For RSVP LSP traffic, system uses the mpls-lsp-exp-profile-map policy associated with the network policy. It is highly recommended to use a single mpls-lsp-exp-profile-map policy for all the network policies when FRR facility is in use for consistent QoS treatment.

The no form of the command assigns the default policy.

Parameters
- policy-id — The policy-id uniquely identifies the policy on the 7210 SAS.

Values 1 — 65535
### ldp_local_fc_enable

**Syntax**

```
ldp-local-fc-enable
no ldp-local-fc-enable
```

**Context**

```
config>qos
```

**Description**

This command determines the system QoS behavior for network IP interfaces for MPLS traffic.

The `no` form of the command allows for backward compatibility with prior releases. With the `no` form, the system continues to operate with release 3.0 (or before) network QoS behavior. The following restrictions apply when operating with `no` form of the command:

- For LDP LSP traffic, the system uses a single policy (default network policy 1) to assign the FC & profile to the packet. User cannot modify the EXP bits to FC mapping defined in the default policy. Using MPLS EXP bits received in the packet to match the EXP bits configured in the network policy, the policer to use is known. Thus, the system in effect supports only a single system-defined classification policy for all IP interfaces for LDP LSPs though policers with different rates can be used. It does not allow for the flexibility to use different classification policy on different IP interfaces for LDP LSP traffic.

- When using only LDP LSPs, user needs to be aware that the LSP EXP bits to FC classification specified in the global policy is used by the system and not the classification map specified in the network qos policy. Only the meter/policer is used from the network qos policy. It does not cause any issues when only LDP is in use, though the way the policies have been defined currently, its usage is not intuitive to user and can potentially result in confusion.

- There are only 32 unique hardware resources available to map the MPLS EXP bits to profile values. Hence, in release 3.0, only 32 unique network policies could be associated with IP interfaces, though the platform supports more number of IP interfaces. In other words, in release 3.0, multiple IP interfaces needed to share network policies. Though it is sufficient and meets most of the network deployment scenarios, some of the IP interfaces need to share a single network policy. IP interfaces that share the policy will use the same EXP bits to FC mapping.

- If a user receives traffic on RSVP LSP and a LDP LSP with the same value in the EXP bits and on the same IP interface, then potentially, the system can classify packets received on a RSVP LSP to one FC and classify packets received on a LDP LSP to another different FC. This is possible as LDP LSPs use the global network policy for classification and RSVP LSPs used the network policy associated with the IP interface for classification. If both of these policies specify the same EXP to FC mapping then there are no issues. With release 3.0, it is good practice to setup the EXP bits to FC map, to be the same in the default network policy and user-defined network policy when both LDP and RSVP protocols are in use. This is required to ensure that all packets received on an IP interface with a similar value of LSP EXP bit is classified to the same FC and a single policer is used for all them. This ensures that all MPLS packets received with the same EXP bits receive the same QoS treatment in the system.
Executing the command `ldp-use-local-fc-enable`, changes the mode of system behavior which allows more flexibility to the user and removes some of the restrictions listed above. With `ldp-use-local-fc-enable` set, the following is possible:

- LSPs setup using LDP uses a global `mpls-lsp-exp-profile-map` policy. By default, the system assigns a default `mpls-lsp-exp-profile-map` policy. User has an option to change the global policy to use. A new policy `mpls-lsp-exp-profile-map` policy allows the user to assign different profile value for MPLS EXP bits for MPLS packets received over different IP interface. This is helpful for use with primarily RSVP LSP with FRR 1:1. For LDP LSPs or when using FRR facility it is recommended to use a single `mpls-lsp-exp-profile-map` policy for all IP interfaces.

- The new policies separate the profile mapping and FC mapping. The FC used is always picked from the network policy. The new policy syntax allows for flexibility and is intuitive.

- Each IP interface can define a unique network policy for it use, each possibly using a different mapping for MPLS LSP EXP bits to forwarding class (FC). It allows for use of more than 32 distinct network policies, provided network classification resources are available for use.

- If user receives traffic on RSVP LSP and LDP LSP with the same value in the EXP bits, the system provides the same QoS treatment. The system always uses the FC and the meter from the network Qos policy for all MPLS traffic received on an IP interface irrespective of whether its LDP or RSVP LSP.

**Note:** User cannot execute the command ‘no ldp-use-local-fc-enable’ after executing the command ‘ldp-use-local-fc-enable’.

**Default** no ldp_fc_local_enable
Network Ingress QoS Policy Commands

**ingress**

**Syntax**

```
ingress
```

**Context**

```
config>qos>network policy-id
```

**Description**

This command is used to enter the CLI node that creates or edits policy entries that specify the forwarding class mapping packets.

When pre-marked packets ingress on a network port, the QoS treatment through the 7210 SAS-based on the mapping defined under the current node.

**default-action**

**Syntax**

```
default-action fc fc-name [profile {in | out}]
```

**Context**

```
config>qos>network>ingress
```

**Description**

This command defines or edits the default action to be taken for packets that have an undefined LSP EXP bits set. The `default-action` command specifies the forwarding class to which such packets are assigned.

Multiple default-action commands will overwrite each previous default-action command.

**Default**

default-action fc be profile out

**Parameters**

- **fc fc-name** — Specify the forwarding class name. All packets with LSP EXP or dot1p bits that is not defined will be placed in this forwarding class.
  
  **Default** None, the fc name must be specified
  
  **Values** be, l2, af, l1, h2, ef, h1, nc

- **profile {in | out}** — All packets that are assigned to this forwarding class will be considered in or out of profile based on this command. On network ingress, the meter/policer supports color-aware policing/metering. The value of the profile parameter is used to provide the color to the meter. Value of 'in' indicates 'Green' color OR in-profile packet to the meter and value of 'out' indicates 'Yellow' color OR out-of-profile packet to the meter operating in color-aware mode. Based on the configured meter rates, the final profile for the packet is determined. The final color is used for subsequent processing of the packet in the system. On egress, in case of congestion, the in-profile packets are preferentially queued over the out-of-profile packets. The profile can be specified in 3.0 release.
  
  **Default** None
  
  **Values** in, out
dot1p

**Syntax**

```
dot1p dot1p-priority fc fc-name profile {in | out}
no dot1p dot1p-priority
```

**Context**

```
config>qos>network>ingress
```

**Description**

This command explicitly sets the forwarding class or enqueuing priority and profile of the packet when a packet is marked with a `dot1p-priority` specified. Adding a dot1p rule on the policy forces packets that match the `dot1p-priority` specified to override the forwarding class and enqueuing priority and profile of the packet based on the parameters included in the Dot1p rule.

The `dot1p-priority` is derived from the most significant three bits in the IEEE 802.1Q or IEEE 802.1P header. The three dot1p bits define 8 Class-of-Service (CoS) values commonly used to map packets to per-hop Quality-of-Service (QoS) behavior.

The `no` form of this command removes the explicit dot1p classification rule from the policy. Removing the rule on the policy immediately removes the rule on all ingress SAP ports using the policy.

**Parameters**

- **`dot1p-priority`** — This value is a required parameter that specifies the unique IEEE 802.1P value that will match the dot1p rule. If the command is executed multiple times with the same `dot1p-value`, the previous forwarding class is completely overridden by the new parameters.

  A maximum of eight dot1p rules are allowed on a single policy.

  **Values**

  0 — 7

- **`fc fc-name`** — The value given for the `fc-name` parameter must be one of the predefined forwarding classes in the system. Specifying the `fc-name` is optional. When a packet matches the rule, the forwarding class is only overridden when the `fc fc-name` parameter is defined on the rule. If the packet matches and the forwarding class is not explicitly defined in the rule, the forwarding class is inherited based on previous rule matches.

  **Values**

  be, l2, af, l1, h2, ef, h1, nc

- **`profile {in | out}`** — All packets that are assigned to this forwarding class will be considered in or out of profile based on this command or to use the default. In case of congestion, the in-profile packets are preferentially queued over the out-of-profile packets.

  **Default**

  none, the profile name must be specified.
Network Ingress QoS Policy Commands

meter

Syntax  
\text{meter} \meterid
no \text{meter} \meterid \text{[multipoint]} \text{[create]}

Context  
config>qos>network>ingress

Description  
This command enables the context to configure an ingress Network QoS policy meter. The meter command allows the creation of multipoint meters. Only multipoint meters can receive ingress packets that need to be sent to multiple destinations. 

Multipoint meters are for traffic bound to multiple destinations. Within non-multipoint services, such as Epipe services, all traffic is considered unicast due to the nature of the service type. Multicast and broadcast-destined traffic in an Epipe service will not be mapped to a multipoint service meter.

The no form of this command removes the meter-id from the Network ingress QoS policy and from any existing Ports using the policy. If any forwarding class forwarding types are mapped to the meter, they revert to their default meters. When a meter is removed, any pending accounting information for each port meter created due to the definition of the meter in the policy is discarded.

Default  
meter 1 (for unicast traffic)

meter 9 multipoint (for all other traffic, other than unicast traffic)

Parameters  
meter-id — Specifies the meter-id that uniquely identifies the meter within the policy. This is a required parameter each time the meter command is executed.

Values  
1 — 12

multipoint — This keyword specifies that this meter-id is for multipoint forwarded traffic only. This meter-id can only be explicitly mapped to the forwarding class multicast, broadcast, or unknown unicast ingress traffic. If you attempt to map forwarding class unicast traffic to a multipoint queue, an error is generated and no changes are made to the current unicast traffic queue mapping.

The meter must be created as multipoint. The multipoint designator cannot be defined after the meter is created. If an attempt is made to modify the command to include the multipoint keyword, an error is generated and the command will not execute.

The multipoint keyword can be entered in the command line on a pre-existing multipoint meter to edit meter-id parameters.

Values  
multipoint or not present

Default  
Not present (the meter is created as non-multipoint)
meter

Syntax     meter meter-id
            no meter

Context    config>qos>network>ingress>fc

Description This command overrides the default unicast forwarding type meter mapping for fc fc-name. The specified meter-id must exist within the policy as a non-multipoint meter before the mapping can be made. Once the forwarding class mapping is executed, all unicast traffic on a port using this policy is forwarded using the meter-id.

The no form of this command sets the unicast (point-to-point) meter-id back to the default meter for the forwarding class (meter 1).

Default    meter 1

Parameters  

| meter-id — Specifies the meter-id. The specified parameter must be an existing, non-multipoint meter defined in the config>qos>network>ingress context. |
| Values    | 1 — 12 |

multicast-meter

Syntax     multicast-meter meter-id
            no multicast-meter

Context    config>qos>network>ingress>fc

Description This command overrides the default multicast forwarding type meter mapping for fc fc-name. The specified meter-id must exist within the policy as a multipoint meter before the mapping can be made. Once the forwarding class mapping is executed, all multicast traffic on a port using this policy is forwarded using the meter-id.

This command can only be used with a network policy of type ip-interface.

The no form of the command sets the multicast forwarding type meter-id back to the default meter for the forwarding class.

Default    9

Parameters  

| meter-id — Specifies the multicast meter. The specified parameter must be an existing, multipoint meter defined in the config>qos>network>ingress context. |
| Values    | 1— 12 |
dscp

**Syntax**

`dscp dscp-name fc fc-name profile {in | out}`

`no dscp dscp-name`

**Context**

`config>qos>network policy-id>ingress`

**Description**

This command creates a mapping between the DiffServ Code Point (DSCP) of the network ingress traffic and the forwarding class.

Ingress traffic that matches the specified DSCP will be assigned to the corresponding forwarding class. Multiple commands can be entered to define the association of some or all sixty-four DiffServ code points to the forwarding class. For undefined code points, packets are assigned to the forwarding class specified under the `default-action` command.

The `no` form of this command removes the DiffServ code point to forwarding class association. The `default-action` then applies to that code point value.

**Default**

`none`

**Parameters**

*dscp-name* — The name of the DiffServ code point to be associated with the forwarding class. DiffServ code point can only be specified by its name and only an existing DiffServ code point can be specified. The software provides names for the well known code points.

The system-defined names available are as follows. The system-defined names must be referenced as all lower case exactly as shown in the first column in Table 29 and Table 30 below.

Additional names to code point value associations can be added using the `dscp-name dscp-name dscp-value` command.

The actual mapping is being done on the `dscp-value`, not the `dscp-name` that references the `dscp-value`. If a second `dscp-name` that references the same `dscp-value` is mapped within the policy, an error will occur. The second name will not be accepted until the first name is removed.
### Table 29: Default DSCP Names to DSCP Value Mapping Table

<table>
<thead>
<tr>
<th>DSCP Name</th>
<th>DSCP Value Decimal</th>
<th>DSCP Value Hexadecimal</th>
<th>DSCP Value Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>nc1</td>
<td>48</td>
<td>0x30</td>
<td>0b110000</td>
</tr>
<tr>
<td>nc2</td>
<td>56</td>
<td>0x38</td>
<td>0b111000</td>
</tr>
<tr>
<td>ef</td>
<td>46</td>
<td>0x2e</td>
<td>0b101110</td>
</tr>
<tr>
<td>af41</td>
<td>34</td>
<td>0x22</td>
<td>0b100010</td>
</tr>
<tr>
<td>af42</td>
<td>36</td>
<td>0x24</td>
<td>0b100100</td>
</tr>
<tr>
<td>af43</td>
<td>38</td>
<td>0x26</td>
<td>0b100110</td>
</tr>
<tr>
<td>af31</td>
<td>26</td>
<td>0x1a</td>
<td>0b011010</td>
</tr>
<tr>
<td>af32</td>
<td>28</td>
<td>0x1c</td>
<td>0b011100</td>
</tr>
<tr>
<td>af33</td>
<td>30</td>
<td>0x1d</td>
<td>0b011110</td>
</tr>
<tr>
<td>af21</td>
<td>18</td>
<td>0x12</td>
<td>0b010010</td>
</tr>
<tr>
<td>af22</td>
<td>20</td>
<td>0x14</td>
<td>0b010100</td>
</tr>
<tr>
<td>af23</td>
<td>22</td>
<td>0x16</td>
<td>0b010110</td>
</tr>
<tr>
<td>af11</td>
<td>10</td>
<td>0x0a</td>
<td>0b001010</td>
</tr>
<tr>
<td>af12</td>
<td>12</td>
<td>0x0c</td>
<td>0b001100</td>
</tr>
<tr>
<td>af13</td>
<td>14</td>
<td>0x0e</td>
<td>0b001110</td>
</tr>
<tr>
<td>default</td>
<td>0</td>
<td>0x00</td>
<td>0b000000</td>
</tr>
</tbody>
</table>

### Table 30: Default Class Selector Code Points to DSCP Value Mapping Table

<table>
<thead>
<tr>
<th>DSCP Name</th>
<th>DSCP Value Decimal</th>
<th>DSCP Value Hexadecimal</th>
<th>DSCP Value Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>cs7</td>
<td>56</td>
<td>0x38</td>
<td>0b111000</td>
</tr>
<tr>
<td>cs6</td>
<td>48</td>
<td>0x30</td>
<td>0b110000</td>
</tr>
<tr>
<td>cs5</td>
<td>40</td>
<td>0x28</td>
<td>0b101000</td>
</tr>
<tr>
<td>cs4</td>
<td>32</td>
<td>0x20</td>
<td>0b100000</td>
</tr>
</tbody>
</table>
Network Ingress QoS Policy Commands

Table 30: Default Class Selector Code Points to DSCP Value Mapping Table (Continued)

<table>
<thead>
<tr>
<th>DSCP Name</th>
<th>DSCP Value Decimal</th>
<th>DSCP Value Hexadecimal</th>
<th>DSCP Value Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>cs3</td>
<td>24</td>
<td>0x18</td>
<td>0b011000</td>
</tr>
<tr>
<td>cs2</td>
<td>16</td>
<td>0x10</td>
<td>0b010000</td>
</tr>
<tr>
<td>cs1</td>
<td>08</td>
<td>0x8</td>
<td>0b001000</td>
</tr>
</tbody>
</table>

**fc fc-name** — Enter this required parameter to specify the fc-name with which the code point will be associated.

**Default** none, for every DSCP value defined, the forwarding class must be indicated.

**Values** be, l2, af, l1, h2, ef, h1, nc

**profile** {in | out} — Enter this required parameter to indicate whether the DiffServ code point value is the in-profile or out-of-profile value.

NOTE 1: DSCP values mapping to forwarding classes Expedited (ef), High-1 (h1) and Network-Control (nc) can only be set to in-profile.

NOTE 2: DSCP values mapping to forwarding class ‘be’ can only be set to out-of-profile.

**Default** None, for every DSCP value defined, the profile must be indicated. If a DSCP value is not mapped, the default-action forwarding class and profile state will be used for that value.

**Values** in, out

**lsp-exp**

**Syntax**

```
lsp-exp lsp-exp-value fc fc-name profile {in | out}
no lsp-exp lsp-exp-value
```

**Context**

```
config>qos>network policy-id>ingress
```

**Description**

This command creates a mapping between the LSP EXP bits of the network ingress traffic and the forwarding class.

Ingress traffic that matches the specified LSP EXP bits will be assigned to the corresponding forwarding class. Multiple commands can be entered to define the association of some or all eight LSP EXP bit values to the forwarding class. For undefined values, packets are assigned to the forwarding class specified under the **default-action** command.

The **no** form of this command removes the association of the LSP EXP bit value to the forwarding class. The **default-action** then applies to that LSP EXP bit pattern.

**Default** none
Parameters  

**lsp-exp-value** — Specify the LSP EXP values to be associated with the forwarding class.

**Default**  
None, the lsp-exp command must define a value.

**Values**  
0 to 8 (Decimal representation of three EXP bit field)

**fc fc-name** — Enter this required parameter to specify the fc-name that the EXP bit pattern will be associated with.

**Default**  
None, the lsp-exp command must define a fc-name.

**Values**  
be, l2, af, l1, h2, ef, h1, nc

**profile {in | out}** — Enter this required parameter to indicate whether the LSP EXP value is the in-profile or out-of-profile value. The profile CLI parameter in the network qos policy of type ip-interface is deprecated.

When `no ldp-use-local-fc-enable` is set, the system will throw an warning and updates the associated mpls-lsp-exp-profile-map policy with new profile value specified by the user.

When ldp-use-local-fc-enable is set, the system will error out the use of the profile command with an error message.

**Default**  
None, the lsp-exp command must define a profile state.

**Values**  
in, out

adaptation-rule

**Syntax**  
adaptation-rule [cir adaptation-rule] [pir adaptation-rule]
no adaptation-rule

**Context**  
config>qos>network>ingress>meter

**Description**  
This command defines the method used by the system to derive the operational CIR and PIR settings when the meter is provisioned in hardware. For the CIR and PIR parameters, individually the system attempts to find the best operational rate depending on the defined constraint.

The `no` form of the command removes any explicitly defined constraints used to derive the operational CIR and PIR created by the application of the policy. When a specific adaptation-rule is removed, the default constraints for `rate` and `cir` apply.

**Default**  
adaptation-rule cir closest pir closest

**Parameters**  
adaptation-rule — Specifies the adaptation rule to be used while computing the operational CIR or PIR value.

pir — Defines the constraints enforced when adapting the PIR rate defined within the meter meter-id rate command. The pir parameter requires a qualifier that defines the constraint used when deriving the operational PIR for the meter. When the rate command is not specified, the default applies.

cir — Defines the constraints enforced when adapting the CIR rate defined within the meter meter-id rate command. The cir parameter requires a qualifier that defines the constraint used when deriving the operational CIR for the meter. When the cir parameter is not specified, the default constraint applies.
max — The max (maximum) option is mutually exclusive with the min and closest options. When max is defined, the operational PIR/CIR will be the next multiple of 8 kbps that is equal to or lesser than the specified rate.

min — The min (minimum) option is mutually exclusive with the max and closest options. When min is defined, the operational PIR/CIR will be the next multiple of 8 kbps that is equal to or higher than the specified rate.

closest — The closest parameter is mutually exclusive with the min and max parameter. When closest is defined, the operational PIR/CIR will be the next multiple of 8 kbps (that is closest to the specified rate.

cbs

Syntax  cbs size-in-kbits
no cbs

Context  config>qos>network>ingress>meter

Description  This command provides a mechanism to override the default reserved tokens for the meter. The committed burst size parameter specifies the maximum burst size that can be transmitted by the source while still complying with the CIR. If the transmitted burst is lower than the CBS value then the packets are marked as in-profile by the meter to indicate that the traffic is complying with meter configured parameters.

The no form of this command returns the CBS size to the default value.

Default  default

Parameters  size-in-kbits — Specifies the size parameter is an integer expression of the number of kilobits reserved for the meter. For example, if a value of 10KBits is desired, then enter the value 10.

Values  4 — 2146959, default

mbs

Syntax  mbs size-in-kbits
no mbs

Context  config>qos>network>ingress>meter

Description  This command provides the explicit definition of the maximum amount of tokens allowed for a specific meter. The value is given in kilobits and overrides the default value for the context.

In case of trTCM, the maximum burst size parameter specifies the maximum burst size that can be transmitted by the source at the PIR while complying with the PIR. If the transmitted burst is lower than the MBS value then the packets are marked as out-profile by the meter to indicate that the traffic is not complying with CIR, but complying with PIR.
In case of srTCM, the maximum burst size parameter specifies the maximum burst size that can be transmitted by the source while not complying with the CIR. The transmitted burst is lower than the MBS value then the packets are marked as out-profile by the meter to indicate that the traffic is not complying with CIR.

If the packet burst is higher than MBS then packets are marked as red are dropped by the meter.

The no form of this command returns the MBS size assigned to the meter to the default value.

Default: default

Parameters:

size-in-kbits — This parameter is an integer expression of the maximum number of kilobits of burst allowed for the meter. For example, for a value of 100 Kbits, enter the value 100.

Values: 4 — 2146959, default

mode

Syntax:

mode {trtcn|srtcm}
no mode

Context: config>qos>network>ingress>meter

Description: This command defines the mode of the meter. The mode can be configured as Two Rate Three Color Marker (trTCM) or Single Rate Three Color Marker (srTCM). The mode command can be executed at anytime.

The no form of the command sets the default mode to be trtcn.

Default: trtcn

Parameters:

trtcn — Meters the packet stream and marks the packets either green, yellow, or red. A packet is marked red if it exceeds the PIR. Otherwise, it is marked either yellow or green depending on whether it exceeds or does not exceed the CIR. The trTCM is useful, for example, for ingress policing of a service, where a peak rate needs to be enforced separately from a committed rate.

srtcm — Meters a packet stream and marks its packets either green, yellow, or red. Marking is based on a CIR and two associated burst sizes, a CBS and an Maximum Burst Size (MBS). A packet is marked green if it doesn't exceed the CBS, yellow if it does exceed the CBS, but not the cir and red otherwise. The srTCM is useful, for example, for ingress policing of a service, where only the length, not the peak rate, of the burst determines service eligibility.
Network Ingress QoS Policy Commands

rate

Syntax
rate cir cir-rate-in-kbps [pir pir-rate-in-kbps]
no rate

Context
config>qos>network>ingress>meter

Description
This command defines the administrative PIR and CIR parameters for the meter.

The rate command can be executed at anytime, altering the PIR and CIR rates for all meters created through the association of the Network QoS policy with the meter-id.

The no form of the command returns all meter instances created with this meter-id to the default PIR and CIR parameters (max, 0).

Default
rate 0 pir max — The max default specifies the amount of bandwidth in kilobits per second (thousand bits per second). The max value is mutually exclusive to the pir-rate value.

Parameters
cir cir-rate-in-kbps — The cir parameter overrides the default administrative CIR used by the meter. When the rate command has not been executed or the cir parameter is not explicitly specified, the default CIR (0) is assumed.

Values 0 — 20000000, max

pir pir-rate-in-kbps — Defines the administrative PIR rate, in kilobits, for the meter. When this rate command is executed, the PIR setting is optional. When the rate command has not been executed, the default PIR of max is assumed.

Fractional values are not allowed and must be given as a positive integer.

The actual PIR rate is dependent on the meter’s adaptation-rule parameters and the actual hardware where the meter is provisioned.

Values 0 — 20000000, max

mpls-lsp-exp-profile

Syntax
mpls-lsp-exp-profile policy-id [create ]
no mpls-lsp-exp-profile

Context
config>qos>network>ingress

Description
Specify the mpls-lsp-exp-profile-map policy to use for assigning profile values for packets received on this IP interface.

When ‘no ldp-use-local-fc-enable’ is set, this policy is managed by the system. User is not allowed to modify it. The system assigns the same policy ID as the network policy ID. It is cannot be modified by the user.
When ‘ldp-use-local-fc-enable’ is set, by default the system assigns the default policy ID “1”. User can create new policies and specify the new policy instead of the default policy.

Note: For LDP LSP traffic, the system always uses the global mpls-lsp-exp-profile-map policy. For RSVP LSP traffic, system uses the mpls-lsp-exp-profile-map policy associated with the network policy. It is highly recommended to use a single mpls-lsp-exp-profile-map policy for all the network policies when FRR facility is in use for consistent QoS treatment.

**Parameters**

- **policy-id** — The policy-id uniquely identifies the policy on the 7210 SAS.

**Values**

- 1 — 65535
Network Egress QoS Policy Commands

egress

Syntax: egress
Context: config>qos>network policy-id

Description: This command is used to enter the CLI node that creates or edits egress policy entries that specify the forwarding class Dot1p marking map to be instantiated when this policy is applied to the network port.

The forwarding class and profile state mapping to EXP bits mapping for all packets are defined in this context.

All out-of-profile service packets are marked with the corresponding out-of-profile EXP bit value at network egress. All the in-profile service ingress packets are marked with the corresponding in-profile EXP bit value based on the forwarding class they belong.

fc

Syntax: [no] fc fc-name
Context: config>qos>network>egress

Description: This command specifies the forwarding class name. The forwarding class name represents an egress queue. The fc fc-name represents a CLI parent node that contains sub-commands or parameters describing the egress characteristics of the queue and the marking criteria of packets flowing through it. The fc command overrides the default parameters for that forwarding class to the values defined in the network default policy. Appropriate default parameters are picked up based on whether the network-policy-type is port or ip-interface.

The no form of this command removes the forwarding class LSP EXP/Dot1p/DSCP associated with this , as appropriate. The forwarding class reverts to the defined parameters in the default network policy. If the fc-name is removed from the network policy that forwarding class reverts to the factory defaults.

Default: Undefined forwarding classes default to the configured parameters in the default network policy policy-id 1.

Parameters: fc-name — The case-sensitive, system-defined forwarding class name for which policy entries will be created.

  Default: none
  Values: be, l2, af, l1, h2, ef, h1, nc
Network Egress QoS Policy Forwarding Class Commands

fc

Syntax        [no] fc fc-name [create]

Context       config>qos>network>ingress

Description   This command creates a class instance of the forwarding class. Once the fc-name is created, classification actions can be applied and it can be used in match classification criteria.

The no form of the command removes all the explicit meter mappings for fc-name forwarding types. The meter mappings revert to the default meters for fc-name.

Default       Undefined forwarding classes default to the configured parameters in the default policy policy-id 1.

Parameters    fc-name — The case-sensitive, system-defined forwarding class name for which policy entries will be created.

   Values    be, l2, af, l1, h2, ef, h1, nc

create — The keyword used to create the forwarding class. The create keyword requirement can be enabled/disabled in the environment>create context.

remark

Syntax        [no] remark <policy-id>

Context       config>qos>network policy-id>egress

Description   Allows the user to configure the remark policy to use marking the DSCP and Dot1p (802.1p) values in the packet header for IP packets sent out of this port. User should execute 'remarking' CLI command. If user enables remarking, without specifying a remark policy the system uses a default policy of remark-type ‘dscp-only’

Note: For an IP- Interface based policy, the remark policy type can be lsp-exp-only or dot1p-lsp-exp-shared.

Note: For port based policy the remark policy can be dot1p-dscp.

Default       dscp-only

Parameters    policy-id — The policy ID of the remark policy.

   Values    1— 65535
remarking

Syntax  remarking
Context config>qos>network policy-id>egress

Description This command remarks both access egress traffic and network egress traffic. The remarking is based on the forwarding class to LSP EXP/Dot1p/DSCP bit mapping defined under the egress node of the network QoS policy.

On network egress, for MPLS packets, only LSP EXP and Dot1p values can be marked. The LSP EXP mapping is defined in the network policy of type ip-interface and the Dot1p mapping can be defined in the network policy of type port.

On network egress, for IP packets, DSCP and Dot1p values can be marked. The Dot1p and DSCP values can be configured in the network policy of type port.

Normally, packets that ingress on network ports have, in case of MPLS packets, LSP EXP bit set by an upstream router. The packets are placed in the appropriate forwarding class based on the LSP EXP to forwarding class mapping. The LSP EXP bits of such packets are not altered as the packets egress this router, unless remarking is enabled.

Remarking can be required if this SAS X is connected to a different DiffServ domain where the EXP forwarding class mapping is different.

Typically, no remarking is necessary when all devices are in the same DiffServ domain. The network QoS policy supports an egress flag that forces remarking of packets that were received on network IP interfaces. This provides the capability of remarking without regard to the ingress state of the IP interface on which a packet was received. The effect of the setting of the egress network remark trusted state on each type of ingress IP interface and trust state is shown in the following table.

<table>
<thead>
<tr>
<th>Ingress IP Interface Type and Trust State</th>
<th>Egress Network IP Interface Trust Remark Disabled (Default)</th>
<th>Egress Network IP Interface Trust Remark Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Non-Trusted</td>
<td>Egress Remarked</td>
<td>Egress Remarked</td>
</tr>
<tr>
<td>Network Trusted (Default)</td>
<td>Egress Not Remarked</td>
<td>Egress Remarked</td>
</tr>
</tbody>
</table>

The remark trusted state has no effect on packets received on an ingress IP interface.

The remark trusted state is not applicable for network policies of type port.

The no form of this command reverts to the default behavior.
Default  **no remarking** — Remarking disabled in the Network QoS policy.
Show Commands

network

Syntax  network [policy-id] [detail]

Context show>qos

Description This command displays network policy information.

Parameters  

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy-id</td>
<td>Displays information for the specific policy ID.</td>
</tr>
<tr>
<td>all network policies</td>
<td></td>
</tr>
<tr>
<td>1 — 65535</td>
<td></td>
</tr>
<tr>
<td>detail</td>
<td>Includes information about ingress and egress bit mappings and network policy interface associations.</td>
</tr>
</tbody>
</table>

Network QoS Policy Output Fields — The following table describes network QoS Policy output fields.

Table 31: Show QoS Network Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy-Id</td>
<td>The ID that uniquely identifies the policy.</td>
</tr>
<tr>
<td>Remark</td>
<td>True — Remarking is enabled for all packets that egress this router where the network policy is applied. The remarking is based on the forwarding class to bit mapping defined under the egress node of the network QoS policy.</td>
</tr>
<tr>
<td>Description</td>
<td>A text string that helps identify the policy’s context in the configuration file.</td>
</tr>
<tr>
<td>Forward Class/FC Name</td>
<td>Specifies the forwarding class name.</td>
</tr>
<tr>
<td>Profile</td>
<td>Out — In —</td>
</tr>
</tbody>
</table>
Table 31: Show QoS Network Output Fields (Continued)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting</td>
<td>Packet-based — Specifies that the meters associated with this policy do not account for packet framing overheads (such as Ethernet the Inter Frame Gap (IFG) and the preamble), while accounting for the bandwidth to be used by this flow.</td>
</tr>
<tr>
<td></td>
<td>Frame-based — Specifies that the meters associated with this policy account for the packet framing overheads (such as for Ethernet the IFG and preamble), while accounting the bandwidth to be used by this flow.</td>
</tr>
<tr>
<td>Profile policy</td>
<td>Displays the profile policy ID.</td>
</tr>
<tr>
<td>Local FC</td>
<td>Displays if ldp-local-fc-enable is enabled or disabled</td>
</tr>
<tr>
<td>Global Prof</td>
<td>Displays the global profile policy ID for LDP packets.</td>
</tr>
</tbody>
</table>

**Bit Mapping:**
- **Out-of-Profile**
  - Displays the value used for out-of-profile traffic.
- **In-Profile**
  - Displays the value used for in-profile traffic.
- **Interface**
  - Displays the interface name.
- **IP Addr**
  - Displays the interface IP address.
- **Port-Id**
  - Specifies the physical port identifier that associates the interface.

```
*A:SAS-X-C>config>qos>network# show qos network 2 detail

| Policy-id | Egr Remark | Forward Class | Scope | Accounting | Profile Policy | Local FC | Global Prof | Description |

| 2 | False | be | Template | packet-based | 1 | Disabled | 1 | Default network QoS policy. |
| | | | | | | | | |

| | | | | | | | | |

```

**Label Description**
- **Accounting**
  - Specifies that the meters associated with this policy do not account for packet framing overheads (such as Ethernet the Inter Frame Gap (IFG) and the preamble), while accounting for the bandwidth to be used by this flow.
- **Egr Remark**
  - Specifies if egress remarking is enabled or disabled.
- **Forward Class**
  - Specifies the egress class for this policy.
- **Scope**
  - Specifies the scope of this policy.
- **Accounting**
  - Specifies the egress accounting type.
- **Profile Policy**
  - Specifies the profile policy ID.
- **Local FC**
  - Specifies if ldp-local-fc-enable is enabled or disabled.
- **Global Prof**
  - Specifies the global profile policy ID for LDP packets.
Network Egress QoS Policy Forwarding Class Commands

<table>
<thead>
<tr>
<th>Meter Mode</th>
<th>CIR Admin</th>
<th>CIR Rule</th>
<th>PIR Admin</th>
<th>PIR Rule</th>
<th>CBS Admin</th>
<th>MBS Admin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 TrTcm1_CA</td>
<td>0 closest</td>
<td>max</td>
<td>closest</td>
<td>def</td>
<td>def</td>
<td>def</td>
</tr>
<tr>
<td>0</td>
<td>max</td>
<td>closest</td>
<td>def</td>
<td>def</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 TrTcm1_CA</td>
<td>0 closest</td>
<td>max</td>
<td>closest</td>
<td>def</td>
<td>def</td>
<td>def</td>
</tr>
</tbody>
</table>

FC UCastM MCastM

No FC-Map Entries Found.

Interface Association

Interface : system
IP Addr. : 180.10.10.10/32
Port Id : system

Interface : in-band-management
IP Addr. : 10.135.25.183/24
Port Id : 1/1/24

Interface : management
IP Addr. : 10.135.25.183/24
Port Id : A/1

*A:SAS-X-C>config>qos>network#*

For SAS-MX:
*A:qos1# show qos network 1001 detail*

QoS Network Policy

Network Policy (1001)

Policy-id : 1001
Forward Class : be
Attach Mode : mpls
Scope : Template
Accounting : packet-based
Description : ip-interface-type

LSP EXP Bit Map Forwarding Class Profile

<table>
<thead>
<tr>
<th>Meter Mode</th>
<th>CIR Admin</th>
<th>CIR Rule</th>
<th>PIR Admin</th>
<th>PIR Rule</th>
<th>CBS Admin</th>
<th>MBS Admin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 TrTcm_CA</td>
<td>4000</td>
<td>closest</td>
<td>8000</td>
<td>closest</td>
<td>def</td>
<td>def</td>
</tr>
<tr>
<td>2 TrTcm_CA</td>
<td>4000</td>
<td>closest</td>
<td>7000</td>
<td>closest</td>
<td>16384</td>
<td>16384</td>
</tr>
<tr>
<td>4000</td>
<td>7000</td>
<td></td>
<td>16000</td>
<td></td>
<td>16000</td>
<td>16000</td>
</tr>
</tbody>
</table>
Show Commands

<table>
<thead>
<tr>
<th></th>
<th>TrTcm_CA</th>
<th>4000</th>
<th>closest</th>
<th>7000</th>
<th>closest</th>
<th>def</th>
<th>def</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4000</td>
<td></td>
<td>7000</td>
<td></td>
<td>def</td>
<td>500</td>
</tr>
<tr>
<td>4</td>
<td>TrTcm_CA</td>
<td>4000</td>
<td>closest</td>
<td>7000</td>
<td>closest</td>
<td>def</td>
<td>def</td>
</tr>
<tr>
<td>5</td>
<td>TrTcm_CA</td>
<td>4000</td>
<td>closest</td>
<td>7000</td>
<td>closest</td>
<td>def</td>
<td>def</td>
</tr>
<tr>
<td>6</td>
<td>TrTcm_CA</td>
<td>4000</td>
<td>closest</td>
<td>7000</td>
<td>closest</td>
<td>def</td>
<td>def</td>
</tr>
<tr>
<td>7</td>
<td>TrTcm_CA</td>
<td>4000</td>
<td>closest</td>
<td>7000</td>
<td>closest</td>
<td>def</td>
<td>def</td>
</tr>
<tr>
<td>8</td>
<td>TrTcm_CA</td>
<td>7000</td>
<td>closest</td>
<td>7000</td>
<td>closest</td>
<td>def</td>
<td>def</td>
</tr>
<tr>
<td>9</td>
<td>TrTcm_CA</td>
<td>4000</td>
<td>closest</td>
<td>7000</td>
<td>closest</td>
<td>def</td>
<td>def</td>
</tr>
<tr>
<td>10</td>
<td>TrTcm_CA</td>
<td>4000</td>
<td>closest</td>
<td>7000</td>
<td>closest</td>
<td>def</td>
<td>def</td>
</tr>
<tr>
<td>11</td>
<td>TrTcm_CA</td>
<td>4000</td>
<td>closest</td>
<td>7000</td>
<td>closest</td>
<td>def</td>
<td>def</td>
</tr>
<tr>
<td>12</td>
<td>TrTcm_CA</td>
<td>4000</td>
<td>closest</td>
<td>7000</td>
<td>closest</td>
<td>def</td>
<td>def</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FC</th>
<th>UCastM</th>
<th>MCastM</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>2</td>
<td>def</td>
</tr>
<tr>
<td>af</td>
<td>3</td>
<td>def</td>
</tr>
<tr>
<td>l1</td>
<td>4</td>
<td>def</td>
</tr>
<tr>
<td>h2</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>ef</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>h1</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>nc</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Egress Forwarding Class Queuing

<table>
<thead>
<tr>
<th>FC Value</th>
<th>FC Name</th>
<th>Out-of-Profile</th>
<th>In-Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>be</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

*A:SAS-X-C>config>qos>network# show qos network 1 detail

QoS Network Policy

Network Policy (1)

<table>
<thead>
<tr>
<th>Policy-id</th>
<th>Egr Remark</th>
<th>Forward Class</th>
<th>Scope</th>
<th>Accounting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>False</td>
<td>be</td>
<td>Template</td>
<td>packet-based</td>
<td>Default network-port QoS policy.</td>
</tr>
</tbody>
</table>
### Network Egress QoS Policy Forwarding Class Commands

<table>
<thead>
<tr>
<th>Dot1p Bit Map</th>
<th>Forwarding Class</th>
<th>Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Matching Entries</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Meter Mode</th>
<th>CIR Admin CIR Rule</th>
<th>PIR Admin PIR Rule</th>
<th>CBS Admin CBS Oper</th>
<th>MBS Admin MBS Oper</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIR Oper</td>
<td>closest</td>
<td>max</td>
<td>closest</td>
<td>def</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>def</td>
<td>def</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FC</th>
<th>UCastM</th>
<th>MCastM</th>
</tr>
</thead>
<tbody>
<tr>
<td>No FC-Map Entries Found.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Port Attachments

- Port-id : 1/1/10
- Port-id : 1/1/11
- Port-id : 1/1/12
- Port-id : 1/1/13
- Port-id : 1/1/20
- Port-id : 1/1/21
- Port-id : 1/1/22
- Port-id : 1/1/23
- Port-id : 1/1/24
- Port-id : 1/1/25
- Port-id : 1/1/26
- Port-id : lag-3
- Port-id : lag-5

*A:SAS-X-C>config>qos>network#

### mpls-lsp-exp-profile

**Syntax**

`mpls-lsp-exp-profile-map [policy-id] [detail]`

**Context**

`show>qos`

**Description**

This command displays profile policy information.

**Parameters**

- `policy-id` — Displays information for the specific policy ID.

  **Values**
  - `1` — 65535

- `detail` — Displays detail policy information.
### Show QoS Network Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile Map-id</td>
<td>Displays the profile Map ID.</td>
</tr>
<tr>
<td>Description</td>
<td>A text string that helps identify the policy’s context in the configuration file.</td>
</tr>
<tr>
<td>Exp</td>
<td>Displays the EXP. values</td>
</tr>
<tr>
<td>Profile</td>
<td>Specifies the marking of the packets as in-profile or out-of-profile.</td>
</tr>
<tr>
<td>Network Policy Id</td>
<td>Displays the Network policy ID with which the mpls-lsp-exp-profile is associated.</td>
</tr>
</tbody>
</table>

### Output

*A:7210-SAS>show>qos# mpls-lsp-exp-profile-map 1*

<table>
<thead>
<tr>
<th>Profile Map-id</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>: 1</td>
<td>Default MPLS LSP EXP Profile Map policy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exp</th>
<th>Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Out</td>
</tr>
<tr>
<td>1</td>
<td>In</td>
</tr>
<tr>
<td>2</td>
<td>Out</td>
</tr>
<tr>
<td>3</td>
<td>In</td>
</tr>
<tr>
<td>4</td>
<td>In</td>
</tr>
<tr>
<td>5</td>
<td>In</td>
</tr>
<tr>
<td>6</td>
<td>In</td>
</tr>
<tr>
<td>7</td>
<td>In</td>
</tr>
</tbody>
</table>

*A:7210SAS>show>qos# mpls-lsp-exp-profile-map 1 detail*

<table>
<thead>
<tr>
<th>Profile Map-id</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>: 1</td>
<td>Default MPLS LSP EXP Profile Map policy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exp</th>
<th>Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Out</td>
</tr>
</tbody>
</table>
Network Egress QoS Policy Forwarding Class Commands

<table>
<thead>
<tr>
<th></th>
<th>In</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In</td>
</tr>
<tr>
<td>2</td>
<td>Out</td>
</tr>
<tr>
<td>3</td>
<td>In</td>
</tr>
<tr>
<td>4</td>
<td>In</td>
</tr>
<tr>
<td>5</td>
<td>In</td>
</tr>
<tr>
<td>6</td>
<td>In</td>
</tr>
<tr>
<td>7</td>
<td>In</td>
</tr>
</tbody>
</table>

Network Policy Associations

Network Policy Id: 2

*A:7210-SAS>show>qos#*
Network Queue QoS Policies

In This Section

This section provides information to configure network queue QoS policies using the command line interface.

Topics in this section include:

- Overview on page 154
- Basic Configurations on page 156
- Default Network Queue Policy Values on page 159
- Service Management Tasks on page 162
Network Queue policies define the egress network queuing for the traffic egressing on the network ports. Network queue policies are used at the Ethernet port and define the bandwidth distribution for the various FC traffic egressing on the Ethernet port.

There is one default network queue policy. Each policy always has 8 queues. Each of these queues are shared by unicast and multicast traffic. The default policies can be copied but they cannot be deleted or modified. The default policy is identified as `network-queue default`. Default network queue policies are applied to all network ports. You must explicitly create and then associate other network queue QoS policies.

**Network Queue Parent Scheduler**

Each queue has cir-level and pir-weight. Cir-level decides distribution of CIR traffic among queues while PIR-weight decides distribution of PIR traffic.

Cir-Level 8 has the highest priority and is serviced first (strict) irrespective of whether any other lower cir-levels have cir or not. For queue 8, it is recommended that CIR be set equal to PIR. When there are multiple queues in cir-level 1, they will share equal bandwidth. If there are multiple queues configured with cir-level 1 and some of them have CIR rate configured, then in the CIR loop, the bandwidth will be allocated to the queues that have CIR configured until all of the CIRs are satisfied and then in the PIR loop, the remaining bandwidth will be shared among all the queues. For example, if all queues have cir-level 1, and queue 1 and 2 have cir=100mbps, the throughput will be the following queues (considering the max speed of the port is 1-Gig):

- 1=200
- 2=200
- 3=100
- 4=100
- 5=100
- 6=100
- 7=100
- 8=100

Pir-Weight configured by the user is not considered by the system for a queue configured with cir-level 8. Therefore, if there are two queues with cir-level 8, all the traffic will be equally shared among the two, even when one queue have pir-weight 100 and other pir-weight as 1. pir-weight distributes the available bandwidth in the PIR loop among all egress network queues in the ratio of their weights.
For CIR Loop the priority between the cir-level are as follows:

8, 7, 6, 5, 4, 3, 2, 1

The system assigns the pir-level to the queues based on the cir-level configured by the user. There are 5 levels used by the system in the PIR loop. The assignment of PIR levels to CIR level is as shown in the Table 33. For PIR Loop, queues at pir-level 5 is scheduled first, followed by queues at pir-level 4, and so on with queues at pir-level 1 being scheduled last.

<table>
<thead>
<tr>
<th>Queue cir-level</th>
<th>Queue pir-level assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>6,5</td>
<td>3</td>
</tr>
<tr>
<td>4,3</td>
<td>2</td>
</tr>
<tr>
<td>2,1</td>
<td>1</td>
</tr>
</tbody>
</table>

**Configuration Guidelines**

Queues at cir-level 8 are considered as strict priority queues by the system and therefore it is recommended that CIR value be set to PIR value. The system ignores the configured PIR value. Pir-level is not user configurable.
Basic Configurations

A basic network queue QoS policy must conform to the following:

- Each network queue QoS policy must have a unique policy name.
- Queue parameters can be modified, but cannot be deleted.

Create a Network Queue QoS Policy

Configuring and applying QoS policies other than the default policy is optional. A default network queue policy is applied to all network ports.

To create a network queue policy, define the following:

- Enter a network queue policy name. The system will not dynamically assign a name.
- Include a description. The description provides a brief overview of policy features.
- FCs are mapped to 8 queues available at the port according to Table 25, Forwarding Class to Queue-ID Map, on page 63.

Use the following CLI syntax to create a network queue QoS policy:

**CLI Syntax:**

```text
config>qos
network-queue policy-name
description description-string
queue queue-id
 rate cir cir-percent [pir pir-percent]
 adaptation-rule [cir adaptation-rule] [pir adaptation-rule]
 [no] port-parent cir-level <cir-level 1-8> pir-weight <pir-weight l-100>
 [no] queue-mgmt <queue-mgmt policy-name>
```

*A:SAS-X>config>qos>network-queue# info detail
----------------------------------------------
description "Default network queue QoS policy."
queue 1
  port-parent cir-level 1 pir-weight 1
  rate cir 0 pir 100
  adaptation-rule cir closest pir closest
  queue-mgmt "default"
exit
queue 2
  port-parent cir-level 2 pir-weight 1
  rate cir 25 pir 100
  adaptation-rule cir closest pir closest
  queue-mgmt "default"
exit
queue 3
  port-parent cir-level 3 pir-weight 1
  rate cir 25 pir 100
  adaptation-rule cir closest pir closest
  queue-mgmt "default"
exit
queue 4
  port-parent cir-level 4 pir-weight 1
  rate cir 25 pir 100
  adaptation-rule cir closest pir closest
  queue-mgmt "default"
exit
queue 5
  port-parent cir-level 5 pir-weight 1
  rate cir 100 pir 100
  adaptation-rule cir closest pir closest
  queue-mgmt "default"
exit
queue 6
  port-parent cir-level 6 pir-weight 1
  rate cir 100 pir 100
  adaptation-rule cir closest pir closest
  queue-mgmt "default"
exit
queue 7
  port-parent cir-level 7 pir-weight 1
  rate cir 10 pir 100
  adaptation-rule cir closest pir closest
  queue-mgmt "default"
exit
queue 8
  port-parent cir-level 8 pir-weight 1
  rate cir 10 pir 10
  adaptation-rule cir closest pir closest
  queue-mgmt "default"
exit
Applying Network Queue Policies

Apply network queue policies to the following entities:

- Ethernet Ports

---

Ethernet Ports

Use the following CLI syntax to apply a network queue policy to an Ethernet port.

**CLI Syntax:**
```
config>port#
 ethernet
#--
echo "Port Configuration"
#--
 port 1/1/1
 ethernet
 mode network
 network
 queue-policy "nq1-cbs"
 exit
 exit
 exit
 no shutdown
exit
```
Default Network Queue Policy Values

The default network queue policies are identified as policy-id `default`. The default policies cannot be modified or deleted. The following displays default policy parameters:

*A:SAS-X>config>gos>network-queue# show gos network-queue default detail*

```
QoS Network Queue Policy

Network Queue Policy (default)
Policy : default
Accounting : packet-based
Description : Default network queue QoS policy.

Queue Rates and Rules

<table>
<thead>
<tr>
<th>QueueId</th>
<th>CIR(%)</th>
<th>CIR Adpt Rule</th>
<th>PIR(%)</th>
<th>PIR Adpt Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue1</td>
<td>0</td>
<td>closest</td>
<td>100</td>
<td>closest</td>
</tr>
<tr>
<td>Queue2</td>
<td>25</td>
<td>closest</td>
<td>100</td>
<td>closest</td>
</tr>
<tr>
<td>Queue3</td>
<td>25</td>
<td>closest</td>
<td>100</td>
<td>closest</td>
</tr>
<tr>
<td>Queue4</td>
<td>25</td>
<td>closest</td>
<td>100</td>
<td>closest</td>
</tr>
<tr>
<td>Queue5</td>
<td>100</td>
<td>closest</td>
<td>100</td>
<td>closest</td>
</tr>
<tr>
<td>Queue6</td>
<td>100</td>
<td>closest</td>
<td>100</td>
<td>closest</td>
</tr>
<tr>
<td>Queue7</td>
<td>10</td>
<td>closest</td>
<td>100</td>
<td>closest</td>
</tr>
<tr>
<td>Queue8</td>
<td>10</td>
<td>closest</td>
<td>10</td>
<td>closest</td>
</tr>
</tbody>
</table>

Parent Details

<table>
<thead>
<tr>
<th>QueueId</th>
<th>Port</th>
<th>CIR Level</th>
<th>PIR Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue1</td>
<td>True</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Queue2</td>
<td>True</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Queue3</td>
<td>True</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Queue4</td>
<td>True</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Queue5</td>
<td>True</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Queue6</td>
<td>True</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Queue7</td>
<td>True</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Queue8</td>
<td>True</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

High Slope

<table>
<thead>
<tr>
<th>QueueId</th>
<th>State</th>
<th>Start-Avg(%)</th>
<th>Max-Avg(%)</th>
<th>Max-Prob(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue1</td>
<td>Down</td>
<td>70</td>
<td>90</td>
<td>75</td>
</tr>
<tr>
<td>Queue2</td>
<td>Down</td>
<td>70</td>
<td>90</td>
<td>75</td>
</tr>
<tr>
<td>Queue3</td>
<td>Down</td>
<td>70</td>
<td>90</td>
<td>75</td>
</tr>
<tr>
<td>Queue4</td>
<td>Down</td>
<td>70</td>
<td>90</td>
<td>75</td>
</tr>
<tr>
<td>Queue5</td>
<td>Down</td>
<td>70</td>
<td>90</td>
<td>75</td>
</tr>
<tr>
<td>Queue6</td>
<td>Down</td>
<td>70</td>
<td>90</td>
<td>75</td>
</tr>
<tr>
<td>Queue7</td>
<td>Down</td>
<td>70</td>
<td>90</td>
<td>75</td>
</tr>
</tbody>
</table>
Default Network Queue Policy Values

<table>
<thead>
<tr>
<th>QueueId</th>
<th>State</th>
<th>Start-Avg(%)</th>
<th>Max-Avg(%)</th>
<th>Max-Prob(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue1</td>
<td>Down</td>
<td>50</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Queue2</td>
<td>Down</td>
<td>50</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Queue3</td>
<td>Down</td>
<td>50</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Queue4</td>
<td>Down</td>
<td>50</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Queue5</td>
<td>Down</td>
<td>50</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Queue6</td>
<td>Down</td>
<td>50</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Queue7</td>
<td>Down</td>
<td>50</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Queue8</td>
<td>Down</td>
<td>50</td>
<td>75</td>
<td>75</td>
</tr>
</tbody>
</table>

Burst Sizes and Time Average Factor

<table>
<thead>
<tr>
<th>QueueId</th>
<th>CBS</th>
<th>MBS</th>
<th>Time Average Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue1</td>
<td>def</td>
<td>def</td>
<td>7</td>
</tr>
<tr>
<td>Queue2</td>
<td>def</td>
<td>def</td>
<td>7</td>
</tr>
<tr>
<td>Queue3</td>
<td>def</td>
<td>def</td>
<td>7</td>
</tr>
<tr>
<td>Queue4</td>
<td>def</td>
<td>def</td>
<td>7</td>
</tr>
<tr>
<td>Queue5</td>
<td>def</td>
<td>def</td>
<td>7</td>
</tr>
<tr>
<td>Queue6</td>
<td>def</td>
<td>def</td>
<td>7</td>
</tr>
<tr>
<td>Queue7</td>
<td>def</td>
<td>def</td>
<td>7</td>
</tr>
<tr>
<td>Queue8</td>
<td>def</td>
<td>def</td>
<td></td>
</tr>
</tbody>
</table>

*A:SAS-X>config>qos>network-queue# info detail

description "Default network queue QoS policy."
queue 1
 port-parent cir-level 1 pir-weight 1
 rate cir 0 pir 100
 adaptation-rule cir closest pir closest
 queue-mgmt "default"
exit
queue 2
 port-parent cir-level 2 pir-weight 1
 rate cir 25 pir 100
 adaptation-rule cir closest pir closest
 queue-mgmt "default"
exit
queue 3
 port-parent cir-level 3 pir-weight 1
 rate cir 25 pir 100
 adaptation-rule cir closest pir closest
 queue-mgmt "default"
exit
queue 4
 port-parent cir-level 4 pir-weight 1
 rate cir 25 pir 100
 adaptation-rule cir closest pir closest
 queue-mgmt "default"
exit
queue 5
 port-parent cir-level 5 pir-weight 1
rate cir 100 pir 100
adaptation-rule cir closest pir closest
queue-mgmt "default"
exit
queue 6
 port-parent cir-level 6 pir-weight 1
 rate cir 100 pir 100
 adaptation-rule cir closest pir closest
 queue-mgmt "default"
exit
queue 7
 port-parent cir-level 7 pir-weight 1
 rate cir 10 pir 100
 adaptation-rule cir closest pir closest
 queue-mgmt "default"
exit
queue 8
 port-parent cir-level 8 pir-weight 1
 rate cir 10 pir 10
 adaptation-rule cir closest pir closest
 queue-mgmt "default"
exit

--
A:SAS-X>config>qos>network-queue#
Service Management Tasks

This section discusses the following service management tasks:

- Deleting QoS Policies on page 162
- Copying and Overwriting QoS Policies on page 163
- Editing QoS Policies on page 165

Deleting QoS Policies

A network queue policy is associated by default with all network ports. You can replace the default policy with a customer-configured policy, but you cannot entirely remove a QoS policy. When you remove a QoS policy, the policy association reverts to the default network-queue policy default.

A network-queue policy cannot be deleted until it is removed from all network ports where it is applied.

To delete a user-created network queue policy, enter the following commands:

CLI Syntax: config>qos# no network-queue policy-name

Example: config>qos# no network-queue nq1
Copying and Overwriting QoS Policies

You can copy an existing network queue policy, rename it with a new policy ID name, or overwrite an existing network queue policy. The overwrite option must be specified or an error occurs if the destination policy ID exists.

CLI Syntax:
\[
\text{config>qos\# copy network-queue source-policy-id dest-policy-id [overwrite]}
\]

Example:
\[
\text{config>qos\# copy network-queue nq1-cbs nq2-cbs}
\]

The following output displays the copied policies

\[
*A:*card-1>config>qos\# info
\]

```
#--------------------------------------------------
echo "QoS Slope and Queue Policies Configuration"
#--------------------------------------------------
........

network-queue "nq1-cbs" create
queue 1
  rate cir 0 pir 32
  adaptation-rule cir max
exit
queue 2
exit
queue 3
exit
queue 4
exit
queue 5
exit
queue 6
  rate cir 0 pir 4
exit
queue 7
  rate cir 3 pir 93
exit
queue 8
  rate cir 0 pir 3
exit
exit

network-queue "nq2-cbs" create
queue 1
  rate cir 0 pir 32
  adaptation-rule cir max
exit
queue 2
exit
queue 3
exit
queue 4
exit
queue 5
```
exit
queue 6
 rate cir 0 pir 4
exit
queue 7
 rate cir 3 pir 93
exit
queue 8
 rate cir 0 pir 3
exit
exit

--

*A:card-1>config>qos# info
Editing QoS Policies

You can change existing policies, except the default policies, and entries in the CLI. The changes are applied immediately to all ports where the policy is applied. To prevent configuration errors use the copy command to make a duplicate of the original policy to a work area, make the edits, and then overwrite the original policy.
Network Queue QoS Policy Command Reference

Command Hierarchies

- Configuration Commands on page 141
- Operational Commands on page 142
- Show Commands on page 142

Configuration Commands

```
config
  qos
    network-queue policy-name [create]
      description description-string
      no description
      queue queue-id
        adaptation-rule [cir adaptation-rule] [pir adaptation-rule]
        no adaptation-rule
        port-parent [cir-level cir-level] [pir-weight pir-weight]
        no port-parent
        queue-mgmt <name>
        no queue-mgmt
        rate [cir cir-percent] [pir pir-percent]
        no rate
```
Operational Commands

```
config
  -- qos
    -- copy network-queue src-name dst-name [overwrite]
```

Show Commands

```
show
  -- qos
    -- network-queue [network-queue-policy-name] [detail]
```
Generic Commands

description

Syntax
description description-string
no description

Context
config>qos>network-queue

Description
This command creates a text description stored in the configuration file for a configuration context.

The `description` command associates a text string with a configuration context to help identify the context in the configuration file.

The `no` form of this command removes any description string from the context.

Default
No description is associated with the configuration context.

Parameters
description-string — A text string describing the entity. Allowed values are any string up to 80 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.
Operational Commands

copy

Syntax: copy network-queue src-name dst-name [overwrite]

Context: config>qos

Description: This command copies or overwrites existing network queue QoS policies to another network queue policy ID.

The **copy** command is a configuration level maintenance tool used to create new policies using existing policies. It also allows bulk modifications to an existing policy with the use of the **overwrite** keyword.

Parameters:

- **network-queue src-name dst-name** — Indicates that the source policy ID and the destination policy ID are network-queue policy IDs. Specify the source policy ID that the copy command will attempt to copy from and specify the destination policy ID to which the command will copy a duplicate of the policy.

- **overwrite** — specifies to replace the existing destination policy. Everything in the existing destination policy will be overwritten with the contents of the source policy. If **overwrite** is not specified, a message is generated saying that the destination policy ID exists.

Example:

```
SR>config>qos# copy network-queue nq1 nq2
MINOR: CLI Destination "nq2" exists - use {overwrite}.
SR>config>qos# copy network-queue nq1 nq2 overwrite
```
Network Queue QoS Policy Commands

network-queue

Syntax [no] network-queue policy-name [create]

Context config>qos

Description This command creates a context to configure a network queue policy. Network queue policies on the Ethernet port define network egress queuing.

Default default

Parameters policy-name — The name of the network queue policy.

Values Valid names consist of any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

create — Mandatory keyword to create a network queue policy.
Network Queue QoS Policy Commands

queue

Syntax queue queue-id

Context config>qos>network-queue

Description This command enables the context to configure a QoS network-queue policy queue.

The FCs are mapped to these queues as per Table 25, Forwarding Class to Queue-ID Map, on page 63. Only one FC can be mapped to one queue. Queue-id 8 is the highest priority and Queue-id 1 is the lowest priority. Queue carry both the unicast and multicast traffic and no segregation is done. The hardware port scheduler prioritizes the queue according to the priority for each queue. High priority traffic should be mapped to high priority FC. Mapping traffic to high priority FC does not necessarily guarantee high priority treatment since the scheduler policy can influence the relative priority among the queues.

Parameters

queue-id — The queue-id for the queue, expressed as an integer. The queue-id uniquely identifies the queue within the policy. This is a required parameter each time the queue command is executed.

Values 1 — 8

adaptation-rule

Syntax adaptation-rule [cir adaptation-rule] [pir adaptation-rule]

no adaptation-rule

Context config>qos>network-queue>queue

Description This command defines the method used by the system to derive the operational CIR and PIR settings when the queue is provisioned in hardware. For the CIR and PIR parameters individually, the system attempts to find the best operational rate depending on the defined constraint.

The no form of the command removes any explicitly defined constraints used to derive the operational CIR and PIR created by the application of the policy. When a specific adaptation-rule is removed, the default constraints for pir and cir apply.

Default adaptation-rule cir closest pir closest

Parameters

adaptation-rule — Specifies the adaptation rule to be used while computing the operational CIR or PIR value.

Values pir — Defines the constraints enforced when adapting the PIR rate defined within the queue queue-id rate command. The pir parameter requires a qualifier that defines the
constraint used when deriving the operational PIR for the queue. When the \texttt{pir} command is not specified, the default applies.

\texttt{cir} — Defines the constraints enforced when adapting the CIR rate defined within the \texttt{queue queue-id rate} command. The \texttt{cir} parameter requires a qualifier that defines the constraint used when deriving the operational CIR for the queue. When the \texttt{cir} parameter is not specified, the default constraint applies.

\texttt{max} — The \texttt{max} (maximum) option is mutually exclusive with the \texttt{min} and \texttt{closest} options. When \texttt{max} is defined, the operational PIR for the queue will be equal to or less than the administrative rate specified using the \texttt{rate} command.

\texttt{min} — The \texttt{min} (minimum) option is mutually exclusive with the \texttt{max} and \texttt{closest} options. When \texttt{min} is defined, the operational PIR for the queue will be equal to or greater than the administrative rate specified using the \texttt{rate} command.

\texttt{closest} — The \texttt{closest} parameter is mutually exclusive with the \texttt{min} and \texttt{max} parameter. When \texttt{closest} is defined, the operational PIR for the queue will be the rate closest to the rate specified using the \texttt{rate} command.

\textbf{port-parent}

\textbf{Syntax} \texttt{port-parent [cir-level cir-level] [pir-level pir-weight]}

\textbf{Context} config>qos>network-queue>queue

\textbf{Description} It allows the user to configure the queues relative cir-level and pir-weight with respect to other queues on the port.

The 7210 SAS X implements a port level scheduler that schedules all the queues associated with the port. The port level scheduler allocates bandwidth at line-rate or at the rate specified by the egress rate value configured for the port.

The no form of the command sets the cir-level and pir-weight to default values.

\textbf{Default} port-parent cir-level 1 pir-weight 1

\textbf{Parameters} \textit{cir-level cir-level} — Specifies the priority of the queue with respect to other queues. The priority of the queue is used only in the CIR loop. Level "8" is the highest priority and level "1" is the lowest priority. In the PIR loop, the priority of the queues cannot be configured. The system assigns the priority to the queues based on the cir-level associated with the queue.

\textbf{Values} 1 — 8 (8 is the highest priority)

\textbf{Default} 1
Network Queue QoS Policy Commands

pir-weight

pir-weight — Specifies the relative weight of the queue with respect to the other queues. The weight parameter is used only in the PIR loop. If a queues level parameter is set to ‘8’, the weight parameter is ignored by the system.

Values

1 — 100

Default

1

queue-mgmt

Syntax

`queue-mgmt < name >`

Context

config>qos>network-queue>queue

Description

This command specifies the WRED and buffer parameters associated with the queue.

All the queues in the system allocate buffers from the system pool.

Parameters

name — Specifies the name of the queue-management policy.

rate

Syntax

`rate [cir cir-percent] [pir pir-percent]`

`no rate`

Context

config>qos>network-queue>queue

Description

This command defines the administrative Peak Information Rate (PIR) and the administrative Committed Information Rate (CIR) parameters for the queue. Defining a PIR does not necessarily guarantee that the queue can transmit at the intended rate. The actual rate sustained by the queue can be limited by oversubscription factors or available egress bandwidth.

The CIR defines the percentage at which the system prioritizes the queue over other queues competing for the same bandwidth. For network egress, the CIR also defines the rate that the queue is considered in-profile by the system. The in-profile and out-profile of the queue influences the scheduler priority queue metric. The in-profile and out-profile of the queue based on CIR and PIR is never marked in the packets. The packets at egress are considered in-profile and out-profile based on the SAP ingress policy meter results.

The rate command can be executed at anytime, altering the PIR and CIR rates for all queues. The 8 queues which are available at egress port are always associated with the network queue QoS policy by the queue-id.

The no form of the command returns all queues created with the queue-id by association with the QoS policy to the default PIR and CIR parameters (100, 0). (Except for the queue in cir-level 8, in which "no rate" sets cir=pir=1.)
If queue has cir-level as 8 then CIR should be equal to PIR for the queue, that is for queue with cir-level 8 all the traffic is considered as CIR(guaranteed).

Parameters

- **cir percent** — Defines the percentage of the guaranteed rate allowed for the queue. When the `rate` command is executed, . When the `rate` command has not been executed, the default is assumed. Fractional values are not allowed and must be given as a positive integer.

 The actual rate is dependent on the queue’s **adaptation-rule** parameters and the actual hardware where the queue is provisioned.

 Values
 - 0 — 100

 Default
 - 0

- **pir percent** — Defines the percentage of the maximum rate allowed for the queue. When the `rate` command is executed, the PIR setting is optional. When the `rate` command has not been executed, or the PIR parameter is not explicitly specified, the default PIR of 100 is assumed. Fractional values are not allowed and must be given as a positive integer.

 Values
 - 1 — 100 percent

 Default
 - 100
Show Commands

network-queue

Syntax: network-queue [network-queue-policy-name] [detail]

Description: This command displays network queue policy information.

Context: show > qos

Parameters:
- **network-queue-policy-name** — The name of the network queue policy.
- **Values**
 Valid names consist of any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

- **detail** — Includes each queue’s rates and adaptation-rule and & cbs details. It also shows FC to queue mapping details.

Table 34: Network Queue Labels and Descriptions

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy</td>
<td>The policy name that uniquely identifies the policy.</td>
</tr>
<tr>
<td>Description</td>
<td>A text string that helps identify the policy’s context in the configuration file.</td>
</tr>
<tr>
<td>Associations</td>
<td>Displays the physical port identifier where the network queue policy is applied.</td>
</tr>
<tr>
<td>Queue</td>
<td>Displays the queue ID.</td>
</tr>
<tr>
<td>CIR(%)</td>
<td>Displays the committed information rate</td>
</tr>
<tr>
<td>CIR Adapt Rule</td>
<td>Displays the adaptation rule in use</td>
</tr>
<tr>
<td>PIR(%)</td>
<td>Displays the peak information rate</td>
</tr>
<tr>
<td>PIR Adapt Rule</td>
<td>Displays the adaptation rule in use</td>
</tr>
<tr>
<td>Port</td>
<td>Indicates if the parent scheduler is port scheduler or not</td>
</tr>
<tr>
<td>CIR Level</td>
<td>Displays the priority of the queue in the CIR loop</td>
</tr>
<tr>
<td>PIR Weight</td>
<td>Displays the weight of the queue used in the PIR loop</td>
</tr>
<tr>
<td>High Slope</td>
<td>Displays the WRED high-slope parameters</td>
</tr>
<tr>
<td>Low Slope</td>
<td>Displays the WRED low-slope parameters</td>
</tr>
</tbody>
</table>
Show Commands

*A:SAS-X>config>qos>network-queue# show qos network-queue default

QoS Network Queue Policy

Network Queue Policy (default)

Policy : default
Accounting : packet-based
Description : Default network queue QoS policy.

Associations

Port-id : 1/1/10
Port-id : 1/1/19
Port-id : 1/1/20
Port-id : 1/1/24

*A:SAS-X>config>qos>network-queue# show qos network-queue default detail

QoS Network Queue Policy

Network Queue Policy (default)

Policy : default
Accounting : packet-based
Description : Default network queue QoS policy.

Queue Rates and Rules

<table>
<thead>
<tr>
<th>QueueId</th>
<th>CIR(%)</th>
<th>CIR Adpt Rule</th>
<th>PIR(%)</th>
<th>PIR Adpt Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue1</td>
<td>0</td>
<td>closest</td>
<td>100</td>
<td>closest</td>
</tr>
<tr>
<td>Queue2</td>
<td>25</td>
<td>closest</td>
<td>100</td>
<td>closest</td>
</tr>
<tr>
<td>Queue3</td>
<td>25</td>
<td>closest</td>
<td>100</td>
<td>closest</td>
</tr>
<tr>
<td>Queue4</td>
<td>25</td>
<td>closest</td>
<td>100</td>
<td>closest</td>
</tr>
<tr>
<td>Queue5</td>
<td>100</td>
<td>closest</td>
<td>100</td>
<td>closest</td>
</tr>
<tr>
<td>Queue6</td>
<td>100</td>
<td>closest</td>
<td>100</td>
<td>closest</td>
</tr>
<tr>
<td>Queue7</td>
<td>10</td>
<td>closest</td>
<td>100</td>
<td>closest</td>
</tr>
<tr>
<td>Queue8</td>
<td>10</td>
<td>closest</td>
<td>10</td>
<td>closest</td>
</tr>
</tbody>
</table>

Parent Details

Table 34: Network Queue Labels and Descriptions

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burst Sizes (CBS/MBS)</td>
<td>Displays the configured CBS and MBS value</td>
</tr>
<tr>
<td>Time Avg Factor</td>
<td>Displays the WRED Time Average Factor value in use</td>
</tr>
<tr>
<td>FC and UcastQ</td>
<td>Displays the forwarding class (FC) to Queue association</td>
</tr>
</tbody>
</table>

QueueId Port CIR Level PIR Weight

| Queue1 | True | 1 | 1 |
| Queue2 | True | 2 | 1 |
| Queue3 | True | 3 | 1 |
| Queue4 | True | 4 | 1 |
| Queue5 | True | 5 | 1 |
| Queue6 | True | 6 | 1 |
| Queue7 | True | 7 | 1 |
| Queue8 | True | 8 | 1 |

High Slope

<table>
<thead>
<tr>
<th>QueueId</th>
<th>State</th>
<th>Start-Avg(%)</th>
<th>Max-Avg(%)</th>
<th>Max-Prob(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue1</td>
<td>Down</td>
<td>70</td>
<td>90</td>
<td>75</td>
</tr>
<tr>
<td>Queue2</td>
<td>Down</td>
<td>70</td>
<td>90</td>
<td>75</td>
</tr>
<tr>
<td>Queue3</td>
<td>Down</td>
<td>70</td>
<td>90</td>
<td>75</td>
</tr>
<tr>
<td>Queue4</td>
<td>Down</td>
<td>70</td>
<td>90</td>
<td>75</td>
</tr>
<tr>
<td>Queue5</td>
<td>Down</td>
<td>70</td>
<td>90</td>
<td>75</td>
</tr>
<tr>
<td>Queue6</td>
<td>Down</td>
<td>70</td>
<td>90</td>
<td>75</td>
</tr>
<tr>
<td>Queue7</td>
<td>Down</td>
<td>70</td>
<td>90</td>
<td>75</td>
</tr>
<tr>
<td>Queue8</td>
<td>Down</td>
<td>70</td>
<td>90</td>
<td>75</td>
</tr>
</tbody>
</table>

Low Slope

<table>
<thead>
<tr>
<th>QueueId</th>
<th>State</th>
<th>Start-Avg(%)</th>
<th>Max-Avg(%)</th>
<th>Max-Prob(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue1</td>
<td>Down</td>
<td>50</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Queue2</td>
<td>Down</td>
<td>50</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Queue3</td>
<td>Down</td>
<td>50</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Queue4</td>
<td>Down</td>
<td>50</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Queue5</td>
<td>Down</td>
<td>50</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Queue6</td>
<td>Down</td>
<td>50</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Queue7</td>
<td>Down</td>
<td>50</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Queue8</td>
<td>Down</td>
<td>50</td>
<td>75</td>
<td>75</td>
</tr>
</tbody>
</table>

Burst Sizes and Time Average Factor

<table>
<thead>
<tr>
<th>QueueId</th>
<th>CBS</th>
<th>MBS</th>
<th>Time Average Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue1</td>
<td>def</td>
<td>def</td>
<td>7</td>
</tr>
<tr>
<td>Queue2</td>
<td>def</td>
<td>def</td>
<td>7</td>
</tr>
<tr>
<td>Queue3</td>
<td>def</td>
<td>def</td>
<td>7</td>
</tr>
<tr>
<td>Queue4</td>
<td>def</td>
<td>def</td>
<td>7</td>
</tr>
<tr>
<td>Queue5</td>
<td>def</td>
<td>def</td>
<td>7</td>
</tr>
<tr>
<td>Queue6</td>
<td>def</td>
<td>def</td>
<td>7</td>
</tr>
<tr>
<td>Queue7</td>
<td>def</td>
<td>def</td>
<td>7</td>
</tr>
<tr>
<td>Queue8</td>
<td>def</td>
<td>def</td>
<td></td>
</tr>
</tbody>
</table>
Service Ingress QoS Policies

In This Section

This section provides information to configure SAP ingress QoS policies using the command line interface.

Topics in this section include:

- Overview on page 180
- Basic Configurations on page 198
- Service Management Tasks on page 251
- Service Ingress Policy Configuration Considerations on page 191
- Allocation of QoS Resources for a SAP Ingress Policy on page 217
Overview

There is one default service ingress policy. The default policy has two classification resources and one meter (the num-qos-classifiers set to value "2"). No queues are allocated by default.

The default policies can be copied but cannot be deleted. The default policies are identified as policy ID 1.

The default policies are applied to the appropriate interface, by default. For example, the default SAP ingress policy is applied to access ingress SAPs. You must explicitly associate other QoS policies.

For information about the tasks and commands necessary to access the command line interface and to configure and maintain your devices, refer to the CLI Usage chapter in the 7210 SAS OS Basic System Configuration Guide.

Resource Allocation for SAP ingress queuing policy

A FC that is using a queue uses one Classification resource. The classification entry will match the appropriate fields in the received unicast traffic and assign it the configured queue and assign it the configured profile. ‘num-qos-classifiers’ must be set appropriately for use of ingress queues.

On 7210-X, the total available queues need to be shared among ingress and egress queues. The system does not reserve queues for ingress and egress. It allocates queues on a first-cum first-serve basis when a SAP is created, subject to system limit. When a SAP is created the egress queues are always allocated and the ingress queues are allocated only if the SAP ingress policy is configured to use a queue. The queues are always allocated in chunks of 8 per SAP for both egress and ingress. The following service entities in the system use queues:

→ SAP egress – By default, 8 queues are allocated for SAP egress. In case of LAG, SAP uses 8 egress queues per member port of the LAG.
→ Network Port – By default software allocates 8 queues for egress. No ingress queues are available for use with network port.
→ SAP ingress – No queues are allocated by default. User is provided with an option to configure SAP ingress queues. When the first queue is configured for use, software allocated 8 ingress queues in a chunk. A maximum of 8 ingress queues can be used by SAP ingress policy. In case of LAG, if SAP ingress queuing is configured, only a single queue is used for all member ports of the LAG.
Configuration Guidelines for SAP ingress Queuing and Shaping

Ingress queuing is not supported for network ingress (both port and IP interface ingress do not support ingress queues but will continue to support ingress meters).

Ingress queuing is not supported for 10G ports, configured in either access or network mode.
Default SAP Ingress Policy

*A:7210-SAS>config>qos>sap-ingress# info detail
--
description "Default SAP ingress QoS policy."
num-qos-classifiers 2
scope template
meter 1 create
 mode trtcml
 adaptation-rule cir closest pir closest
 rate cir 0 pir max
 mbs default
 cbs default
exit
default-fc "be"
--
*A:7210-SAS>config>qos>sap-ingress#
SAP Ingress Policy Defaults

<table>
<thead>
<tr>
<th>Field</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>description</td>
<td>“Default SAP ingress QoS policy.”</td>
</tr>
<tr>
<td>scope</td>
<td>template</td>
</tr>
<tr>
<td>num-qos-classifiers</td>
<td>2</td>
</tr>
<tr>
<td>meter</td>
<td>1</td>
</tr>
<tr>
<td>mode</td>
<td>trtcn</td>
</tr>
<tr>
<td>adaptation-rule</td>
<td>cir closest pir closest</td>
</tr>
<tr>
<td>rate</td>
<td>pir = max, cir = 0</td>
</tr>
<tr>
<td>cbs</td>
<td>Default</td>
</tr>
<tr>
<td>mbs</td>
<td>Default</td>
</tr>
<tr>
<td>default-fc</td>
<td>be</td>
</tr>
</tbody>
</table>

SAP Ingress queues

Currently, 7210 SAS-X supports use of policers/meters for enforcing SLAs on SAP ingress. Received traffic is metered and queued up on egress uplink, contending for buffer resources and bandwidth with all other traffic using the same egress uplink. It is known that policing has detrimental effect on TCP traffic as policing drops packets exceeding the configured rate potentially causing TCP retransmissions and reducing the link utilization due to reduced window sizes. SAP ingress queuing for unicast traffic allows users to enforce SLAs on SAP ingress without the negative effects of policing on TCP traffic. With use of ingress SLAs, users have better control of the traffic accepted by the network.

User is provided with an option to use a queue or a policer/meter per FC on SAP ingress. A queue is available for use only with unicast traffic. Broadcast, Unknown Unicast, and Multicast traffic (BUM traffic) can only use a policer/meter and share per FC per node ingress multicast queues. User needs to enable ingress queuing using the CLI command configure> system> resource-profile> qos> ingress-queues. Ingress queuing is disabled by default. After using this CLI command the node needs to be rebooted for the change to take effect. All services, viz. VLL, VPLS, VPRN, PBB I-VPLS, PBB B-VPLS supports per SAP ingress queuing and shaping

A maximum of up to 8 unicast queues can be associated with SAP ingress. User is allowed to use a mix of FCs per SAP such that some FCs uses queues and some uses meters. A FC needs to be assigned to the queue explicitly by the user. The SAP ingress policy has optional queue configuration. The use of queues in the SAP ingress can be specified for any Forwarding Class (FC) or for all of them. The queue must be provisioned before configuring it under the FC. The
system allocates resources needed for eight queues when the first queue is observed for a SAP and they are allotted default amount of CBS and MBS buffers, with an option for the user to change it.

In the SAP ingress policy, a FC can use either a meter or a queue (there are some rules listed below). They are mutually exclusive (i.e. only when the there is no explicit meter configured under the FC a queue can be specified and vice-versa). A single SAP ingress policy can use a mix of FCs such that some of them use queues and some of them use meter/policer. The following rules are applied:

SAP ingress policy will by default use meter 1 to police all unicast traffic and BUM traffic. No default queues will be in use. Use of queues will need explicit user configuration.

As before, a FC can use all four types of meters i.e, unicast meter, multicast meter, unknown-unicast meter and broadcast meter. In this case it can use no ingress queues.

- In an Epipe service and VPRN service all traffic is classified as unicast traffic and hence if a queue is configured for a FC, all traffic classified to that FC will use the configured queue.

- In a VPLS service (including PBB VPLS), Broadcast, Unknown Unicast and Multicast (BUM) traffic type for an FC can use meters/policers, while unicast traffic type uses a queue. Meter cannot be associated with the unicast traffic type, if it's configured to use a queue. If meters are associated with any of the BUM traffic type of a FC, then that traffic type will be policed as per the rates specified and then queued up into the shared ingress multicast queues used for BUM traffic. In other words, BUM traffic type is always queued into the shared ingress multicast queues and they can optionally use meter/policer. In a VPLS service, following different combinations are allowed.
 - FC -> unicast uses queue + BUM uses default queues (no meters in use for BUM traffic)
 - FC -> unicast uses queue + BUM uses default meter and default queues
 - FC -> unicast uses default meter + BUM uses default meter and default queues
 - FC -> unicast uses queue + BUM uses meters and default queues
 - FC -> unicast uses meter + BUM uses default queues (no meters in use for BUM traffic)

FCs that use meters/policers and BUM traffic-type policers (if in use) will use the aggregate meter configured for hierarchical ingress policing.

When ‘no queue’ command is executed, then the FC is updated to use the default meter. User can change the meter association, if need be.

Under a FC, only a single queue for use with unicast traffic is allowed. All other traffic types (i.e. BUM) share a single set of 8 ingress queues in the system.

A FC that is using a queue uses a classification entry to match the appropriate fields in the received unicast traffic and assign it the configured queue and profile. The classification entries specified
through num-qos-resources are shared among all the FCs in use (FCs could be using meters or queues).

An aggregate shaper per SAP is available to limit the ingress rate per SAP. It applies only to unicast traffic that uses SAP ingress queues. Per SAP aggregate meter can be used to rate-limit traffic (unicast and BUM) that use meters.

User is provided with an option to assign a profile to SAP ingress queued traffic. In the SAP ingress policy, classification entries allows for profile configuration in addition to a FC configuration. Profile can be specified as ‘in’ (in-profile) or ‘out’ (out-of-profile). Profile parameter is applicable only for FC that uses a queue. For a FC that uses meter, the system will ignore the configured profile and uses the profile as determined by the meter/policer. The profile (either assigned by the user or determined by the policer) is used subsequently to determine the slope to use at the ingress and egress queuing points and is used for egress marking (if enabled).

SAP-based scheduling (as available for egress SAPs) will used for scheduling the unicast SAP ingress queues. In other words, the available ingress bandwidth is distributed equally among all the SAPs, up to the SAP aggregate shaper rate. In turn the SAP scheduler, that enforces the SAP aggregate rate, distributes the available bandwidth to each of the FCs configured for the SAP, based on the queue priority and queue weights configured by the user.

Ingress queuing needs two passes through the traffic manager. The first pass does the ingress queuing and shaping and the second pass does egress queuing and shaping. 7210 SAS-X has two internal loopback schedulers and fixed bandwidth is allotted to them at system boot up. In current release, the system uses one of the loopback scheduler/path to loop the BUM traffic, received either on SAPs or network ports, after replication to the second pass for egress queuing. The other internal loopback scheduler will be allotted for ingress queued unicast traffic with appropriate bandwidth allotted to it when user enables ingress queuing. User can enable ingress queuing for unicast traffic, using the CLI command config> system> resource-profile> qos> ingress-queues highUcastLowMcast. It allocates 20G of bandwidth to ingress queued unicast traffic and allocates 11G to BUM traffic. The unicast internal loopback scheduler distributes the available bandwidth among all the ingress unicast queues based on the user configured queue rate and queue priority. This CLI command is a boot-time parameter and a change to this will require a reboot of the node. Existing deployments that use only ingress policed unicast traffic and ingress policed BUM traffic with egress queuing (SAP and network port) can continue to use up to 44G of bandwidth as before for egress queuing. They can additionally turn on SAP ingress queuing and get up to 20G of ingress queued unicast traffic and 11G of replicated BUM traffic.

In prior releases (releases prior to 5.0R2), where ingress queuing is not supported, the system allocates 23G of bandwidth to replicated BUM traffic. This mode of operation will be the default and will available for users to maintain backward compatibility. It allows existing deployments to continue to use their current configurations without change when moving to this release that supports ingress queuing.

The following are some of the major restrictions that apply while using ingress queuing:
Ingress queuring is not available for use with network ports or network IP interfaces

Ingress queuring is available for use only with 1G ports. Its not available for use with 10G ports

Use of Index file by SAP QoS Ingress

7210 uses an index file to store the map which indicates the QoS resource allocation to SAPs. This file is used on reboot to ensure that all the SAPs that were created successfully before reboot can be created again on a reboot. Without an index file the system does not ensure this (that is, without an index file it is possible that all the SAPs that were configured successfully, may fail on a reboot after saving the configuration file). The file is stored in the flash. On reboot if the file is found, the system allocates resources as per the stored map. If the file is not found the system implements a best-fit algorithm and tries to allocate resources for all the SAPs on a first-cum-first-served basis (Note : There is no guarantee that resources will be allocated to all SAPs). Hence, when the file is not present it is possible that configuration saved, does not execute successfully after the reboot.

NOTE: The index file used for QoS map is different from the one used for storing Interface indexes.

Use of the keyword “multipoint” for default meter “11”

The system allows sharing of a single meter for both unicast and multipoint traffic. The user can configure any of the available meters for multipoint traffic. The use of 'multipoint' keyword during meter creation is deprecated, except for use with meter “11” as described in the following paragraphs.

When the “multipoint” keyword is specified with meter "11" the software interprets it to be the default multipoint meter. The default multipoint meter is used for all FCs that do not have explicit multipoint meters configured. The software does the appropriate resource checks to ensure that resources needed to use multipoint meter with all the FCs are available before allowing this change.

Note 1: When num-qos-resources is set to a value of ‘2’, default multipoint meter "11" cannot be used as only a single meter is available for use.

Note 2: When associating a meter with a FC for BUM traffic, the software does not validate if the meter is a multipoint meter thus allowing user to use a single meter for unicast and BUM traffic. This implies efficient use of SAP ingress qos resources. From release 4.0R4 onwards when the "multipoint" keyword is used, software throws a warning indicating that it is an obsolete CLI command and it is not saved in the configuration file deprecating the use of multipoint keyword with any meter other than the default.

Examples of usage of multipoint meter:

Example 1:
All FCs in the SAP ingress policy use the default meter 1 (for all traffic types). If the command “configure qos sap-ingress <id> meter 11 multipoint create” is executed, it attaches the default meter "11" with all the FCs defined in the SAP ingress policy.

After this configuration, all the FCs in this policy use two meters, default meter "1" to meter unicast traffic for all the FCs and meter "11" to meter BUM traffic for all the FCs. In this specific example, since only default FC “be” is in use, the multipoint meter will be used to meter BUM traffic associated with default FC “be”.

After the change the policy is as displayed in the example below:

```
*7210-SAS>config>qos# sap-ingress 12
*7210-SAS>config>qos>ap-ingress$ info
num-qos-classifiers 4
  meter 1 create
  exit
```

Delete the multipoint meter "11" to remove all the FCs associated with the multicast-meter (assuming all the FCs are using the default multicast meter and do not have any other multicast meter explicitly configured). Execute the command “configure qos sap-ingress <id> no meter 11”, this disassociates meter "11" from the FCs and now the FCs use only meter "1" (if no other meter configured explicitly).

Example 2:

```
*7210-SAS>config>qos# sap-ingress 12
*7210-SAS>config>qos>ap-ingress$ info
num-qos-classifiers 4
  meter 1 create
  exit
  meter 11 multipoint create
  exit
```

```
Starting with the above policy, if the user now executes the command "**configure qos sap-ingress <id> meter 11 multipoint create**", the FC "be" continues to use meter "3" and the FC "af" uses meter "11" for BUM traffic. In the above example, if the user were to execute "**configure qos sap-ingress <id> fc be no multicast-meter**", then the default meter “11” is used for FC "be" too.

**Example 3:**

```
configure> qos> sap-ingress 10 create
 meter 1 create
 exit
 meter 3 create
 exit
 default-fc be
 fc be
 meter 3
 unknown-meter 3
 exit
 exit
```

On execution of the command "**configure qos sap-ingress <id> meter 11 multipoint create**", FC "be" unknown-unicast traffic type will continue to use meter 3 and broadcast and multicast traffic type will use meter “11”.

In the above example, if initially a broadcast-meter was configured in the sap-ingress policy and then followed by execution of the command "**configure qos sap-ingress <id> meter 11 multipoint create**", then FC be changes to use meter “11” for multicast traffic and broadcast traffic continue to use meter “3” for unknown-unicast traffic and meter “3” for unicast traffic.

In the above example, if the user executes "**configure qos sap-ingress <id> fc be no unknown-meter**", then meter "3" is used for all traffic types classified to FC “be”. But, if the default meter "11" is defined in the policy, then FC “be” uses meter “11” for BUM traffic.

**Service Ingress Meter Selection Rules**

The following are rules for meter selection by different traffic types under various configurations for VPLS services:
In the default policy, only meter “1” is defined. All FC and all traffic types use meter “1” by default. Meter “11” is not created by default and is not available for use.

Sample configuration:

```
*7210-SAS>config>qos# sap-ingress 1 create // Default policy
*7210-SAS>config>qos>sap-ingress$ info
--
num-qos-classifiers 2
meter 1 create
exit
--
```

The following describes the usage of meters when meter “11” is not configured in the policy:

- If a FC is created without explicit meters, the default meter “1” is used for unicast traffic and for multipoint traffic types (such as broadcast, multicast and unknown-unicast traffic).
- If a FC is created with an explicit unicast meter, that meter is used for unicast traffic and for multipoint traffic types (such as broadcast, multicast and unknown-unicast traffic).
- If a FC is created with an explicit unicast meter and explicit broadcast meter, use these meters for unicast and broadcast traffic respectively and use the unicast meter for all other traffic types.
- If a FC is created with an explicit unicast meter and explicit multicast meter, use the unicast meter for unicast traffic and multicast meter for all other kinds of traffic.

The following describes the usage of meters when meter “11” is defined in the policy:

- If a FC is created without explicit meters, use the default meter “1” for unicast traffic and default meter “11” for all other traffic types (such as broadcast, multicast and unknown-unicast).
- If a FC is created with an explicit unicast meter, use that meter for unicast traffic and use default meter “11” for all other traffic types.
- If a FC is created with an explicit unicast meter and explicit broadcast meter, use these meters for unicast and broadcast traffic respectively and use meter “11” for all other traffic types.
- If a FC is created with an explicit unicast meter and explicit multicast meter, use the unicast meter for unicast traffic and multicast meter for all other kinds of traffic.
• If a FC is created with an explicit unicast meter, an explicit broadcast meter, and an explicit multicast meter, use these meters for unicast, broadcast and multicast traffic types respectively. Unknown unicast traffic type will use the explicitly defined multicast meter.

• If a FC is created with an explicit unicast meter, an explicit broadcast meter, an explicit unknown-unicast meter, and an explicit multicast meter, use these meters for unicast, broadcast, unknown-unicast and multicast traffic types respectively.

The following are rules for meter selection for Epipe and VPRN services:

• A multipoint meter cannot be used. A multipoint meter configured in a policy is not used when the policy is applied to a SAP in an Epipe service.

• All FCs associated with a meter always use the unicast meter.
Service Ingress Policy Configuration Considerations

The *num-qos-classifiers* parameter cannot be modified when the policy is in use (for example, when it is associated with a SAP). Other parameters in the SAP ingress policy can be changed.

When changing other parameters (for example, fc meter map or fc classification match criteria entries) for a policy which is in use, the system recomputes the resources required due to accommodate the change. If the resources required exceeds the configured value for *num-qos-classifiers*, then the change is not allowed.

If more resources are needed than what is configured in *num-qos-classifiers* for an existing policy, then the following options are available.

- Copy the existing policy to a new policy, modify the *num-qos-classifiers* parameter, modify the match criteria entries suitably, and finally modify the SAP configuration to associate it with the new policy.

- Ensure the existing policy is not in use by any SAP (if required change the SAP configuration to disable the use of the QoS policy with the `no qos` form of the command), change all the required parameters and finally modify the SAP configuration to use the policy again.

Note that both these options have side-effects, for example, it resets the statistics associated with the meters and can potentially cause existing traffic classification not to take effect. But, the system will ensure that default policy is in use during the intermittent time when a policy changes are being made following the steps given above.

- In releases prior to release 3.0R1, the software always computes the number of resources (like classifiers and meters) required by a policy assuming it will be used in a VPLS service. This allows the policy to be applied to either an Epipe or VPLS service.

- From release 3.0R1 onwards, on creation of SAP ingress policy, software does not compute the number of resources required by a policy and validate it against resources available in the system. The software validates the resources needed only when the SAP ingress policy is attached to a SAP. If enough resources are available the association succeeds, else the software fails the CLI command. Based on the service (i.e. Either VLL, VPLS, and so on.) the SAP is configured in, for the same SAP ingress policy the amount of resources required is different. The software validates that the amount of qos resources specified with the command *num-qos-classifiers* is sufficient for the match criteria, forwarding class and service specified and the resources are available in hardware. On failure of the validation, the software disallows the association of the SAP ingress policy with the SAP.

- The match criteria type (that is, mac-criteria, ipv4-criteria and ipv6-criteria) cannot be changed when the SAP ingress QoS policy is in use. For example - if the match-criteria is set to ipv4-criteria and the policy is associated with a SAP then the ipv6-criteria or mac-criteria cannot be enabled in the same policy. If there is a need to change the criteria, then
user must remove the association and then change the SAP ingress policy to use the new match criteria. For SAPs configured in VPRN services, the computation of resources is similar to an SAP configured in an Epipe service.

Please see the section on "Resource Allocation for Service Ingress QoS policies on page 192" for more information.

Resource Allocation for Service Ingress QoS policies

The available global pool of ingress internal CAM hardware resources can be allocated as per user needs for use with different features such as SAP ingress QoS policy, ingress ACLs, etc. SAP ingress QoS can be allocated classification and meter resources for use from this pool. Further on, resources can be allocated for different SAP ingress QoS policy classification match criteria, based on the operator needs. Users can modify the resource allocated to scale the number of entries available per match criteria or scale the number of SAPs. The resources from the global ingress internal CAM pool are allocated in chunks with fixed number of entries. For 7210 SAS-X, each chunk allows for 512 classification entries and 256 meters. The number of chunks to be allotted for SAP ingress QoS policy is specified using the CLI command configure> system> resource-profile> ingress-internal-tcam> qos-sap-ingress-resource.

User can specify a limit for the amount of resources required for SAP ingress QoS policies and also an option to limit the amount of resources used per match criteria supported for SAP ingress QoS policies. A given chunk can be used for either MAC criteria or IP criteria or IPv6 criteria. Allocation of classification entries also allocates meter/policer resources, used to implement per FC per traffic type policing.

By default, the system allocates resources for SAP ingress QoS policies to maintain backward compatibility with release 4.0 and allocates resources for MAC criteria and IP criteria (by setting it to 'max'). Setting the value to 'max' allows each match criteria to use the available SAP ingress QoS resources on first-cum-first-served model. By default, software does not allocate resources for use by ingress IPv6 filters. Before associating an IPv6 SAP ingress policy to a SAP, resources must be allocated. Until resources are allocated for use by IPv6 filters, software fails all attempts to associate an IPv6 filter policy with a SAP.

When the user allocates resources for use by SAP ingress QoS policies using the CLI command configure> system> resource-profile> qos-sap-ingress-resource, the system allocates resources in chunks of 512 entries. The usage of these entries by different type of match criteria is given below:

- **mac-criteria (any)** - User needs to allocate resources for mac-criteria from the SAP ingress QoS resource pool by using the command "configure> system> resource-profile> ingress-internal-team> qos-sap-ingress-resource> mac-match-enable" before using SAP ingress policies with mac-criteria. Every entry configured in the SAP ingress QoS policy using the mac-criteria uses one (1) entry from the chunks in the hardware.

**For example:** Assume a SAP Ingress QoS policy is configured to use mac-criteria with 50 entries and uses “configure> system> resource-profile> ingress-internal-team> qos-sap-ingress-resource>
mac-match-enable 1", to configure one chunk for use by mac-criteria (allowing a total of 512 entries for use by policies using mac-criteria). In this case, the user can have 10 SAPs using mac-criteria SAP ingress policy and consumes 500 entries.

- **ipv4-criteria (any)** - The usage is same as the mac-criteria. Resources need to be allocated using the command "configure> system> resource-profile> ingress-internal-tcam> qos-sap-ingress-resource> ipv4-match-enable". Additionally,IPv4 criteria can share the entries allocated for IPv6 criteria. The software automatically allocates entries from an IPv6 criteria slice to IPv4 criteria policies, if there are no entries available in the allocated IPv4 criteria chunks and there are no chunks available for allocation to IPv4 criteria from the SAP ingress QoS resource pool. The number of hardware entries taken up by an IPv4 criteria entry when using the IPv6 criteria chunks is the same as required by an entry using IPv6 criteria (see below for details).

- **ipv6-criteria (any)** - User needs to allocate resources from the SAP ingress QoS resource pool for ipv6-criteria by using the command "configure> system> resource-profile> ingress-internal-tcam> qos-sap-ingress-resource> ipv6-ipv4-match-enable" before using IPv6 criteria and num-qos-classifiers must specify the ipv6 keyword. Every ipv4 criteria match entry or ipv6 criteria match entry configured in the QoS policy using ipv6-criteria uses two (2) entries from the chunks allocated for use by ipv6-criteria (128-bit) in the hardware. Software allocates entries from the ipv6-criteria pool if the SAP ingress QoS policy uses both ipv6-criteria entries and ipv4-criteria (any or IPv4 DSCP) entries or if the SAP ingress QoS policy uses only IPv6 criteria any or if the SAP ingress QoS policy uses ipv4 criteria any and there are no resources available in the IPv4 criteria (as explained above).

For example: Assume a QoS policy is configured to use ipv6-criteria with 50 entries and using “configure>system> resource-profile> ingress-internal-tcam> qos-sap-ingress-resource> ipv4-ipv6-128-match-enable 1", user configures one chunk for use by ipv6-criteria. This allows for a total of 256 entries for use by SAPs using SAP ingress QoS policies with ipv6-criteria (as each IPv6 entry uses 2 entries in hardware). In this example, user can have five (5) SAPs using this policy and consuming 250 entries in total. These resources can be shared with policies that use IPv4 criteria, though it consumes 2 entries in hardware consumed per IPv4 criteria entry. It allows user to make use of spare IPv6 resources for IPv4 criteria policies, though if user plans to have a larger number of IPv4 criteria policies they are better off allocating more resources for use with IPv4 criteria.

Note when a chunk is allocated to IPv6 criteria, software automatically adjusts the number of available entries in that chunk to 256, instead of 512, since 2 entries are needed to match IPv6 fields. The number of meters available does not reduce though and 256 meters are available for use.

- **dot1p-only, IPv4 dscp-only, IPv6 dscp-only and Default SAP Ingress QoS policies** - User can use the option 'dot1p-only' or dscp-only', if they plan to use only Dot1p bits or only DSCP bits for SAP ingress classification. This typically allows for efficient use of available hardware resources and better scaling. SAP ingress policies that use only Dot1p
bits or only IPv4/IPv6 DSCP and Default SAP ingress QoS policies can use the resources from chunks currently allocated for use by either IP-criteria or MAC-criteria or IPv6 criteria. There are some special cases noted below for allocation of resources for default, dot1p-only and dscp-only SAP ingress policies:

→ If there are no chunks available for accommodating a SAP that is associated with default or dot1p-only or a dscp-only SAP ingress policy, the software allocates resources against mac-criteria if the SAP is configured in a VLL or VPLS service. The software uses the required number of entries for this policy. The remaining entries is available for SAPs that use mac-criteria or that use only dot1p or only ipv4/ipv6 DSCP or that use default policy.

→ If there are no chunks available for accommodating a SAP that is associated with default, dot1p-only or a dscp-only SAP ingress policy, the software allocates resources against ipv4-criteria if the SAP is configured in an IES or a VPRN service. The software uses the required number of entries for this policy. The remaining entries is available for SAPs that use ipv4-criteria or that use only ipv4/ipv6 DSCP or only dot1p criteria or that use default policy.

The SAP ingress resource chunks referred to in this section is different from the resources specified using the command 'num-qos-classifiers'. num-qos-classifiers set the limit on the resources needed per SAP ingress QoS policy. The above resources set the maximum limit on the resources available for use by all the SAP ingress policies in use simultaneously on the system.

The software manages the resource chunks allocated to SAP ingress QoS policy pool and allocates the entries in the chunks when a SAP ingress QoS policy is associated with a SAP. In other words, a SAP specifies the amount of QoS resources it needs, using the 'num-qos-resources' CLI command (in the SAP ingress policy) and the software allocates the resources required by a SAP from the chunks depending on whether the SAP ingress policy uses ip-criteria or mac-criteria or ipv6-criteria.

The users can use “tools> dump> system-resources” command to know the current usage and availability. One or more entries per chunk are reserved for system use.

For 7210 SAS-X, each chunk allows for 256 classification entries and 128 meters.

**Computation of resources used per SAP ingress policy**

The user is allowed to configure the number of classification entries the SAP requires (for example: TQ).

Number of meters allocated automatically by system = TQ / 2 (up to a maximum of 32 meters).

To calculate the number of SAPs allowed, assume all configured to use ‘TQ’ QoS resources per SAP.
Number of SAPs allowed = maximum classification entries / TQ.

NOTE: The number of SAPs arrived at using the equation above is subject to system limits. The above equation is used to derive the limit on the number of SAPs due to QoS resources only.

The user is allowed to mix and match SAPs with different QoS resources (that is, using different values of TQ).

The following determines the number of QoS resources to be allocated for an SAP:

- Number of match-criteria entries used to identify the FC.
- Number of FCs to use and number of traffic-types to be policed per FC.
- The amount of hardware classification resources needed per entry configured by the user (refer to the section "Resource Allocation for Service Ingress QoS policies on page 192" to know about resources needed per match entry. It varies based on different match criteria in use).

Only those FCs that are in use by the match-criteria classification entries are considered for the number of FCs. Therefore, these FCs are referred to as ‘FC in use’.

Given the number of traffic types to use per 'FC in use', the following rules apply for a SAP in a VPLS service to arrive at number of classification entries per FC in use:

- If a FC is in use and is created without explicit meters, use default meter #1 for unicast traffic and for all other traffic types (that is, broadcast, multicast and unknown-unicast). This requires one classification entry in hardware. This assumes default multipoint meter #11 is not created by the user.
- If a FC is in use and is created without explicit meters, use default meter #1 for unicast traffic and default meter #11 (assuming meter “11” is created by the user), for all other traffic types (that is, broadcast, multicast and unknown-unicast). This requires two classification entries in hardware.
- If a FC is in use and is created with an explicit unicast meter, use that meter for unicast traffic and for all other traffic types (that is, broadcast, multicast and unknown-unicast). This requires one classification entries in hardware. This assumes default multipoint meter “11” is not created by the user.
- If a FC is in use and is created with an explicit unicast meter and explicit broadcast meter, use these meters for unicast and broadcast traffic respectively and use the unicast meter for all other traffic types (that is, multicast and unknown-unicast). This requires two classification entries in hardware. This assumes that the default multipoint meter #11 is not created by the user.
• If a FC is in use and is created with an explicit unicast meter and explicit broadcast meter, use these meters for unicast and broadcast traffic respectively and use meter #11 (assuming meter 11 is created by the user) for all other traffic types. This requires three classification entries in hardware.

• If a FC is in use and is created with an explicit unicast meter and explicit multicast meter, use the unicast meter for unicast traffic and multicast meter for all other kinds of traffic. This requires two classification entries in hardware.

• If a FC is in use and is created with an explicit unicast meter, an explicit broadcast meter, and an explicit multicast meter, use these meters for unicast, broadcast and multicast traffic types respectively. Unknown unicast traffic type will use the explicitly defined multicast meter. This requires three classification entries in hardware.

For calculating the number of classification entries per FC for a SAP in a VLL or vprn service, the following rules apply:

• Multipoint meters cannot be used. Multipoint meter configured in a policy is not used when the policy is applied to a SAP in an Epipe service.

• All FCs in use and associated with a meter always use the unicast meter. Therefore, all FCs in use utilize only one classification entry in the hardware.

Apply the rules to determine the number of classification entries per FC (only for the FCs in use) using the following equation:

\[ C(i) = \sum_{i=nc,h1,ef,h2,l1,af,l2,be} FC_i(\text{unicast}) + FC_i(\text{multicast}) + FC_i(\text{broadcast}) + FC_i(\text{unknown\_unicast}) \]

where \( FC_i(\text{unicast}) \), \( FC_i(\text{multicast}) \), \( FC_i(\text{broadcast}) \), and \( FC_i(\text{unknown\_unicast}) \) are set to a value of 1 if this FC uses classifier to identify traffic-type unicast, multicast, broadcast and unknown-unicast respectively. \( FC_i(\text{unicast}) \), \( FC_i(\text{multicast}) \), \( FC_i(\text{broadcast}) \), and \( FC_i(\text{unknown\_unicast}) \) are set to a value of 0 if this FC does not use a classifier to identify this traffic-type.

If the user does not configure meters explicitly for the FC and meter “11” is not created, the default unicast meter is used for all traffic types and therefore, only one classification entry in hardware is required by the FC. If the user does not configure meters explicitly for the FC and meter “11” is created, the default unicast meter and multicast meter are used. Therefore by default, two classification entries in hardware are required by a FC.

Taking into account the number of match criteria and the number of FCs used, use the equation given below to arrive at total number of classification entries per policy, for example:

\[ TC = \sum_{i=nc,h1,ef,h2,l1,af,l2,be} E(i) \times C(i) \]
where:

- \( E(i) \) is the number of match-criteria entries that classify packets to FCi. For 7210 platforms, the maximum number of classification entries per policy can be 64 (including default).
- \( C(i) \) is the number of classification entries that are required by FCi to identify different traffic types.

Determine the number of policers or meters to use (for example TP). A maximum of 32 meters per policy are available.

Only those meters associated with FCs are considered for number of meters. Note that only 'FCs in use' is considered.

Total QoS resources required (for example TQ) = \( \max ( (TC), (2 \times TP) ) \).

The number obtained is rounded off to next multiple of “2” greater than TQ obtained above.

The user configures value TQ using CLI command **num-qos-classifiers**.
Basic Configurations

A basic service ingress QoS policy must conform to the following:

- Have a unique service ingress QoS policy ID.
- Allocates number of classifier and meter resources needed for use
- Have a QoS policy scope of template or exclusive.
- Have at least one default unicast forwarding class.
- Use of multipoint forwarding class meter is optional.

Create Service Ingress QoS Policies

Configuring and applying QoS policies is optional. If no QoS policy is explicitly applied to a SAP, a default QoS policy is applied.

- Service Ingress QoS Policy on page 199
Service Ingress QoS Policy

To create an service ingress policy, define the following:

- A policy ID value. The system will not dynamically assign a value.
- Include a description. The description provides a brief overview of policy features.
- Specify `num-qos-classifiers` parameter. The default value is 2.
- Specify a default forwarding class for the policy. All packets received on an ingress SAP using this ingress QoS policy will be classified to the default forwarding class.
- Define forwarding class parameters.
  - Modify the unicast-meter default value to override the default unicast forwarding type meter mapping for `fc fc-name`.
  - Modify the `multicast-meter` default value to override the default multicast forwarding type meters mapping for `fc fc-name`.
  - Modify the `unknown-meter` default value to override the default unknown unicast forwarding type `meter` mapping for `fc fc-name`.
  - Modify the `broadcast-meter` default value to override the default broadcast forwarding type `meter` mapping for `fc fc-name`.
- Specify IPv4/IPv6 or MAC criteria. You can define IPv4/IPv6 and MAC-based SAP ingress policies to select the appropriate ingress and corresponding forwarding class for matched traffic.
- A SAP ingress policy is created with a temp late scope. The scope can be modified to exclusive for a special one-time use policy. Otherwise, the `template` scope enables the policy to be applied to multiple SAPs.

The following displays an service ingress policy configuration:

```bash
A:ALA-7>config>qos>sap-ingress# info
..
....
 sap-ingress 100 create
 description "Used on VPN sap"
....
..
A:ALA-7>config>qos>sap-ingress#
```
Service Ingress QoS Meter

To create service ingress meter parameters, define the following:

- A new meter ID value — The system will not dynamically assign a value.
- Meter parameters — Ingress meters support the definition of either srTCM (Single Rate Tri-Color Meter) or trTCM (Two Rate Tri-Color Meter), CIR/PIR, CBS/MBS parameters.

The following displays an ingress meter configuration:

```
A:ALA-7>config>qos# info
#--
echo "QoS Policy Configuration"
#--
...
sap-ingress 100 create
description "Used on VPN sap"
meter 1 create
 exit
 meter 11 multipoint create
 exit
 meter 2 create
 rate cir 11000
 exit
 meter 3 create
 cbs 32
 rate 11000
 exit
 meter 4 create
 rate 1
 exit
 meter 5 create
 cbs 64
 mbs 128
 rate cir 1500 pir 1500
 exit
 meter 6 create
 mode srTCM
 rate cir 2500 pir 2500
 exit
 meter 7 create
 cbs 256
 mbs 512
 rate cir 100 pir 36
 exit
 meter 8 create
 cbs 256
 mbs 512
 rate cir 11000
 exit
 meter 9 create
 rate cir 11000
 exit
 meter 10 create
 rate cir 1
```
exit
meter 12 create	rate cir 1500 pir 1500
ext
meter 13 create	rate cir 2500 pir 2500
ext
meter 14 create	rate cir 36 pir 100
ext
meter 15 create	rate cir 36 pir 100
ext
meter 16 create
cbs 128
mbs 256
rate cir 36 pir 100
exit
...
SAP Ingress Forwarding Class (FC)

The following displays a forwarding class and precedence configurations:

A:ALA-7>config>qos# info
#------------------------------------------
...  
  fc af create  
     meter 1  
     broadcast-meter 7  
     unknown-meter 8  
  exit  
  fc be create  
     meter 2  
     unknown-meter 9  
  exit  
  fc ef create  
     meter 3  
     broadcast-meter 10  
  exit  
  fc h1 create  
     meter 4  
     multicast-meter 12  
  exit  
  fc h2 create  
     meter 5  
     broadcast-meter 13  
     multicast-meter 14  
     unknown-meter 15  
  exit  
  fc nc create  
     meter 6  
     broadcast-meter 16  
     multicast-meter 10  
     unknown-meter 11  
  exit  
...  
#------------------------------------------
Service Ingress IP Match Criteria

When specifying SAP ingress match criteria, only one match criteria type can be configured in the SAP ingress QoS policy.

The following displays an ingress IP criteria configuration:

```
7210-SAS>config>qos>sap-ingress# info

 num-qos-classifiers 32
 meter 1 create
 exit
 meter 11 multipoint create
 exit
 fc "h2" create
 exit
 ip-criteria any
 entry 16 create
 description "test"
 match
 exit
 action fc "be"
 exit
 exit

7210-SAS>config>qos>sap-ingress#
```
Service Ingress MAC Match Criteria

Both IP criteria and MAC criteria cannot be configured in the same SAP ingress QoS policy.

To configure service ingress policy MAC criteria, define the following:

- A new entry ID value. Entries must be explicitly created. The system will not dynamically assign entries or a value.
- The action to associate the forwarding class with a specific MAC criteria entry ID.
- A description. The description provides a brief overview of policy features.

The following displays an ingress MAC criteria configuration:

```
7210-SAS>config>qos>sap-ingress# info
--
description "test"
num-qos-classifiers 16
meter 1 create
exit
meter 11 multipoint create
exit
mac-criteria dot1p-only
 entry 25 create
 match
 exit
 no action
 exit
 exit
 default-fc "h1"
--
7210-SAS>config>qos>sap-ingress#
```
Service Ingress QoS Policies Resource Usage Examples

The resource calculation shown for VLL is also applicable for VPRN services.

Example 1

sap-ingress 10 create
  description="example-policy-1"
  num-qos-classifiers 8
  meter 1 create
    rate cir 0 pir max
    exit
  meter 11 multipoint create
    rate cir 0 pir max
    exit
  meter 3 create
    rate cir100 pir 100
    exit
  scope template
  default-fc be
  fc  be create
    meter3
    exit
  fc  af create
    meter1
    exit
  fc  ll create
    meter 3
    exit
  fc  h2 create
    meter3
    exit
  mac-criteria dot1p-only
  entry 1 create
    match dot1p 7
    action fc af
    exit
  entry 2 create
    match dot1p 5
    action fc ll
    exit
  entry 3 create
    match dot1p 6
    action fc h2
    exit
  exit
  exit

In the example above, assuming the policy is attached to a SAP in a VPLS service, compute the number of classification entries per FC as follows:

FCnc = 0 + 0 + 0 + 0 = 0
FCh1 = 0 + 0 + 0 + 0 = 0
FCef = 0 + 0 + 0 + 0 = 0
FCh2 = 1 + 0 + 1 + 0 = 2
Since this FC uses unicast meter, need an entry to identify this traffic type explicitly. Another entry is needed to classify broadcast, multicast and unknown-unicast traffic type to the same FC and use the default meter #11.

\[
\begin{align*}
FCl1 &= 1 + 0 + 1 + 0 = 2 \\
FCaf &= 1 + 0 + 1 + 0 = 2 \\
FCl2 &= 0 + 0 + 0 + 0 = 0 \\
FCbe &= 1 + 0 + 1 + 0 = 2 \\
\end{align*}
\]

Using the equation, calculate the total classification entries used by this policy, as follows:

\[
TC = (0 * 0)nc + (0 * 0)h1 + (0 * 0)ef + (1 * 2)h2 + (1 * 2)l1 + (1 * 2)af + (0 * 0)l2 + (1 * 2)be = 8 \text{ (since three explicit match criteria entries are used to map traffic to each of FC H2, FC L1, and FC AF along with a default classification entry for FC BE).}
\]

The total number of meters used = 3 (since FCs use meter #1, meter #3 and meter #11).

Hence, in this example, **num-qos-classifiers 8** is used (maximum of (8, (2 * 3))).

If the same policy were to be used for a SAP in an Epipe service, then since all traffic is classified to a unicast traffic type and since only unicast meters are used, the following:

\[
\begin{align*}
FCnc &= 0 + 0 + 0 + 0 = 0 \\
FCh1 &= 0 + 0 + 0 + 0 = 0 \\
FCef &= 0 + 0 + 0 + 0 = 0 \\
FCh2 &= 1 + 0 + 0 + 0 = 1 \\
FCl1 &= 1 + 0 + 0 + 0 = 1 \\
FCaf &= 1 + 0 + 0 + 0 = 1 \\
FCl2 &= 0 + 0 + 0 + 0 = 0 \\
FCbe &= 1 + 0 + 0 + 0 = 1 \\
\end{align*}
\]

Using the above equation, total classification entries used = 4 and meters used = 2.

As can be seen here, using the same policy for Epipe SAP can lead to inefficient use of resources. Hence, it is recommended to create a different policy with the required number of resources (that is, with **num-qos-classifiers 4**)

**Example 1a (Default multipoint meter 11 is not used):**

```
sap-ingress 10 create
description "example-policy"
num-qos-classifiers 4

meter 1 create
 rate cir 0 pir max
exit
meter 3 create
 rate cir 100 pir 100
exit

scope template

default-fc be
```
In the example above, assuming the policy is attached to a SAP in a VPLS service, compute the number of classification entries per FC as follows:

\[
\begin{align*}
\text{FCnc} &= 0 + 0 + 0 + 0 = 0 \\
\text{FCh1} &= 0 + 0 + 0 + 0 = 0 \\
\text{FCef} &= 0 + 0 + 0 + 0 = 0 \\
\text{FCh2} &= 1 + 0 + 0 + 0 = 1 \\
\end{align*}
\]

Since this FC uses unicast meter for all traffic types, we need an entry to classify all traffic types to this FC explicitly.

\[
\begin{align*}
\text{FCl1} &= 1 + 0 + 0 + 0 = 1 \\
\text{FCaf} &= 1 + 0 + 0 + 0 = 1 \\
\text{FCl2} &= 0 + 0 + 0 + 0 = 0 \\
\text{FCbe} &= 1 + 0 + 0 + 0 = 1 \\
\end{align*}
\]

Using the equation, calculate the total classification entries used by this policy, as follows:

\[
\text{TC} = (0 \cdot 0)\text{nc} + (0 \cdot 0)\text{h1} + (0 \cdot 0)\text{ef} + (1 \cdot 1)\text{h2} + (1 \cdot 1)\text{l1} + (1 \cdot 1)\text{af} + (0 \cdot 0)\text{l2} + (1 \cdot 1)\text{be} = 4
\]

(since three explicit match criteria entries are used to map traffic to each of FC H2, FC L1, and FC AF along with a default classification entry for FC BE).

The total number of meters used = 2 (since FCs use meter #1 and meter #3).

Hence, in this example, num-qos-classifiers 4 is used (maximum of (4, (2 \cdot 2))). Hence, use of unicast meter for all traffic-types allows for use QoS resources efficiently.
If the same policy were to be used for a SAP in an Epipe service, then since all traffic is classified to a unicast traffic type and since only unicast meters are used, the following:

FCnc = 0 + 0 + 0 + 0 = 0
FCh1 = 0 + 0 + 0 + 0 = 0
FCEF = 0 + 0 + 0 + 0 = 0
FCh2 = 1 + 0 + 0 + 0 = 1
FCl1 = 1 + 0 + 0 + 0 = 1
FCaf = 1 + 0 + 0 + 0 = 1
FCl2 = 0 + 0 + 0 + 0 = 0
FCbe = 1 + 0 + 0 + 0 = 1

Using the above equation, total classification entries used = 4 and meters used = 2.

As can be seen here, using the same policy for Epipe SAP can lead to inefficient use of resources. Hence, it is recommended to create a different policy with the required number of resources (that is, with num-qos-classifiers 4).
Example 2

```bash
sap-ingress 10 create
description="example-policy-1"
num-qos-classifiers16
meter 1 create
 rate cir 0 pir max
 exit
meter 11 multipoint create
 rate cir 0 pir max
 exit
meter 3 create
 rate cir100 pir 100
 exit
meter 2 create
 rate cir 1 pir 20
 exit
scope template
default-fc be
fc be create
 meter 3
 broadcast-meter 2
 exit
fc af create
 meter 3
 broadcast-meter 2
 exit
fc l1 create
 meter 3
 broadcast-meter 2
 exit
fc h2 create
 meter 3
 broadcast-meter 2
 exit
mac-criteria dot1p-only
 entry 1 create
 match dot1p 7
 action fc af
 exit
 entry 2 create
 match dot1p 5
 action fc l1
 exit
 entry 3 create
 match dot1p 6
 action fc h2
 exit
 exit
 exit
``` 

In the example above, assuming the policy is attached to a SAP in a VPLS service, classification entries used per FC as:

- **FCnc** = 0 + 0 + 0 + 0 = 0
- **FCh1** = 0 + 0 + 0 + 0 = 0
- **FCef** = 0 + 0 + 0 + 0 = 0
FCh2 = 1 + 1 + 1 + 0 = 3

Since this FC uses unicast meter and broadcast meter, two entries are needed to identify these traffic types explicitly. Another entry is needed to classify multicast and unknown-unicast traffic type to the same FC and use the default meter #11.

FC11 = 1 + 1 + 1 + 0 = 3
FCaf = 1 + 1 + 1 + 0 = 3
FC12 = 0 + 0 + 0 + 0 = 0
FCbe = 1 + 1 + 1 + 0 = 3

Using the above equation, to get the total classification entries used = 12 (since three explicit match criteria entries map to each of FC H2, L1, and AF along with a default classification rule for BE).

The number of meters used = 3 (since FCs use only meter #2, meter #3 and meter #11).

Hence, in this example num-qos-classifiers 16 is used (i.e. maximum of (12, (2*3))).

If the same policy were to be used for a SAP in an Epipe service, then since all traffic is classified to a unicast traffic type and since only unicast meters are used, the following:

FCnc = 0 + 0 + 0 + 0 = 0
FCh1 = 0 + 0 + 0 + 0 = 0
FCef = 0 + 0 + 0 + 0 = 0
FCh2 = 1 + 0 + 0 + 0 = 1
FC11 = 1 + 0 + 0 + 0 = 1
FCaf = 1 + 0 + 0 + 0 = 1
FC12 = 0 + 0 + 0 + 0 = 0
FCbe = 1 + 0 + 0 + 0 = 1

Using the above equation, to get total classification entries used = 4 and Meters used = 1.

As can be seen here, using the same policy for Epipe SAP can lead to inefficient use of resources. Hence, it is recommended to create a different policy with the required number of resources (i.e. with num-qos-classifiers 4)

Example 2a (Default multipoint meter "11" is not used):

```bash
sap-ingress 10 create
description "example-policy-1"
num-qos-classifiers 8

meter 1 create
 rate cir 0 pir max
exit
meter 3 create
 rate cir 100 pir 100
exit
meter 2 create
 rate cir 1 pir 20
exit
scope template
default-fc be
```
In the example above, assuming the policy is attached to a SAP in a VPLS service, classification entries used per FC as:

\[

c_{nc} = 0 + 0 + 0 + 0 = 0 \\
c_{h1} = 0 + 0 + 0 + 0 = 0 \\
c_{ef} = 0 + 0 + 0 + 0 = 0 \\
c_{h2} = 1 + 0 + 1 + 0 = 2
\]

Since this FC uses unicast meter for unicast, multicast, unknown-unicast traffic and broadcast meter for broadcast traffic, hence two entries are needed.

\[

c_{l1} = 1 + 0 + 1 + 0 = 2 \\
c_{af} = 1 + 0 + 1 + 0 = 2 \\
c_{l2} = 0 + 0 + 0 + 0 = 0 \\
c_{be} = 1 + 0 + 1 + 0 = 2
\]

Using the above equation, to get the total classification entries used = 8 (since three explicit match criteria entries map to each of FC H2, L1, and AF along with a default classification rule for BE).

The number of meters used = 2 (since FCs use only meter #2 and meter #3).

Hence, in this example num-qos-classifiers 8 is used (that is, maximum of (8, (2*2))).
If the same policy were to be used for a SAP in an Epipe service, then since all traffic is classified to a unicast traffic type and since only unicast meters are used, the following:

\[
\begin{align*}
FCnc &= 0 + 0 + 0 + 0 = 0 \\
FCli &= 0 + 0 + 0 + 0 = 0 \\
FCh2 &= 1 + 0 + 0 + 0 = 1 \\
FCli &= 1 + 0 + 0 + 0 = 1 \\
FCaf &= 1 + 0 + 0 + 0 = 1 \\
FBcl &= 0 + 0 + 0 + 0 = 0 \\
FCh2 &= 1 + 0 + 0 + 0 = 1 \\
FCal &= 1 + 0 + 0 + 0 = 1 \\
FCbe &= 1 + 0 + 0 + 0 = 1
\end{align*}
\]

Using the above equation, to get total classification entries used = 4 and Meters used = 1. As can be seen here, using the same policy for Epipe SAP can lead to inefficient use of resources. Hence, it is recommended to create a different policy with the required number of resources (that is, with num-qos-classifiers 4).

**Example 3**

```
sap-ingress 10 create
description="example-policy-2"
num-qos-classifiers 16
meter 1 create
 rate cir 100 pir 100
exit
meter11 multipoint create
 rate cir 1 pir 20
exit
meter 3 create
 rate cir 100 pir 100
exit
meter 2 create
 rate cir 1 pir 20
exit
meter 4 create
 rate cir 10 pir 100
exit
meter 5 create
 rate cir 10 pir 10
exit
scope template
default-fc be
fc af create
 meter 3
 broadcast-meter 2
 multicast-meter 4
exit
fc li create
 meter 3
 broadcast-meter 2
exit
fc h2 create
 meter 3
```
broadcast-meter 2
exit
fc h1 create
    meter 5
    broadcast-meter 4
    multicast-meter 4
    unknown-meter 4
exit
mac-criteria dot1p-only
    entry 1 create
    match dot1p7
    action fc af
    exit
    entry 2 create
    match dot1p 5
    action fc l1
    exit
    entry 3 create
    match dot1p6
    action fc h2
    exit
    entry 4 create
    match dot1p 3
    action fc h1
    exit
exit
exit
exit

In the example above, assuming the policy is attached to a SAP in a VPLS service, the classification entries used per FC are:

FCnc = 0 + 0 + 0 + 0 = 0
FCh1 = 1 + 1 + 1 + 1 = 4

Since this FC uses unicast, broadcast, multicast and unknown-unicast meter, four entries are needed to identify these traffic types explicitly.

FCEF = 0 + 0 + 0 + 0 = 0
FCh2 = 1 + 1 + 1 + 0 = 3

Since this FC uses unicast meter and broadcast meter, two entries are needed to identify these traffic types explicitly. Another entry if needed to classify multicast and unknown-unicast traffic type to the same FC and use the default meter #11.

FC11 = 1 + 1 + 1 + 0 = 3

Since this FC uses only unicast meter, an entry is needed to identify this traffic type explicitly. Another entry is needed to classify broadcast, multicast and unknown-unicast traffic type to the same FC and use the default meter #11.

FCaf = 1 + 1 + 1 + 0 = 3
Since this FC uses unicast, broadcast and multicast meter, three entries are needed to identify these traffic types explicitly. Unknown-unicast traffic type is classified using the same entry as multicast traffic type and uses the same meter.

\[ FC_{12} = 0 + 0 + 0 + 0 = 0 \]
\[ FC_{be} = 1 + 0 + 1 + 0 = 2 \]

Using the above equation, the total classification entries used = 15 and meters used = 6.

If the same policy were to be used for a SAP in an Epipe service, then since all traffic is classified to a unicast traffic type and since only unicast meters are used, the following results:

\[ FC_{nc} = 0 + 0 + 0 + 0 = 0 \]
\[ FC_{h1} = 1 + 0 + 0 + 0 = 1 \]
\[ FC_{ef} = 0 + 0 + 0 + 0 = 0 \]
\[ FC_{h2} = 1 + 0 + 0 + 0 = 1 \]
\[ FC_{l1} = 1 + 0 + 0 + 0 = 1 \]
\[ FC_{af} = 1 + 0 + 0 + 0 = 1 \]
\[ FC_{be} = 1 + 0 + 0 + 0 = 1 \]

Using the above equation, the total classification entries used = 5 and meters used = 3 (since all FCs used only meter #1, meter #3 and meter #5).

**Example 3a (Default multipoint meter "11" is not used):**

```plaintext
sap-ingress 10 create
description "example-policy-2"
num-qos-classifiers 12
meter 1 create
 rate cir 100 pir 100
exit
meter 3 create
 rate cir 100 pir 100
exit
meter 2 create
 rate cir 1 pir 20
exit
meter 4 create
 rate cir 10 pir 100
exit
meter 5 create
 rate cir 10 pir 10
exit
scope template
default-fc be
cf af create
 meter 3
 broadcast-meter 2
 multicast-meter 4
exit
cf h1 create
 meter 3
 broadcast-meter 2
exit
cf h2 create
```
basic configurations

In the example above, assuming the policy is attached to a SAP in a VPLS service, the classification entries used per FC are:

FCnc = 0 + 0 + 0 + 0 = 0
FCch1 = 1 + 1 + 1 + 1 = 4

Since this FC uses unicast, broadcast, multicast and unknown-unicast meter, four entries are needed to identify these traffic types explicitly.

FCef = 0 + 0 + 0 + 0 = 0
FCch2 = 1 + 0 + 1 + 0 = 2

Since this FC uses unicast meter and broadcast meter, two entries are needed to identify these traffic types explicitly. multicast and unknown-unicast traffic use the same resource as the unicast traffic.

FCli = 1 + 0 + 1 + 0 = 2

Since this FC uses unicast meter and broadcast meter, two entries are needed to identify these traffic types explicitly. multicast and unknown-unicast traffic use the same resource as the unicast traffic.

FCaf = 1 + 1 + 1 + 0 = 3
Since this FC uses unicast, broadcast and multicast meter, three entries are needed to identify these traffic types explicitly. Unknown-unicast traffic type is classified using the same entry as multicast traffic type and uses the same meter.

\[
\begin{align*}
FCl2 &= 0 + 0 + 0 + 0 = 0 \\
FChb &= 1 + 0 + 0 + 0 = 1
\end{align*}
\]

Since no explicit meters are configured for FC be, it uses meter 1 for all traffic types and needs one entry is needed to identify these traffic types.

Using the above equation, the total classification entries used = 12 and meters used = 5. The num-qos-classifiers can be set to 12 (the minimum value).

If the same policy were to be used for a SAP in an Epipe service, then since all traffic is classified to a unicast traffic type and since only unicast meters are used, the following results:

\[
\begin{align*}
FChc &= 0 + 0 + 0 + 0 = 0 \\
FCh1 &= 1 + 0 + 0 + 0 = 1 \\
FCh2 &= 1 + 0 + 0 + 0 = 1 \\
FCl1 &= 1 + 0 + 0 + 0 = 1 \\
FChaf &= 1 + 0 + 0 + 0 = 1 \\
FCl2 &= 0 + 0 + 0 + 0 = 0 \\
FChbe &= 1 + 0 + 0 + 0 = 1
\end{align*}
\]

Using the above equation, the total classification entries used = 5 and meters used = 3 (since all FCs used only meter #1, meter #3 and meter #5). For epipe service a policy with num-qos-resources set to 6 can be used.
Example 4

```
sap-ingress 10 create
description="example-policy-3"
num-qos-classifiers 32
meter 1 create
 rate cir 100 pir 100
exit
meter 11 multipoint create
 rate cir 1 pir 20
exit
meter 3 create
 rate cir 100 pir 100
exit
meter 2 create
 rate cir 1 pir 20
exit
meter 4 create
 rate cir 10 pir 100
exit
meter 5 create
 rate cir 10 pir 10
exit
meter 6 create
 rate cir 11 pir 100
exit
meter 8 create
 rate cir 20 pir 100
exit
scope template
default-fc be
fc af create
 meter 3
 broadcast-meter 2
 multicast-meter 4
exit
fc l1 create
 meter 3
 broadcast-meter 2
exit
fc h2 create
 meter 3
 broadcast-meter 2
exit
fc h1 create
 meter 5
 broadcast-meter 4
 multicast-meter 4
 unknown-meter 4
exit
fc ef create
 meter 6
 broadcast-meter 2
 multicast-meter 8
exit
fc nc create
 meter 6
 broadcast-meter 2
```
multicast-meter 8
exit
mac-criteria dot1p-only
entry 1 create
  match dot1p 4
  action fc af
exit
entry 2 create
  match dot1p 5
  action fc ll
exit
entry 3 create
  match dot1p 6
  action fc h2
exit
entry 4 create
  match dot1p 3
  action fc h1
exit
entry 5 create
  match dot1p 2
  action fc ef
exit
entry 6 create
  match dot1p 7
  action fc nc
exit
exit
exit

In the example above, assuming the policy is attached to a SAP in a VPLS service, compute the classification entries per FC as:

\[ FC_{nc} = 1 + 1 + 1 + 0 = 3 \]

Since this FC uses unicast, broadcast and multicast meter, three entries are needed to identify these traffic types explicitly. Unknown-unicast traffic type is classified using the same entry as multicast traffic type and uses the same meter.

\[ FC_{h1} = 1 + 1 + 1 + 1 = 4 \]

Since this FC uses unicast, broadcast, multicast and unknown-unicast meter, four entries are needed to identify these traffic types explicitly.

\[ FC_{ef} = 1 + 1 + 1 + 0 = 3 \]

Since this FC uses unicast, broadcast and multicast meter, three entries are needed to identify these traffic types explicitly. Unknown-unicast traffic type is classified using the same entry as multicast traffic type and uses the same meter.

\[ FC_{h2} = 1 + 1 + 1 + 0 = 3 \]
Basic Configurations

Since this FC uses unicast meter and broadcast meter, two entries are needed to identify these traffic types explicitly. Another entry is needed to classify multicast and unknown-unicast traffic type to the same FC and use the default meter #11.

\[ FC_{11} = 1 + 1 + 1 + 0 = 3 \]
\[ FC_{af} = 1 + 1 + 1 + 0 = 3 \]

Since this FC uses unicast, broadcast and multicast meter, three entries are needed to identify these traffic types explicitly. Unknown-unicast traffic type is classified using the same entry as multicast traffic type and uses the same meter.

\[ FC_{12} = 0 + 0 + 0 + 0 = 0 \]
\[ FC_{be} = 1 + 0 + 1 + 0 = 2 \]

Using the above equation, the total classification entries used = 21 and meters used = 8.

If the same policy were to be used for a SAP in an Epipe service, then since all traffic is classified to a unicast traffic type and since only unicast meters are used, the following:

\[ FC_{nc} = 1 + 0 + 0 + 0 = 1 \]
\[ FC_{h1} = 1 + 0 + 0 + 0 = 1 \]
\[ FC_{ef} = 1 + 0 + 0 + 0 = 1 \]
\[ FC_{h2} = 1 + 0 + 0 + 0 = 1 \]
\[ FC_{l1} = 1 + 0 + 0 + 0 = 1 \]
\[ FC_{af} = 1 + 0 + 0 + 0 = 1 \]
\[ FC_{l2} = 0 + 0 + 0 + 0 = 0 \]
\[ FC_{be} = 1 + 0 + 0 + 0 = 1 \]

Using the above equation, the total classification entries used = 7 and meters used = 4.

As can be seen here, using the same policy for Epipe SAP can lead to inefficient use of resources. Hence, it is recommended to create a different policy with the required number of resources (i.e. with `num-qos-classifiers 8`)

**Example 4a (Default multipoint meter "11" is not used):**

```bash
sap-ingress 10 create
description "example-policy-3"
num-qos-classifiers 20
meter 1 create
 rate cir 100 pir 100
exit
meter 3 create
 rate cir 100 pir 100
exit
meter 2 create
 rate cir 1 pir 20
exit
meter 4 create
 rate cir 10 pir 100
exit
meter 5 create
 rate cir 10 pir 10
exit
```
meter 6 create  
    rate cir 11 pir 100  
exit
meter 8 create  
    rate cir 20 pir 100  
exit

scope template

default-fc be  
fc af create  
    meter 3  
    broadcast-meter 2  
    multicast-meter 4  
exit
fc l1 create  
    meter 3  
    broadcast-meter 2  
exit
fc h2 create  
    meter 3  
    broadcast-meter 2  
exit
fc h1 create  
    meter 5  
    broadcast-meter 4  
    multicast-meter 4  
    unknown-meter 4  
exit
fc ef create  
    meter 6  
    broadcast-meter 2  
    multicast-meter 8  
exit
fc nc create  
    meter 6  
    broadcast-meter 2  
    multicast-meter 8  
exit
mac-criteria dot1p-only  
entry 1 create  
    match dot1p 4  
    action fc af  
exit
entry 2 create  
    match dot1p 5  
    action fc l1  
exit
entry 3 create  
    match dot1p 6  
    action fc h2  
exit
entry 4 create  
    match dot1p 3  
    action fc h1  
exit
entry 5 create  
    match dot1p 2  
    action fc ef
In the example above, assuming the policy is attached to a SAP in a VPLS service, compute the classification entries per FC as:

FCnc = 1 + 1 + 1 + 0 = 3

Since this FC uses unicast, broadcast and multicast meter, three entries are needed to identify these traffic types explicitly. Unknown-unicast traffic type is classified using the same entry as multicast traffic type and uses the same meter.

FCh1 = 1 + 1 + 1 + 1 = 4

Since this FC uses unicast, broadcast, multicast and unknown-unicast meter, four entries are needed to identify these traffic types explicitly.

Fcef = 1 + 1 + 1 + 0 = 3

Since this FC uses unicast, broadcast and multicast meter, three entries are needed to identify these traffic types explicitly. Unknown-unicast traffic type is classified using the same entry as multicast traffic type and uses the same meter.

FCh2 = 1 + 1 + 1 + 0 = 3

Since this FC uses unicast meter and broadcast meter, two entries are needed to identify these traffic types explicitly. Multicast and unknown-unicast traffic of the same FC use the unicast resources (both meter and classification entry).

FCl1 = 1 + 1 + 1 + 0 = 3
Fcaf = 1 + 1 + 1 + 0 = 3

Since this FC uses unicast, broadcast and multicast meter, three entries are needed to identify these traffic types explicitly. Unknown-unicast traffic type is classified using the same entry as multicast traffic type and uses the same meter.

FCl2 = 0 + 0 + 0 + 0 = 0
Fche = 1 + 0 + 0 + 0 = 1

Since this FC uses a single meter for all traffic-types only a single meter and single entry is needed.
Using the above equation, the total classification entries used = 20 and meters used = 7, num-qos-classifiers to use is 20 (the minimum value).

If the same policy were to be used for a SAP in an Epipe service, then since all traffic is classified to a unicast traffic type and since only unicast meters are used, the following:

\[
\begin{align*}
FCnc & = 1 + 0 + 0 + 0 - 1 \\
FCh1 & = 1 + 0 + 0 + 0 - 1 \\
FCEF & = 1 + 0 + 0 + 0 - 1 \\
FCh2 & = 1 + 0 + 0 + 0 - 1 \\
FC11 & = 1 + 0 + 0 + 0 - 1 \\
FCaf & = 1 + 0 + 0 + 0 - 1 \\
FC12 & = 0 + 0 + 0 + 0 - 0 \\
FCbe & = 1 + 0 + 0 + 0 - 1
\end{align*}
\]

Using the above equation, the total classification entries used = 7 and meters used = 4.

As can be seen here, using the same policy for Epipe SAP can lead to inefficient use of resources. Hence, it is recommended to create a different policy with the required number of resources (that is, with num-qos-classifiers 8).

**Example 5**

```bash
sap-ingress 10 create
description="example-policy-3"
num-qos-classifiers 32
meter 1 create
 rate cir100 pir 100
exit
meter 11 multipoint create
 rate cir 1 pir 20
exit
meter 3 create
 rate cir 100 pir 100
exit
meter 2 create
 rate cir 1 pir 20
exit
meter 4 create
 rate cir 10 pir 100
exit
meter 5 create
 rate cir 10 pir 10
exit
meter 6 create
 rate cir 11 pir 100
exit
meter 8 create
 rate cir 20 pir 100
exit
scope template
default-fc be
fc af create
```
meter 3
broadcast-meter 2
multicast-meter 4
exit
fc l1 create
meter 3
broadcast-meter 2
exit
fc h2 create
meter 3
broadcast-meter 2
exit
fc h1 create
meter 5
broadcast-meter 4
multicast-meter 4
unknown-meter 4
exit
fc ef create
exit
fc nc create
meter 6
broadcast-meter 2
multicast-meter 8
exit
mac-criteria dot1p-only
entry 1 create
match dot1p 4
action fc af
exit
entry 2 create
match dot1p 5
action fc l1
exit
entry 3 create
match dot1p 6
action fc h2
exit
entry 4 create
match dot1p 3
action fc h1
exit
entry 5 create
match dot1p 2
action fc ef
exit
entry 6 create
match dot1p 7
action fc nc
exit
exit
exit
exit

In the example above, assuming the policy is attached to a SAP in a VPLS service, get the classification entries used per FC:

FCnc = 1 + 1 + 1 + 0 - 3
Since this FC uses unicast, broadcast and multicast meter, three entries are needed to identify these traffic types explicitly. Unknown-unicast traffic type is classified using the same entry as multicast traffic type and uses the same meter.

\[ FCh1 = 1 + 1 + 1 + 1 = 4 \]

Since this FC uses unicast, broadcast, multicast and unknown-unicast meter, four entries are needed to identify these traffic types explicitly.

\[ FCef = 1 + 0 + 1 + 0 = 2 \]

Since no meters are explicitly configured, this FC uses the appropriate default meters all the traffic types (i.e. unicast traffic uses unicast meter #1 and broadcast, multicast, and unknown-unicast traffic uses multipoint meter #11.

\[ FCh2 = 1 + 1 + 1 + 0 = 3 \]

Since this FC uses unicast meter and broadcast meter, two entries are needed to identify these traffic types explicitly. Another entry is needed to classify multicast and unknown-unicast traffic type to the same FC and use the default meter #11.

\[ FC11 = 1 + 1 + 1 + 0 = 3 \]
\[ FCaf = 1 + 1 + 1 + 0 = 3 \]

Since this FC uses unicast, broadcast and multicast meter, three entries are needed to identify these traffic types explicitly. Unknown-unicast traffic type is classified using the same entry as multicast traffic type and uses the same meter.

\[ FC12 = 0 + 0 + 0 + 0 = 0 \]
\[ FCbe = 1 + 0 + 1 + 0 = 2 \]

Using the above equation, the total classification entries used = 20 and meters used = 8.

If the same policy were to be used for a SAP in an Epipe service, then since all traffic is classified to a unicast traffic type and since only unicast meters are used, the following:

\[ FCnc = 1 + 0 + 0 + 0 = 1 \]
\[ FCh1 = 1 + 0 + 0 + 0 = 1 \]
\[ FCef = 1 + 0 + 0 + 0 = 1 \]
\[ FCh2 = 1 + 0 + 0 + 0 = 1 \]
\[ FC11 = 1 + 0 + 0 + 0 = 1 \]
\[ FCaf = 1 + 0 + 0 + 0 = 1 \]
\[ FC12 = 0 + 0 + 0 + 0 = 0 \]
\[ FCbe = 1 + 0 + 0 + 0 = 1 \]

Using the above equation, to get the total classification entries used = 7 and meters used = 4.
Example 6

sap-ingress 10 create
description"example-policy-1"
um-qos-classifiers 16

meter 1 create
    rate cir 0 pir max
exit
meter 11 multipoint create
    rate cir 0 pir max
exit
meter 3 create
    rate cir100 pir 100
exit
meter 4 create
    rate cir 10 pir 50
exit

scope template
default-fc be
fc be create
    meter 3
exit
fc af create
    meter 1
exit
fc l1 create
    meter 3
    multicast-meter 4
exit
fc h2 create
    meter 3
exit

mac-criteria dot1p-only
entry 1 create
    match dot1p 7
    action fc af
exit
entry 2 create
    match dot1p 5
    action fc l1
exit
entry 3 create
    match dot1p 6
    action fc h2
exit
exit
exit

In the example above, assuming the policy is attached to a SAP in a VPLS service, the following number of classification entries per FC:

FCnc = 0 + 0 + 0 + 0 = 0
FCh1 = 0 + 0 + 0 + 0 = 0
Since this FC uses unicast meter and multicast meter, an entry is needed to identify these traffic types explicitly. Broadcast and unknown-unicast traffic is also classified using the same entry as multicast and use the same meter.

\[ FCaf = 1 + 0 + 1 + 0 = 2 \]

Since this FC uses unicast meter, an entry is needed to identify these traffic types explicitly. Another entry is needed to classify broadcast, multicast and unknown-unicast traffic type to the same FC and use the default meter #11.

\[ FC_{12} = 0 + 0 + 0 + 0 = 0 \]
\[ FC_{be} = 1 + 0 + 1 + 0 = 2 \]

Using the above equation, the total classification entries used = 8 and meters used = 4.

If the same policy were to be used for a SAP in an Epipe service, then since all traffic is classified to a unicast traffic type and since only unicast meters are used, the following:

\[ FCnc = 0 + 0 + 0 + 0 = 0 \]
\[ FC_{11} = 0 + 0 + 0 + 0 = 0 \]
\[ FCef = 0 + 0 + 0 + 0 = 0 \]
\[ FC_{12} = 1 + 0 + 0 + 0 = 1 \]
\[ FC_{11} = 1 + 0 + 0 + 0 = 1 \]
\[ FCaf = 1 + 0 + 0 + 0 = 1 \]
\[ FC_{12} = 0 + 0 + 0 + 0 = 0 \]
\[ FC_{be} = 1 + 0 + 0 + 0 = 1 \]

Using the above equation, the total classification entries used = 4 and meters used = 2.

**Example 7**

```
sap-ingress 10 create
 num-qos-classifiers 8
 meter 1 create
 exit
 meter 11 multipoint create
 exit
 meter 3 create
 exit
 meter 4 create
 exit
 fc be create
 meter 1
 broadcast-meter 11
 multicast-meter 4
 exit
 fc af create
 meter 3
 exit
 default-fc be
 match entry 1
```
In the example above, assuming the policy is attached to a SAP in a VPLS service, the following number of classification entries per FC are:

- FCnc = 0 + 0 + 0 + 0 = 0
- FCh1 = 0 + 0 + 0 + 0 = 0
- FCh2 = 0 + 0 + 0 + 0 = 0
- FCef = 0 + 0 + 0 + 0 = 0
- FC11 = 0 + 0 + 0 + 0 = 0
- FCaf = 1 + 0 + 1 + 0 = 2

Since this FC uses unicast meter, an entry is needed to identify these traffic types explicitly. Another entry is needed entry to classify broadcast, multicast and unknown-unicast traffic type to the same FC and use the default meter #11.

- FC12 = 0 + 0 + 0 + 0 = 0
- FCbe = 1 + 1 + 1 + 0 = 3

Since this FC uses unicast, broadcast and multicast meter, three entries are needed to identify these traffic types explicitly. Unknown-unicast traffic type is classified using the same entry as multicast traffic type and uses the same meter.

Using the above equation, the total classification entries used = 5 and meters used = 4.

If the same policy were to be used for a SAP in an Epipe service, then since all traffic is classified to a unicast traffic type and since only unicast meters are used, the following:

- FCnc = 0 + 0 + 0 + 0 = 0
- FCh1 = 0 + 0 + 0 + 0 = 0
- FCh2 = 0 + 0 + 0 + 0 = 0
- FCef = 0 + 0 + 0 + 0 = 0
- FC11 = 0 + 0 + 0 + 0 = 0
- FCaf = 1 + 0 + 0 + 0 = 1
- FC12 = 0 + 0 + 0 + 0 = 0
- FCbe = 1 + 0 + 0 + 0 = 1

Using the above equation, the total classification entries used = 2 and meters used = 2.
Example 8

```
sap-ingress 10 create
num-qos-classifiers16
meter 1 create
exit
meter 11 multipoint create
exit
meter 3 create
exit
meter 4 create
exit
fc be create
 meter 1
 broadcast-meter 11
 multicast-meter 4
exit
fc af create
 meter 3
exit
default-fc be
mac-criteria dot1p-only
entry 1 create
 match dot1p 7 7
 action fc af
exit
 dot1p 7 fc af
exit
match entry 2
 dot1p 5 fc af
exit
match entry 3
 dot1p 3 fc af
exit
exit
```

In the example above, assuming the policy is attached to a SAP in a VPLS service, the following number of classification entries per FC:

- **FCnc** = 0 + 0 + 0 + 0 = 0
- **FCh1** = 0 + 0 + 0 + 0 = 0
- **FCef** = 0 + 0 + 0 + 0 = 0
- **FCh2** = 0 + 0 + 0 + 0 = 0
- **FCl1** = 0 + 0 + 0 + 0 = 0
- **FCaf** = 1 + 0 + 1 + 0 = 2
- **FCl2** = 0 + 0 + 0 + 0 = 0
- **FCbe** = 1 + 1 + 1 + 0 = 3

Since this FC uses unicast meter, an entry is needed to identify these traffic types explicitly. Another entry is needed to classify broadcast, multicast and unknown-unicast traffic type to the same FC and use the default meter #11.
Since this FC uses unicast, broadcast and multicast meter, three entries are needed to identify these traffic types explicitly. Unknown-unicast traffic type is classified using the same entry as multicast traffic type and uses the same meter.

Using the equation, calculate the total classification entries used by this policy, as follows

\[
TC = (0 \times 0)nc + (0 \times 0)h1 + (0 \times 0)ef + (0 \times 0)h2 + (0 \times 0)l1 + (3 \times 2)af + (0 \times 0)l2 + (1 \times 3)be = 9
\]

The number of meters used in this policy = 4.

Hence, in this example **num-qos-classifiers 16** is used (i.e. maximum of \((9, (2 \times 4))\)).

If the same policy were to be used for a SAP in an Epipe service, then since all traffic is classified to a unicast traffic type and since only unicast meters are used, the following:

\[
\begin{align*}
FC_{nc} &= 0 + 0 + 0 + 0 = 0 \\
FC_{h1} &= 0 + 0 + 0 + 0 = 0 \\
FC_{ef} &= 0 + 0 + 0 + 0 = 0 \\
FC_{h2} &= 0 + 0 + 0 + 0 = 0 \\
FC_{l1} &= 0 + 0 + 0 + 0 = 0 \\
FC_{af} &= 1 + 0 + 0 + 0 = 1 \\
FC_{l2} &= 0 + 0 + 0 + 0 = 0 \\
FC_{be} &= 1 + 0 + 0 + 0 = 1
\end{align*}
\]

Using the equation, calculate the total classification entries used by this policy, as follows:

\[
(0 \times 0)nc + (0 \times 0)h1 + (0 \times 0)ef + (0 \times 0)h2 + (0 \times 0)l1 + (3 \times 1)af + (0 \times 0)l2 + (1 \times 1)be = 4
\]

The number of meters used in this policy = 2.

**Example 9**

```
sap-ingress 10 create
 num-qos-classifiers 256
 meter 1 create
 exit
 meter 11 multipoint create
 exit
 meter 3 create
 exit
 meter 4 create
 exit
 fc be create
 meter 1
 broadcast-meter 11
 multicast-meter 4
 exit
 fc af create
 meter 3
 broadcast-meter 11
 multicast-meter 4
 exit
 default-fc be
```
Service Ingress QoS Policies

ip-criteria dscp-only
entry 1 create
  match dscp cp1
  action fc af
exit
entry 2 create
  match dscp cp2
  action fc af
exit
entry 3 create
  match dscp cp3
  action fc af
exit
entry 4 create
  match dscp cp4
  action fc af
exit
entry 5 create
  match dscp cp5
  action fc af
exit
entry 6 create
  match dscp cp6
  action fc af
exit
entry 7 create
  match dscp cp7
  action fc af
exit
entry 8 create
  match dscp cs1
  action fc af
exit
entry 9 create
  match dscp cp9
  action fc af
exit
entry 10 create
  match dscp af11
  action fc af
exit
entry 11 create
  match dscp cp11
  action fc af
exit
entry 12 create
  match dscp af12
  action fc af
exit
entry 13 create
  match dscp cp13
  action fc af
exit
entry 14 create
  match dscp af13
  action fc af
exit
entry 15 create
  match dscp cp15
  action fc af
exit
Basic Configurations

```plaintext
action fc af
exit
entry 16 create
match dscp cs2
action fc af
exit
entry 17 create
match dscp cp17
action fc af
exit
entry 18 create
match dscp af21
action fc af
exit
entry 19 create
match dscp cp19
action fc af
exit
entry 20 create
match dscp af22
action fc af
exit
entry 21 create
match dscp cp21
action fc af
exit
entry 22 create
match dscp af23
action fc af
exit
entry 23 create
match dscp cp23
action fc af
exit
entry 24 create
match dscp cs3
action fc af
exit
entry 25 create
match dscp cp25
action fc af
exit
entry 26 create
match dscp af31
action fc af
exit
entry 27 create
match dscp cp27
action fc af
exit
entry 28 create
match dscp af32
action fc af
exit
entry 29 create
match dscp cp29
action fc af
exit
entry 30 create
```

match dscp af33
  action fc af
exit
entry 31 create
  match dscp cp31
  action fc af
exit
entry 32 create
  match dscp cs4
  action fc af
exit
entry 33 create
  match dscp cp33
  action fc af
exit
entry 34 create
  match dscp af41
  action fc af
exit
entry 35 create
  match dscp cp35
  action fc af
exit
entry 36 create
  match dscp af42
  action fc af
exit
entry 37 create
  match dscp cp37
  action fc af
exit
entry 38 create
  match dscp af43
  action fc af
exit
entry 39 create
  match dscp cp39
  action fc af
exit
entry 40 create
  match dscp cs5
  action fc af
exit
entry 41 create
  match dscp cp41
  action fc af
exit
entry 42 create
  match dscp cp42
  action fc af
exit
entry 43 create
  match dscp cp43
  action fc af
exit
entry 44 create
  match dscp cp44
  action fc af
exit
In the example above, assuming the policy is attached to a SAP in a VPLS service, the following number of classification entries per FC:

\[
\begin{align*}
F_{\text{C}n}c &= 0 + 0 + 0 + 0 = 0 \\
F_{\text{C}h}1 &= 0 + 0 + 0 + 0 = 0 \\
F_{\text{C}e}f &= 0 + 0 + 0 + 0 = 0 \\
F_{\text{C}h}2 &= 0 + 0 + 0 + 0 = 0 \\
F_{\text{Cl}}1 &= 0 + 0 + 0 + 0 = 0 \\
F_{\text{C}a}f &= 1 + 0 + 1 + 0 = 3 \\
F_{\text{Cl}}2 &= 0 + 0 + 0 + 0 = 0 \\
F_{\text{C}b}e &= 1 + 1 + 1 + 0 = 3
\end{align*}
\]

Since this FC uses unicast meter, an entry is needed to identify these traffic types explicitly. Another entry is needed to classify broadcast, multicast and unknown-unicast traffic type to the same FC and use the default meter \#11.

\[
\begin{align*}
F_{\text{C}l}2 &= 0 + 0 + 0 + 0 = 0 \\
F_{\text{C}b}e &= 1 + 1 + 1 + 0 = 3
\end{align*}
\]

Since this FC uses unicast, broadcast and multicast meter, three entries are needed to identify these traffic types explicitly. Unknown-unicast traffic type is classified using the same entry as multicast traffic type and uses the same meter.

Using the equation, calculate the total classification entries used by this policy, as follows:

\[
TC = (0 \times 0)n_{\text{c}}c + (0 \times 0)h_{\text{1}} + (0 \times 0)e_{\text{f}} + (0 \times 0)h_{\text{2}} + (0 \times 0)l_{\text{1}} + (50 \times 3)a_{\text{f}} + (0 \times 0)l_{2} + (1 \times 3)b_{\text{e}} = 153
\]

The number of meters used in this policy = 4.
Hence, in this example num-qos-classifiers 256 is used (maximum of (153, (2 * 4)) = 153, rounded off to the next multiple of 2 will be 154).

If the same policy were to be used for a SAP in an Epippe service, then since all traffic is classified to a unicast traffic type and since only unicast meters are used, e the following:

\[
\begin{align*}
F_{Cnc} &= 0 + 0 + 0 + 0 = 0 \\
F_{Ch1} &= 0 + 0 + 0 + 0 = 0 \\
F_{Ceef} &= 0 + 0 + 0 + 0 = 0 \\
F_{Ch2} &= 0 + 0 + 0 + 0 = 0 \\
F_{Cl1} &= 0 + 0 + 0 + 0 = 0 \\
F_{Caef} &= 1 + 0 + 0 + 0 = 1 \\
F_{Cl2} &= 0 + 0 + 0 + 0 = 0 \\
F_{Cbe} &= 1 + 0 + 0 + 0 = 1
\end{align*}
\]

Using the equation, calculate the total classification entries used by this policy, as follows:

\[
(0 * 0)nc + (0 * 0)h1 + (0 * 0)ef + (0 * 0)h2 + (0 * 0)l1 + (50 * 1)af + (0 * 0)l2 + (1 * 1)be = 51
\]

The number of meters used in this policy = 2.

Hence for Epippe SAP it is recommended to define another sap-ingress policy with num-qos-classifiers 64 is used (i.e. maximum of (51, (2 * 2)) = 51, rounded off to the next multiple of 2 will be 52).

**Example 9a (Default multipoint meter "11" is not used):**

```
sap-ingress 10 create
 num-qos-classifiers 154
 meter 1 create
 exit
 meter 3 create
 exit
 meter 4 create
 exit
 meter 11 create
 exit

 fc be create
 meter 1
 broadcast-meter 11
 multicast-meter 4
 exit
 fc af create
 meter 3
 broadcast-meter 11
 multicast-meter 4
 exit
 default-fc be

 ip-criteria dscp-only
 entry 1 create
 match dscp cp1
 action fc af
```
exit
tentry 2 create
  match dscp cp2
  action fc af
exit
tentry 3 create
  match dscp cp3
  action fc af
exit
tentry 4 create
  match dscp cp4
  action fc af
exit
tentry 5 create
  match dscp cp5
  action fc af
exit
tentry 6 create
  match dscp cs1
  action fc af
exit
tentry 7 create
  match dscp cp9
  action fc af
exit
tentry 8 create
  match dscp cp11
  action fc af
exit
tentry 9 create
  match dscp cp11
  action fc af
exit
tentry 10 create
  match dscp cp12
  action fc af
exit
tentry 11 create
  match dscp cp13
  action fc af
exit
tentry 12 create
  match dscp cp13
  action fc af
exit
tentry 13 create
  match dscp cs2
action fc af
exit
entry 17  create
    match dscp cp17
    action fc af
exit
entry 18  create
    match dscp af21
    action fc af
exit
entry 19  create
    match dscp cp19
    action fc af
exit
entry 20  create
    match dscp af22
    action fc af
exit
entry 21  create
    match dscp cp21
    action fc af
exit
entry 22  create
    match dscp af23
    action fc af
exit
entry 23  create
    match dscp cp23
    action fc af
exit
entry 24  create
    match dscp cs3
    action fc af
exit
entry 25  create
    match dscp cp25
    action fc af
exit
entry 26  create
    match dscp af31
    action fc af
exit
entry 27  create
    match dscp cp27
    action fc af
exit
entry 28  create
    match dscp af32
    action fc af
exit
entry 29  create
    match dscp cp29
    action fc af
exit
entry 30  create
    match dscp af33
    action fc af
exit
entry 31  create
match dscp cp31
  action fc af
exit
entry 32 create
  match dscp cs4
  action fc af
exit
entry 33 create
  match dscp cp33
  action fc af
exit
entry 34 create
  match dscp af41
  action fc af
exit
entry 35 create
  match dscp cp35
  action fc af
exit
entry 36 create
  match dscp af42
  action fc af
exit
entry 37 create
  match dscp cp37
  action fc af
exit
entry 38 create
  match dscp af43
  action fc af
exit
entry 39 create
  match dscp cp39
  action fc af
exit
entry 40 create
  match dscp cs5
  action fc af
exit
entry 41 create
  match dscp cp41
  action fc af
exit
entry 42 create
  match dscp cp42
  action fc af
exit
entry 43 create
  match dscp cp43
  action fc af
exit
entry 44 create
  match dscp cp44
  action fc af
exit
entry 45 create
  match dscp cp45
  action fc af
exit
entry 46 create
    match dscp ef
    action fc af
exit
entry 47 create
    match dscp cp47
    action fc af
exit
entry 48 create
    match dscp nc1
    action fc af
exit
entry 49 create
    match dscp cp49
    action fc af
exit
entry 50 create
    match dscp cp50
    action fc af
exit
exit

In the example above, assuming the policy is attached to a SAP in a VPLS service, the following number of classification entries per FC:

FCnc = 0 + 0 + 0 + 0 = 0
FCh1 = 0 + 0 + 0 + 0 = 0
FCef = 0 + 0 + 0 + 0 = 0
FCh2 = 0 + 0 + 0 + 0 = 0
FCI1 = 0 + 0 + 0 + 0 = 0
FCaf = 1 + 0 + 1 + 0 = 3

Since this FC uses unicast, broadcast and multicast meter, three entries are required to identify these traffic types explicitly. Unknown-unicast traffic type is classified using the same entry as multicast traffic type and uses the same meter. Additionally note that meter 11 is not defined to be multipoint meter, but is used as a normal unicast meter.

FCI2 = 0 + 0 + 0 + 0 = 0
FCbe = 1 + 1 + 1 + 0 = 3

Using the equation, calculate the total classification entries used by this policy, as follows:

\[ TC = (0 \times 0)_{nc} + (0 \times 0)_{h1} + (0 \times 0)_{ef} + (0 \times 0)_{h2} + (0 \times 0)_{l1} + (50 \times 3)_{af} + (0 \times 0)_{l2} + (1 \times 3)_{be} = 153 \]

The number of meters used in this policy = 4. Hence, in this example num-qos-classifiers 154 is used (maximum of \((153, (2 \times 4)) = 153, \text{ rounded off to the next multiple of 2 will be 154).}
Hence, in this example num-qos-classifiers 154 is used (maximum of (153, (2 * 4)) = 153, rounded off to the next multiple of 2 will be 154).

If the same policy were to be used for a SAP in an Epipe service, then since all traffic is classified to a unicast traffic type and since only unicast meters are used, the following:

\[
\begin{align*}
FCnc & = 0 + 0 + 0 + 0 = 0 \\
FCh1 & = 0 + 0 + 0 + 0 = 0 \\
FCef & = 0 + 0 + 0 + 0 = 0 \\
FCh2 & = 0 + 0 + 0 + 0 = 0 \\
FC11 & = 0 + 0 + 0 + 0 = 0 \\
FCaf & = 1 + 0 + 0 + 0 = 1 \\
FC12 & = 0 + 0 + 0 + 0 = 0 \\
FCbe & = 1 + 0 + 0 + 0 = 1
\end{align*}
\]

Using the equation, calculate the total classification entries used by this policy, as follows:

\[
TC = (0 * 0)nc + (0 * 0)h1 + (0 * 0)ef + (0 * 0)h2 + (0 * 0)l1 + (50 * 1)af + (0 * 0)l2 + (1 * 1)be = 51
\]

The number of meters used in this policy = 2.

Hence for Epipe SAP it is recommended to define another sap-ingress policy with num-qos-classifiers 52 is used (that is, maximum of (51, (2 * 2)) = 51, rounded off to the multiple of 2 will be 52).
Example 10

```
sap-ingress 10 create
description="example-policy-1"
num-qos-classifiers 4
meter 1 create
 rate cir 0 pir max
exit
meter 11 multipoint create
 rate cir 0 pir max
exit
scope template
default-fc 12
fc 12 create
 meter 1
exit
fc af create
 meter 1
exit
mac-criteria any
entry 1 create
 match dot1p 7
 action fc af
exit
exit
```

In the example above, assuming the policy is attached to a SAP in a VPLS service, compute the number of classification entries per FC as follows:

- \( F_{Cn} = 0 + 0 + 0 + 0 = 0 \)
- \( F_{Ch1} = 0 + 0 + 0 + 0 = 0 \)
- \( F_{Ce} = 0 + 0 + 0 + 0 = 0 \)
- \( F_{Ch2} = 0 + 0 + 0 + 0 = 0 \)
- \( F_{Cl1} = 0 + 0 + 0 + 0 = 0 \)
- \( F_{Ca} = 1 + 0 + 1 + 0 = 2 \)
- \( F_{Cl2} = 1 + 0 + 1 + 0 = 2 \)
- \( F_{Cb} = 0 + 0 + 0 + 0 = 0 \)

Using the equation, calculate the total classification entries used by this policy, as follows:

\[
TC = (0 \times 0)_{nc} + (0 \times 0)_{h1} + (0 \times 0)_{ef} + (0 \times 0)_{h2} + (0 \times 0)_{l1} + (1 \times 2)_{af} + (1 \times 2)_{l2} + (0 \times 0)_{be} = 4
\]

The number of meters used = 2 (since both FCs use meter #1 and meter #11).

Hence, in this example **num-qos-classifiers 4** is used (i.e. maximum of \((4, (2 \times 2))\)).

If the same policy were to be used for a SAP in an Epipe service, then since all traffic is classified to a unicast traffic type and since only unicast meters are used, the following:

- \( F_{Cn} = 0 + 0 + 0 + 0 = 0 \)
- \( F_{Ch1} = 0 + 0 + 0 + 0 = 0 \)
- \( F_{Ce} = 0 + 0 + 0 + 0 = 0 \)
- \( F_{Ch2} = 0 + 0 + 0 + 0 = 0 \)
Using the above equation, calculate the total classification entries used = 2 and meters used = 1.

As can be seen here, for Epipe SAP with the same amount of resources allocated one can have more FCs if need be.
Example 11

sap-ingress 10 create
description="example-policy-1"
num-qos-classifiers 4
meter 1 create
  rate cir 0 pir max
exit
meter 11 multipoint create
  rate cir 0 pir max
exit
scope template
default-fc be
exit

In the example above, assuming the policy is attached to a SAP in a VPLS service, compute the number of classification entries per FC as follows:

- FChc = 0 + 0 + 0 + 0 = 0
- FCh1 = 0 + 0 + 0 + 0 = 0
- FChf = 0 + 0 + 0 + 0 = 0
- FCh2 = 0 + 0 + 0 + 0 = 0
- FC11 = 0 + 0 + 0 + 0 = 0
- FCaf = 0 + 0 + 0 + 0 = 0
- FC12 = 0 + 0 + 0 + 0 = 0
- FCbe = 1 + 0 + 0 = 2

Using the equation, calculate the total classification entries used by this policy, as follows:

$$ TC = (0 * 0)_{nc} + (0 * 0)_{h1} + (0 * 0)_{ef} + (0 * 0)_{h2} + (0 * 0)_{l1} + (0 * 0)_{af} + (1 * 2)_{l2} + (0 * 0)_{be} = 2 $$

The number of meters used = 2 (since default FC uses meter #1 and meter #11).

Hence, in this example num-qos-classifiers 4 is used (i.e. maximum of (2, (2 * 2))).

If the same policy were to be used for a SAP in an Epipe service, then since all traffic is classified to a unicast traffic type and since only unicast meters are used, the following:

- FChc = 0 + 0 + 0 + 0 = 0
- FCh1 = 0 + 0 + 0 + 0 = 0
- FChf = 0 + 0 + 0 + 0 = 0
- FCh2 = 0 + 0 + 0 + 0 = 0
- FC11 = 0 + 0 + 0 + 0 = 0
- FCaf = 0 + 0 + 0 + 0 = 0
- FC12 = 0 + 0 = 0
- FCbe = 1 + 0 + 0 = 1

Using the above equation, total classification entries used = 1 and meters used = 1.

As can be seen here, for Epipe SAP with the same amount of resources allocated one can have more FCs if need be.
Applying Service Ingress Policies

Apply SAP ingress policies to the following service SAPs:

- **Epipe**
- **VPLS**
- **VPRN**

---

**Epipe**

The following output displays an Epipe service configuration with SAP ingress policy 100 applied to the SAP.

```
A:ALA-7>config>service# info
--
 epipe 6 customer 6 vpn 6 create
 sap 1/1/18:3000 create
 ingress
 qos 100
 exit
 egress
 qos 200
 exit
 exit
 no shutdown
 exit
--
A:ALA-7>config>service#
```

---

**VPLS**

The following output displays a VPLS service configuration with SAP ingress policy 100.

```
A:ALA-7>config>service# info
--
 vpls 700 customer 7 vpn 700 create
 description "test"
 stp
 shutdown
 exit
 sap 1/1/9:10 create
 ingress
 qos 100
 exit
 exit
 exit
--
A:ALA-7>config>service#
```
VPRN

The following output displays a VPRN service configuration.

A:ALA-7>config>service# info
----------------------------------------------
...
  vprn 1 customer 1 create
    ecmp 8
    autonomous-system 10000
    route-distinguisher 10001:1
    auto-bind ldp
    vrf-target target:10001:1
  interface "to-ce1" create
    address 11.1.0.1/24
    sap 1/1/10:1 create
    ingress
      qos 100
      exit
      exit
    exit
  exit
  no shutdown
  exit
...
----------------------------------------------
A:ALA-7>config>service#

IES

The following output displays a IES service configuration.

A:ALA-7>config>service# info
----------------------------------------------
...
  ies 1 customer 1 create
  interface "to-c1" create
    address 11.1.0.1/24
    sap 1/1/10:100 create
      ingress
        qos 100
        exit
        egress
        qos 100
        exit
      exit
  exit
  no shutdown
  exit
...
----------------------------------------------
A:ALA-7>config>service#
SAP Ingress Queuing Examples and Resource Calculation

Example 1:

```bash
config> qos>
sap-ingress 10 create
 description "Service ingress QoS policy"
 num-qos-classifiers 32

 meter 1 create
 exit
 meter 2 create
 rate cir 1000 pir 1000
 mbs 10
 exit
 meter 9 multipoint create
 rate cir 500 pir 500
 exit
 meter 10 multipoint create
 rate cir 500 pir 500
 exit
 meter 11 multipoint create
 rate cir 500 pir 500
 exit

queue 1 create
 rate cir 10 pir max
 queue-mgmt 100
 port-parent cir-level 1 pir-weight 30
exit

fc "be" create
 queue 1
 broadcast-meter 9
 multicast-meter 10
 unknown-meter 11
exit

fc "ef" create
 meter 2
 broadcast-meter 9
 multicast-meter 10
 unknown-meter 11
exit

default-fc be

mac-criteria
 entry 1 create
 match
dot1p 5
exit
action fc be
exit
entry 2 create
 match
dot1p 3
```
The above QoS policy has allocated 32 QoS classification entries and 16 meters. It will use 8 classification entries (4 for EF and 4 for BE), one each for unicast, broadcast, multicast and unknown unicast traffic types. It needs one classification entry each for assigning a queue to unicast traffic type for FC be and FC ef. It will use 5 meters, with the rest 11 meters available for use, assuming it is associated with a VPLS SAP. If it is associated with a VPRN SAP or an Epipe SAP, then it will use 2 meters (the default meter and meter 2) and 2 classification resources.

Example 2:

cfg> qos>
sap-ingress 10 create
description "Service ingress QoS policy"

num-qos-classifiers 8

meter 1 create
exit

queue 1 create
  rate cir 10 pir max
  queue-mgmt 100
  port-parent cir-level 1 pir-weight 30
exit

queue 2 create
  rate cir 10 pir max
  queue-mgmt 100
  port-parent cir-level 1 pir-weight 30
exit

fc "be" create
  queue 1
  broadcast-meter 1
  multicast-meter 1
  unknown-meter 1
exit

fc "ef" create
  queue 2
  broadcast-meter 1
  multicast-meter 1
  unknown-meter 1
exit

default-fc be

mac-criteria
  entry 1 create
    match
dot1p 5
The above QoS policy has allocated 8 QoS classification entries and 4 meters. It will use 8 classification entries (4 for EF and 4 for BE) with nothing more available for use. It needs one classification entry each for assigning a queue to unicast traffic type for FC be and FC ef. It will use 1 meter, with the rest 3 meters available for use, assuming the policy is associated with a VPLS SAP. If it is associated with a VPRN SAP or an Epipe SAP, then it will use one meter and 2 classification resources.

Example 3:

```bash
config> qos>
sap-ingress 10 create
 description “Service ingress QoS policy”
 num-qos-classifiers 4
 meter 1 create
 exit
 queue 1 create
 rate cir 10 pir max
 queue-mgmt 100
 port-parent cir-level 1 pir-weight 30
 exit
 queue 2 create
 rate cir 10 pir max
 queue-mgmt 100
 port-parent cir-level 1 pir-weight 30
 exit
 fc "be" create
 queue 1
 exit
 fc "ef" create
 queue 2
 exit
 default-fc be
 mac-criteria
 entry 1 create
 match
 dot1p 5
 exit
```
The above QoS policy has allocated 4 QoS classification entries and 2 meters. It will use 2 classification entries (1 for EF and 1 for BE) for classifying the unicast traffic to queue 1 and queue 2. It will not use meter 1 (though a resource is allocated for default meter 1). Irrespective of whether the policy is associated with a VPLS SAP or an Epipe SAP or a VPRN SAP, the number of resources consumed in this example remains the same.

Example 4:

```
config> qos>
 sap-ingress 10 create
 description "Service ingress QoS policy"
 num-qos-classifiers 4
 meter 1 create
 exit

 meter 11 multipoint create
 exit

 queue 1 create
 rate cir 10 pir max
 queue-mgmt 100
 port-parent cir-level 1 pir-weight 30
 exit

 queue 2 create
 rate cir 10 pir max
 queue-mgmt 100
 port-parent cir-level 1 pir-weight 30
 exit

 fc "be" create
 queue 1
 exit

 fc "ef" create
 queue 2
 exit

 default-fc be

 mac-criteria
 entry 1 create
```
match
dot1p 5
exit
action fc be
exit
entry 2 create
match
dot1p 3
exit
action fc ef
exit
exit
exit

The above QoS policy has allocated 4 QoS classification entries and 2 meters. It will use 2 classification entries (1 for EF and 1 for BE) with 2 more available for use. It will not use any meter (though a resource is allocated for the default meter 1). Note that since default multipoint meter 11 is created, BUM traffic for FC EF and FC BE will use default multipoint meter if the policy is associated with a VPLS SAP. This will need 2 more classification resources to identify BUM traffic, one each for FC EF and FC BE. Thus all the 4 QoS classification entries are used up when associated with a VPLS SAP. Only 2 classification resources are used when the policy is associated with an Epipe SAP or a VPRN SAP.
Service Management Tasks

This section discusses the following service management tasks:

- Deleting QoS Policies on page 251
- Copying and Overwriting QoS Policies on page 252
- Remove a Policy from the QoS Configuration on page 253
- Editing QoS Policies on page 253

Deleting QoS Policies

Every service SAP is associated, by default, with the appropriate ingress policy (policy-id 1). You can replace the default policy with a customer-configured policy, but you cannot entirely remove the policy from the SAP configuration. When you remove a non-default service ingress policy, the association reverts to the default policy-id 1.

A QoS policy cannot be deleted until it is removed from all SAPs where they are applied.

```
A:ALA-7>config>qos# no sap-ingress 100
MINOR: CLI SAP ingress policy "100" cannot be removed because it is in use.
A:ALA-7>config>qos#
```

Remove a QoS Policy from Service SAP(s)

The following Epipeservice output examples show that the SAP service ingress reverted to policy-id “1” when the non-default policies were removed from the configuration.

```
A:ALA-104>config>service>epipe# info detail

description "Distributed Epipe service to west coast"
 no tod-suite
dot1ag
exit
ingress
 qos 1
 no filter
exit
egress
 no filter
exit
 no collect-stats
 no accounting-policy
 no shutdown

A:ALA-7>config>service>epipe#
```
Copy and Overwriting QoS Policies

You can copy an existing service ingress policy, rename it with a new policy ID value, or overwrite an existing policy ID. The overwrite option must be specified or an error occurs if the destination policy ID exists.

CLI Syntax: config>qos# copy {sap-ingress} source-policy-id dest-policy-id [overwrite]

*A:ALU-7210>config>qos# info
#--------------------------------------------------
echo "QoS Policy Configuration"
#--------------------------------------------------
sap-ingress 100 create
description "Used on VPN sap"
  meter 1 create
  exit
  meter 2 multipoint create
  exit
  meter 10 create
    rate cir 11000
    exit
  meter 11 multipoint create
  exit
exit
sap-ingress 101 create
description "Used on VPN sap"
  meter 1 create
  exit
  meter 2 multipoint create
  exit
  meter 10 create
    rate cir 11000
    exit
  meter 11 multipoint create
  exit
exit
sap-ingress 200 create
description "Used on VPN sap"
  meter 1 create
  exit
  meter 2 multipoint create
  exit
  meter 10 create
    rate cir 11000
    exit
  meter 11 multipoint create
  exit
exit

*A:ALU-7210>config>qos#
Remove a Policy from the QoS Configuration

**CLI Syntax:**
```
config>qos# no sap-ingress policy-id
```

**Example:**
```
config>qos# no sap-ingress 100
```

---

**Editing QoS Policies**

You can change QoS existing policies and entries. The changes are applied immediately to all services where this policy is applied. To prevent configuration errors copy the policy to a work area, make the edits, and then write over the original policy.
Service SAP QoS Policy Command Reference

Command Hierarchies

- Service Ingress QoS Policy Commands
- Operational Commands
- Show Commands

Service Ingress QoS Policy Commands

```
 config qos
 [no] sap-ingress policy-id [create]
 [no] default-fc fc
 [no] description description-string
 [no] fc fc-name [create]
 [no] broadcast-meter meter-id
 [no] broadcast-meter
 [no] meter meter-id
 [no] meter
 [no] multicast-meter meter-id
 [no] multicast-meter
 [no] queue
 [no] queue queue-id
 [no] unknown-meter
 [no] unknown-meter
 [no] ip-criteria [any | dscp-only]
 [no] entry entry-id [create]
 [no] action fc fc-name [profile {in | out}]
 [no] action
 [no] description description-string
 [no] description
 match protocol protocol-id
 [no] match
 [no] dscp dscp-name
 [no] dscp
 [no] dst-ip {ip-address/mask | ip-address netmask}
 [no] dst-ip
 dst-port fc {eq dst-port-number}
 [no] dst-port
 fragment {true | false}
 [no] fragment
 src-ip {ip-address/mask | ip-address netmask}
```
no src-ip
src-port {eq} src-port-number
no src-port

renum [old-entry-id new-entry-id]

ipv6-criteria [any | dscp-only] [IPv6 Match Criteria]
entry entry-id [create]
action [fc fc-name]
no action
description description-string
no description
match [next-header next-header]
no match
dscp dscp-name
no dscp
dst-ip {ipv6-address/prefix-length}
no dst-ip
dst-port {eq} dst-port-number
no dst-port
crc-ip {ipv6-address/prefix-length}
no src-ip
crc-port {eq} src-port-number
no src-port

renum [old-entry-id new-entry-id]

mac-criteria [any | dot1p-only]
entry entry-id [create]
action [fc fc-name]
no action
description description-string
no description
match
dot1p dot1p-value [dot1p-mask]
no dot1p
dst-mac ieee-address [ieee-address-mask]
no dst-mac
etype etype-value
no etype
crc-mac ieee-address [ieee-address-mask]
no src-mac

renum old-entry-id new-entry-id

num-qos-classifiers [num-resources] [ipv6 | no-ipv6]
meter meter-id [multipoint] [create]
no meter meter-id
adaptation-rule [cir adaptation-rule] [pir adaptation-rule]
no adaptation-rule
cbs size-in-kbits
no cbs
mbs size-in-kbits
no mbs
mode {trcm1 | trcm2 | srcm}
no mode
rate cir-rate-in-kbps [pir pir-rate-in-kbps]
no rate
queue queue-id
[no] adaptation-rule [pir adaptation-rule] [cir adaptation-rule]
— [no] port-parent [cir-level level] [pir-weight weight]
— queue-mgmt name
— no queue-mgmt
— [no] rate cir rate pir rate
— scope {exclusive | template}
— no scope
Operational Commands

```
config
 — qos
 — copy sap-ingress src-pol dst-pol [overwrite]
```

Show Commands

```
show
 — qos
 — sap-ingress policy-id [detail]
```
Generic Commands

description

Syntax
description description-string
no description

Context
config>qos>sap-ingress
config>qos>sap-ingress>ip-criteria>entry
config>qos>sap-ingress>mac-criteria>entry

Description
This command creates a text description stored in the configuration file for a configuration context.
The no form of this command removes any description string from the context.

Default
No description is associated with the configuration context.

Parameters
description-string — A text string describing the entity. Allowed values are any string up to 80 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.
Operational Commands

**copy**

Syntax: `copy sap-ingress src-pol dst-pol [overwrite]`

Context: `config>qos`

Description: This command copies existing QoS policy entries for a QoS policy-id to another QoS policy-id.

The `copy` command is a configuration level maintenance tool used to create new policies using existing policies. It also allows bulk modifications to an existing policy with the use of the `overwrite` keyword.

Parameters:
- `sap-ingress src-pol dst-pol` — Indicates that the source policy ID and the destination policy ID are SAP ingress policy IDs. Specify the source policy ID that the copy command will attempt to copy from and specify the destination policy ID to which the command will copy a duplicate of the policy.
  - Values: `1 — 65535`
- `overwrite` — Specifies to replace the existing destination policy. Everything in the existing destination policy will be overwritten with the contents of the source policy. If `overwrite` is not specified, an error will occur if the destination policy ID exists.

**renum**

Syntax: `renum old-entry-id new-entry-id`

Context: `config>qos>sap-ingress>ip-criteria`  
`config>qos>sap-ingress>mac-criteria`

Description: This command renumbers existing QoS policy criteria entries to properly sequence policy entries.

This can be required in some cases since the 7210 SAS exits when the first match is found and executes the actions in accordance with the accompanying action command. This requires that entries be sequenced correctly from most to least explicit.

Parameters:
- `old-entry-id` — Enter the entry number of an existing entry.
  - Default: `none`
  - Values: `1 — 65535`
- `new-entry-id` — Enter the new entry-number to be assigned to the old entry.
  - Default: `none`
  - Values: `1 — 65535`
Service Ingress QoS Policy Commands

sap-ingress

Syntax  
[no] sap-ingress policy-id [create]

Context  
config>qos

Description  
This command is used to create or edit the ingress policy. The ingress policy defines the Service Level Agreement (SLA) enforcement service packets receive as they ingress a SAP. SLA enforcement is accomplished through the definition of meters that have Forwarding Class (FC), Committed Information Rate (CIR), Peak Information Rate (PIR), Committed Burst Size (CBS), and Maximum Burst Size (MBS) characteristics. The simplest policy defines a single queue that all ingress traffic flows through. Complex policies have multiple meters combined with specific IP or MAC match criteria that indicate which queue a packet will flow through.

Policies in effect are templates that can be applied to multiple services as long as the scope of the policy is template. Meters defined in the policy are not instantiated until a policy is applied to a service SAP.

SAP ingress policies can be defined with either IP headers as the match criteria or MAC headers as the match criteria. The IP and MAC criteria are mutually exclusive and cannot be part of the same SAP ingress policy. Only one service ingress policy can be provisioned.

The SAP ingress policy with policy-id 1 is a system-defined policy applied to services when no other policy is explicitly specified. The system SAP ingress policy can be modified but not deleted. The no sap-ingress command restores the factory default settings when used on policy-id 1. The default SAP ingress policy defines one meter associated with the best effort (be) forwarding class, with CIR of zero and PIR of line rate.

Any changes made to the existing policy, using any of the sub-commands are applied immediately to all services where this policy is applied. For this reason, when many changes are required on a policy, it is recommended that the policy be copied to a work area policy ID. That work-in-progress policy can be modified until complete and then written over the original policy-id. Use the config qos copy command to maintain policies in this manner.

NOTE: Before associating a SAP ingress policy with a SAP, resources must be allocated using the CLI command config> system> resource-profile>ingress-internal-tcam> qos-sap-ingress-resource. Please read the Service Ingress Qos Policies Chapter above and the 7210 Basic Systems Guide for more information about this CLI command and resource allocation.

The no sap-ingress policy-id command deletes the SAP ingress policy. A policy cannot be deleted until it is removed from all services where it is applied. The system default SAP ingress policy is a special case; the no command restores the factory defaults to policy-id 1.

Parameters  

policy-id — The policy-id uniquely identifies the policy.

Values  
1 — 65535

create — Keyword used to create a sap ingress policy.
**Service Ingress QoS Policy Commands**

### scope

**Syntax**
```
scope {exclusive | template}
no scope
```

**Context**
```
config>qos>sap-ingress policy-id
```

**Description**
This command configures the Service Ingress QoS policy scope as exclusive or template.

The no form of this command sets the scope of the policy to the default of `template`.

**Default**
template

**Parameters**
- **exclusive** — When the scope of a policy is defined as exclusive, the policy can only be applied to one SAP. If a policy with an exclusive scope is assigned to a second SAP an error message is generated. If the policy is removed from the exclusive SAP, it will become available for assignment to another exclusive SAP.
- **template** — When the scope of a policy is defined as template, the policy can be applied to multiple SAPs on the router.

Default QoS policies are configured with template scopes. An error is generated when the template scope parameter to exclusive scope on default policies is modified.

### default-fc

**Syntax**
```
default-fc fc
```

**Context**
```
config>qos>sap-ingress
```

**Description**
This command configures the default forwarding class for the policy. In the event that an ingress packet does not match a higher priority (more explicit) classification command, the default forwarding class will be associated with the packet. Unless overridden by an explicit forwarding class classification rule, all packets received on an ingress SAP using this ingress QoS policy will be classified to the default forwarding class.

The default forwarding class is best effort (be). The `default-fc` settings are displayed in the `show configuration` and `save` output regardless of inclusion of the `detail` keyword.

**Parameters**
- **fc** — Specify the forwarding class name for the queue. The value given for `fc` must be one of the predefined forwarding classes in the system.

**Values**
```
be | l2 | af | l1 | h2 | ef | h1 | nc
```
fc

Syntax  
[no] fc fc-name [create]

Context  
config>qos>sap-ingress

Description  
The fc command creates a class instance of the forwarding class fc-name. Once the fc-name is created, classification actions can be applied and can be used in match classification criteria.

The no form of the command removes all the explicit queue mappings for fc-name forwarding types. The queue mappings revert to the default meters for fc-name.

Parameters  
fc-name — Specifies the forwarding class name for the queue. The value given for the fc-name must be one of the predefined forwarding classes for the system.

Values  
fc: class
       class: be, l2, af, l1, h2, ef, h1, nc

Default  
None (Each class-name must be explicitly defined)

ip-criteria

Syntax  
[no] ip-criteria [any|dscp-only] policy id

Context  
config>qos>sap-ingress

Description  
IP criteria-based SAP ingress policies are used to select the appropriate ingress and corresponding forwarding class for matched traffic.

User can specify either 'any' or 'dscp-only' as the sub-criteria. The sub-criteria determines what fields can be used to match traffic. The resource allocation for classification is affected by the sub-criteria in use. Please see the section on SAP ingress resource allocation for L2 and L3 criteria for more information.

This command is used to enter the context to create or edit policy entries that specify IP criteria DiffServ code point.

7210 SAS OS implementation will exit on the first match found and execute the actions in accordance with the accompanying action command. For this reason entries must be sequenced correctly from most to least explicit.

The no form of this command deletes all the entries specified under this node. Once IP criteria entries are removed from a SAP ingress policy, the IP criteria is removed from all services where that policy is applied.

Default  
dscp-only

Parameters  
any — Specifies that entries can use any of the fields available under ip-criteria (Example - IP source, IP destination, IP protocol fields can be used) for matching

dscp-only — Specifies that entries can use only the DSCP field.

policy-id — The policy-id that uniquely identifies the policy.

Values  
1 — 65535
ipv6-criteria

Syntax
[no] ipv6-criteria [any | dscp-only] policy-id

Context
config>qos>sap-ingress

Description
IPv6 criteria-based SAP ingress policies are used to select the appropriate ingress meters and corresponding forwarding class for matched traffic.

This command is used to enter the node to create or edit policy entries that specify IPv6 criteria such as IP quintuple lookup or DiffServ code point.

The 7210 OS implementation will exit on the first match found and execute the actions in accordance with the accompanying action command. For this reason entries must be sequenced correctly from most to least explicit.

NOTE: Before associating a SAP ingress policy configured to use IPv6 criteria with a SAP, resources must be allocated using the CLI command config> system> resource-profile> ingress-internal-tcam> qos-sap-ingress-resource> ipv6-ipv4-match-enable. Please read the 7210 Basic Systems Guide for more information about this CLI command and resource allocation.

The no form of this command deletes all the entries specified under this node. Once ipv6-criteria entries are removed from a SAP ingress policy, the ipv6-criteria is removed from all services where that policy is applied.

Parameters
any — Specifies that entries can use any of the fields available under ipv6-criteria (Example - IPv6 source, IPv6 destination, IPv6 protocol fields can be used) for matching

dscp-only — Specifies that entries can use only the IPv6 DSCP field.

policy-id — The policy-id that uniquely identifies the policy.

Values
1 — 65535

mac-criteria

Syntax
[no] mac-criteria [any|dot1p-only] policy id

Context
config>qos>sap-ingress

Description
The mac-criteria based SAP ingress policies are used to select the appropriate ingress meters and corresponding forwarding class for matched traffic.

User can specify either 'any' or dot1p-only' as the sub-criteria. The sub-criteria determines what fields can be used to match traffic. The resource allocation for classification is affected by the sub-criteria in use. Please see the section on SAP ingress resource allocation for L2 and L3 criteria for more information.

This command is used to enter the node to create or edit policy entries that specify MAC criteria.

7210 SAS OS implementation will exit on the first match found and execute the actions in accordance with the accompanying action command. For this reason entries must be sequenced correctly from most to least explicit.

The no form of this command deletes all the entries specified under this node. Once mac-criteria entries are removed from a SAP ingress policy, the mac-criteria is removed from all services where that policy is applied.
Operational Commands

applied.

Default any

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>Specifies that entries can use any of the fields available under mac-criteria (Example - MAC source, MAC destination, MAC Ethertype, etc. fields can be used)</td>
</tr>
<tr>
<td>dot1p-only</td>
<td>Specifies that entries can use only the Dot1p field.</td>
</tr>
<tr>
<td>policy-id</td>
<td>The policy-id that uniquely identifies the policy.</td>
</tr>
<tr>
<td>Values</td>
<td>1 — 65535</td>
</tr>
</tbody>
</table>

num-qos-classifiers

Syntax num-qos-classifiers [num-resources] [ipv6 | no-ipv6]

Context config>qos>.sap-ingress>num-qos-classifiers

Description This command configures the number of classifiers the SAP ingress Qos policy can use. A user cannot modify this parameter when it is in use (i.e. applied to a SAP).

The num-resources parameter also determines the maximum number of meters that are available to this policy. The maximum number of meters available for use by the forwarding classes (FC) defined under this policy is equal to half the value specified in the parameter num-resources. Any of these meters is available for use to police unicast or multipoint traffic. Any of these meters is available for use by more than one FC (or a single meter is available for use by all the FCs).

The keyword ‘ipv6’ lets the user indicate that they plan to use the ipv6-criteria and the resources needed for this SAP ingress QoS policy must be allocated for the chunk allocated to IPv6 criteria.

Default num-resources is set to a default value of 2 and no-ipv6 is use as the default keyword.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>num-resources</td>
<td>Specifies the number of resources planned for use by this policy</td>
</tr>
<tr>
<td>Values</td>
<td>2, 4, 6, 8, 16, 10, .... 256 (multiples of “2” upto “256”)</td>
</tr>
<tr>
<td>ipv6</td>
<td>keyword which lets the user indicate that they intend to use the ipv6-criteria and software must allocate resources from the chunks alloted to IPv6 criteria.</td>
</tr>
<tr>
<td>no-ipv6</td>
<td>keyword which lets the user indicate that they do not intend to use the ipv6-criteria. Resources are then allocated from the chunk alloted to either IPv4 criteria or MAC criteria, depending on what criteria the user uses.</td>
</tr>
</tbody>
</table>
Service Ingress QoS Policy Forwarding Class Commands

broadcast-meter

Syntax  
broadcast-meter  meter-id
no broadcast-meter

Context  
config>qos>sap-ingress>fc

Description  
This command overrides the default broadcast forwarding type meter mapping for fc fc-name. The specified meter-id must exist within the policy as a multipoint meter before the mapping can be made. Once the forwarding class mapping is executed, all broadcast traffic on a SAP using this policy will be forwarded using the meter-id.

The broadcast forwarding type usually tracks the multicast forwarding type definition. This command overrides that default behavior.

The no form of the command sets the broadcast forwarding type meter-id back to the default of tracking the multicast forwarding type meter mapping.

Parameters  
meter-id — Specifies an existing multipoint queue defined in the config>qos>sap-ingress context.

Values  
Default 11

meter

Syntax  
meter  meter-id
no meter

Context  
config>qos>sap-ingress>fc

Description  
This command overrides the default unicast forwarding type meter mapping for fc fc-name. The specified meter-id must exist within the policy as a non-multipoint meter before the mapping can be made. Once the forwarding class mapping is executed, all unicast traffic (this includes all traffic, even broadcast and multicast for services) on a SAP using this policy is forwarded using the meter-id.

The no form of this command sets the unicast (point-to-point) meter-id back to the default meter for the forwarding class (meter 1).

Parameters  
meter-id — Specifies an existing non-multipoint meter defined in the config>qos>sap-ingress context.

Values  
1 — 32
multicast-meter

Syntax

```
multicast-meter meter-id
no multicast-meter
```

Context

```
config>qos>sap-ingress>fc
```

Parameters

- **meter-id** — Specifies an existing multipoint queue defined in the `config>qos>sap-ingress` context.
  - **Values**
    - 1 — 32
  - **Default**
    - 11

queue

Syntax

```
[no] queue queue-id
```

Context

```
config>qos>sap-ingress>fc
```

Parameters

- **queue-id** — Specifies an existing non-multipoint queue defined in the `config>qos>sap-ingress` context.
  - **Values**
    - Any valid non-multipoint queue-id in the policy including 1 and 3 through 32.
  - **Default**
    - 1
unknown-meter

**Syntax**  
unknown-meter *meter-id*  
no unknown-meter

**Context**  
config>qos>sap-ingress>fc

**Description**  
This command overrides the default unknown unicast forwarding type meter mapping for fc *fc-name*. The specified *meter-id* must exist within the policy as a multipoint meter before the mapping can be made. Once the forwarding class mapping is executed, all unknown traffic on a SAP using this policy is forwarded using the *meter-id*.

The unknown forwarding type usually tracks the multicast forwarding type definition. This command overrides that default behavior.

The no form of this command sets the unknown forwarding type *meter-id* back to the default of tracking the multicast forwarding type meter mapping.

**Parameters**  
meter-id — Specifies an existing multipoint meter defined in the config>qos>sap-ingress context.

<table>
<thead>
<tr>
<th>Values</th>
<th>1 — 32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>11</td>
</tr>
</tbody>
</table>
**Service Ingress QoS Policy Entry Commands**

**action**

**Syntax**

```markdown
action [fc fc-name] profile (in|out)
no action
```

**Context**

```markdown
config>qos>sap-ingress>ip-criteria>entry
config>qos>sap-ingress>mac-criteria>entry
```

**Description**

This mandatory command associates the forwarding class with specific IP or MAC criteria entry ID. The action command supports setting the forwarding class parameter. Packets that meet all match criteria within the entry have their forwarding class overridden based on the parameters included in the **action** parameters.

The **action** command must be executed for the match criteria to be added to the active list of entries.

Each time action is executed on a specific entry ID, the previous entered values for **fc fc-name** is overridden with the newly defined parameters.

The **no** form of the command removes the entry from the active entry list. Removing an entry on a policy immediately removes the entry from all SAPs using the policy. All previous parameters for the action is lost.

**Default**

Action specified by the **default-fc**.

**Parameters**

- **fc fc-name** — The value given for **fc fc-name** must be one of the predefined forwarding classes in the system. Specifying the **fc fc-name** is required. When a packet matches the rule, the forwarding class is only overridden when the **fc fc-name** parameter is defined on the rule. If the packet matches and the forwarding class is not explicitly defined in the rule, the forwarding class is inherited based on previous rule matches.

  **Values**

  - be|l2|l1|h2|ef|h1|nc

- **profile {in | out}** — The profile assignment action is optional. When specified, packets matching the classification entry will be explicitly classifier to either in-profile or out-of-profile. The remove the profile action for an classification entry, the action command must be re-executed without the profile action defined. The profile assigned by the user is used subsequently to determine the slope to use at the ingress and egress queuing points and is used for egress marking (if enabled).

  **in** — The in parameter is mutually exclusive to the out parameter following the profile classification action keyword. Either in or out must be specified when the profile keyword is present. When in is specified, any packets matching the classification rule will be treated as in-profile.

  **out** — The out parameter is mutually exclusive to the in parameter following the profile classification action keyword. Either in or out must be specified when the profile keyword is present. When out is specified, any packets matching the classification rule will be treated as out-of-profile.
entry

Syntax  [no] entry entry-id [create]

Context  config>qos>sap-ingress>ip-criteria
        config>qos>sap-ingress>mac-criteria

Description  This command is used to create or edit an IP or MAC criteria entry for the policy. Multiple entries can be created using unique entry-id numbers.

The list of flow criteria is evaluated in a top down fashion with the lowest entry ID at the top and the highest entry ID at the bottom. If the defined match criteria for an entry within the list matches the information in the egress packet, the system stops matching the packet against the list and performs the matching entries reclassification actions. If none of the entries match the packet, the IP flow reclassification list has no effect on the packet.

An entry is not populated in the list unless the action command is executed for the entry. An entry that is not populated in the list has no effect on egress packets. If the action command is executed without any explicit reclassification actions specified, the entry is populated in the list allowing packets matching the entry to exit the list, preventing them from matching entries lower in the list. Since this is the only flow reclassification entry that the packet matched and this entry explicitly states that no reclassification action is to be performed, the matching packet will not be reclassified.

The no form of this command removes the specified entry from the policy. Entries removed from the policy are immediately removed from all services where that policy is applied.

Default  none

Parameters  entry-id — The entry-id, expressed as an integer, uniquely identifies a match criterion and the corresponding action. It is recommended that multiple entries be given entry-ids in staggered increments. This allows users to insert a new entry in an existing policy without requiring renumbering of all the existing entries.

An entry cannot have any match criteria defined (in which case, everything matches) but must have at least the keyword action fc fc-name for it to be considered complete. Entries without the action keyword will be considered incomplete and hence will be rendered inactive.

Default  none

Values  1— 64

create — Required parameter when creating a flow entry when the system is configured to require the explicit use of the keyword to prevent accidental object creation. Objects may be accidentally created when this protection is disabled and an object name is mistyped when attempting to edit the object. This keyword is not required when the protection is disabled. The keyword is ignored when the flow entry already exists.
match

Syntax

[no] match [protocol protocol-id]

Context

config>qos>sap-ingress>ip-criteria>entry

Description

This command creates a context to configure match criteria for SAP QoS policy match criteria. When the match criteria have been satisfied the action associated with the match criteria is executed. Only a single match criteria (either MAC or IP) is allowed at any point of time.

Parameters

protocol protocol-id — Specifies an IP protocol to be used as a SAP QoS policy match criterion.

The protocol type such as TCP / UDP / OSPF is identified by its respective protocol number. Well-known protocol numbers include ICMP(1), TCP(6), UDP(17).

Values

0 — 255

match

Syntax

match

no match

Context

config>qos>sap-ingress>mac-criteria>entry

Description

This command creates a context for entering/editing match MAC criteria for ingress SAP QoS policy match criteria. When the match criteria have been satisfied the action associated with the match criteria is executed.

If more than one match criteria (within one match statement) are configured then all criteria must be satisfied (AND function) before the action associated with the match will be executed.

A match context can consist of multiple match criteria, but multiple match statements cannot be entered per entry.

The no form of the command removes the match criteria for the entry-id.

match

Syntax

match [next-header next-header]

no match

Context

config>qos>sap-ingress>ipv6-criteria>entry

Description

This command creates a context to configure match criteria for ingress SAP QoS policy match IPv6 criteria. When the match criteria have been satisfied the action associated with the match criteria is executed.

If more than one match criteria (within one match statement) are configured, then all criteria must be satisfied (AND function) before the action associated with the match is executed.

A match context can consist of multiple match criteria, but multiple match statements cannot be entered per entry.
It is possible that a SAP ingress policy includes the `dscp` map command, the `dot1p` map command, and an IPv6 match criteria. When multiple matches occur for the traffic, the order of precedence is used to arrive at the final action. The order of precedence is as follows:

1. 802.1p bits
2. DSCP
3. IP Quintuple or MAC headers

The `no` form of this command removes the match criteria for the `entry-id`.

**Parameters**  
`next-header next-header` — Specifies the next meader to match.

The protocol type such as TCP / UDP / OSPF is identified by its respective protocol number. Well-known protocol numbers include ICMP(1), TCP(6), UDP(17).

**Values**  
protocol numbers accepted in DHB: 0 — 42, 45 — 49, 52 — 59, 61 — 255  
keywords: none, crtp, crudp, egp, eigrp, encap, ether-ip, gre, icmp, idrp, igmp,  
ip, ipv6, ipv6-icmp, ipv6-no-nxt, isis, iso-ip, l2tp, ospf-igp, pim, pnni, ptp, rdp, rsvp, stp, tcp, udp, vrrp  
* — udp/tcp wildcard
IP QoS Policy Match Commands

dscp

Syntax  
```
dscp
no dscp
```

Context  
```
config>qos>sap-ingress>ip-criteria>entry>match
```

Description  
This command configures a DiffServ Code Point (DSCP) code point to be used for QoS of packets from the specified FC.

The `no` form of this command removes the DSCP match criterion.

Default  
none

Parameters  

- `dscp-name` — Specifies a dscp name that has been previously mapped to a value using the `dscp-name` command. The DiffServ code point can only be specified by its name.

  \[\text{Values}\]
  
  - `be`, `cp1`, `cp2`, `cp3`, `cp4`, `cp5`, `cp6`, `cp7`, `cs1`, `cp9`, `af11`, `cp11`, `af12`, `cp13`, `af13`, `cp15`, `cs2`, `cp17`, `af21`, `cp19`, `af22`, `cp21`, `af23`, `cs3`, `cp25`, `af31`, `cp27`, `af32`, `cp29`, `af33`, `cp31`, `cs4`, `cp33`, `af41`, `cp35`, `af42`, `cp37`, `af43`, `cp39`, `cs5`, `cp41`, `af44`, `cp43`, `cp45`, `ef`, `cp47`, `nc1`, `cp49`, `cp50`, `cp51`, `cp52`, `cp53`, `cp54`, `cp55`, `nc2`, `cp57`, `cp58`, `cp59`, `cp60`, `cp61`, `cp62`, `cp63`

dst-ip

Syntax  
```
dst-ip {ip-address/mask | ip-address netmask}
no dst-ip
```

Context  
```
config>qos>sap-ingress>ip-criteria>entry>match
config>qos>sap-ingress>ipv6-criteria>entry>match
```

Description  
This command configures a destination address range to be used as a SAP QoS policy match criterion.

To match on the destination address, specify the address and its associated mask, e.g., 10.1.0.0/16. The conventional notation of 10.1.0.0 255.255.0.0 can also be used.

The `no` form of this command removes the destination IP address match criterion.

Default  
none

Parameters  

- `ip-address` — The IP address of the destination IP or IPv6 interface. This address must be unique within the subnet and specified in dotted decimal notation.

  \[\text{Values}\]
  
  - ipv4-prefix: `a.b.c.d`
  - ipv4-prefix-length: 0 -- 32
  - ipv6-prefix: `x:x:x:x:x:x:x:xx` (eight 16-bit pieces)
  - `x:x:x:x:x:d.d.d`
  - `x: [0..FFFF]H`
IP QoS Policy Match Commands

\[
d: [0..255]D
\]
\[
\text{ipv6-prefix-length: 0 -- 128}
\]
\[
\text{netmask} \quad \text{Specifies the subnet mask in dotted decimal notation.}
\]
\[
\text{Values} \quad 0.0.0.0 - 255.255.255.255
\]

dst-port

**Syntax**

\[
dst-port \begin{array}{l}
\text{fc} \{ \text{eq} \} \text{ dst-port-number} \\
\text{dst-port range} \text{ start end}
\end{array}
\]

no dst-port

**Context**

config>qos>sap-ingress
config>qos>sap-ingress>ip-criteria>entry>match

**Description**

This command configures a destination TCP or UDP port number or port range for a SAP QoS policy match criterion.

The no form of this command removes the destination port match criterion.

**Default**

none

**Parameters**

\[
\text{eq} \text{ dst-port-number} \quad \text{— The TCP or UDP port numbers to match specified as equal to (eq) to the destination port value specified as a decimal integer.}
\]

\[
\text{Values} \quad 1 — 65535 \quad \text{(decimal hex or binary)}
\]

\[
\text{range} \text{ start end} \quad \text{— The range of TCP or UDP port values to match specified as between the start and end destination port values inclusive.}
\]

\[
\text{Values} \quad 1 — 65535 \quad \text{(decimal hex or binary)}
\]

fragment

**Syntax**

\[
\text{fragment} \begin{array}{l}
\{ \text{true} \mid \text{false} \}
\end{array}
\]

no fragment

**Context**

config>qos>sap-ingress>ip-criteria>entry>match

**Description**

This command configures fragmented or non-fragmented IP packets as a SAP QoS policy match criterion.

The no form of this command removes the match criterion.

**Default**

fragment false

**Parameters**

\[
\text{true} \quad \text{— Configures a match on all fragmented IP packets. A match will occur for all packets that have either the MF (more fragment) bit set OR have the Fragment Offset field of the IP header set to a non-zero value.}
\]

\[
\text{false} \quad \text{— Configures a match on all non-fragmented IP packets. Non-fragmented IP packets are packets that have the MF bit set to zero and have the Fragment Offset field also set to zero.}
\]
**src-ip**

**Syntax**
```
src-ip {ip-address/mask | ip-address netmask}
```

**no src-ip**

**Context**
```
config>qos>sap-ingress>ip-criteria>entry>match
config>qos>sap-egress>ip-criteria>entry>match
config>qos>sap-ingress>ipv6-criteria>entry>match
```

**Description**
This command configures a source IP or IPv6 address range to be used as an SAP QoS policy match criterion.

To match on the source IP or IPv6 address, specify the address and its associated mask, e.g. 10.1.0.0/16. The conventional notation of 10.1.0.0 255.255.0.0 can also be used.

The **no** form of the command removes the source IP or IPv6 address match criterion.

**Default**
No source IP match criterion.

**Parameters**

**ip-address | ipv6-address** — The IP or IPv6 address of the source IP interface. This address must be unique within the subnet and specified in dotted decimal notation.

**Values**
- **ip-address**: a.b.c.d
- **mask**: 1 — 32
- **netmask**: a.b.c.d (dotted quad equivalent of mask length)

**Values**
- **ipv4-prefix**: a.b.c.d
- **ipv4-prefix-length**: 0 -- 32
- **ipv6-prefix**: x:x:x:x:x:x:x (eight 16-bit pieces)
  - x: [0..FFFF]H
  - d: [0..255]D
- **ipv6-prefix-length**: 0 -- 128
- **netmask**: Specifies the subnet mask in dotted decimal notation.

**Values**
- **0.0.0.0 - 255.255.255.255**

**mask** — The subnet mask length, expressed as an integer or in dotted decimal notation.

**Values**
- **0 — 32**

**netmask** — Specify the subnet mask in dotted decimal notation.

**Values**
- a.b.c.d (dotted quad equivalent of mask length)
IP QoS Policy Match Commands

src-port

Syntax

src-port {eq} src-port-number
src-port range start end
no src-port

description

This command configures a source TCP or UDP port number or port range for a SAP QoS policy match criterion.

The no form of this command removes the source port match criterion.

Default

No src-port match criterion.

Parameters

eq src-port-number — The TCP or UDP port numbers to match specified as equal to (eq) to the source port value specified as a decimal integer.

Values

1 — 65535 (decimal hex or binary)

range start end — The range of TCP or UDP port values to match specified as between the start and end source port values inclusive.

Values

1 — 65535 (decimal hex or binary)
Service Ingress MAC QoS Policy Match Commands

**dot1p**

**Syntax**

```
dot1p dot1p-value [dot1p-mask]
no dot1p
```

**Context**

config>qos>sap-ingress>mac-criteria>entry

**Description**

The IEEE 802.1p value to be used as the match criterion.

Use the **no** form of this command to remove the dot1p value as the match criterion.

**Default**

None

**Parameters**

- **dot1p-value** — Enter the IEEE 802.1p value in decimal.
  - **Values**
    - 0 — 7

- **dot1pmask** — This 3-bit mask can be configured using the following formats:
  - **Format Style** | **Format Syntax** | **Example**
    - Decimal | D | 4
    - Hexadecimal | 0xH | 0x4
    - Binary | 0bBBB | 0b100

To select a range from 4 up to 7 specify a *value* of 4 and a *mask* of 0b100 for value and mask.

**Default**

7 (decimal) (exact match)

**Values**

1 — 7 (decimal)

**dst-mac**

**Syntax**

```
dst-mac ieee-address [ieee-address-mask]
no dst-mac
```

**Context**

config>qos>sap-ingress>mac-criteria>entry

**Description**

Configures a destination MAC address or range to be used as a Service Ingress QoS policy match criterion.

The no form of this command removes the destination mac address as the match criterion.

**Default**

none
Service Ingress MAC QoS Policy Match Commands

Parameters

- **ieee-address** — The MAC address to be used as a match criterion.
  
  **Values**
  
  HH:HH:HH:HH:HH:HH or HH-HH-HH-HH-HH-HH where H is a hexadecimal digit

- **ieee-address-mask** — A 48-bit mask to match a range of MAC address values.

  This 48-bit mask can be configured using the following formats:

<table>
<thead>
<tr>
<th>Format Style</th>
<th>Format Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal</td>
<td>DDDDDDDDDDDDD</td>
<td>28147495993440</td>
</tr>
<tr>
<td>Hexadecimal</td>
<td>0xHHHHHHHHHHH</td>
<td>0xFFFF000000</td>
</tr>
<tr>
<td>Binary</td>
<td>0bBBBBBBBBBB...B</td>
<td>0b11110000...B</td>
</tr>
</tbody>
</table>

  All packets with a source MAC OUI value of 00-03-FA subject to a match condition should be specified as: 0003FA000000 0xFFFF000000

  **Default**

  0xFFFF00000000 (hex) (exact match)

  **Values**

  0x00000000000000 — 0xFFFF00000000 (hex)

etype

- **Syntax**

  etype etype-value
  
  no etype

- **Context**

  config>qos>sap-ingress>mac-criteria>entry

- **Description**

  Configures an Ethernet type II value to be used as a service ingress QoS policy match criterion.

  The Ethernet type field is a two-byte field used to identify the protocol carried by the Ethernet frame. For e.g. 0800 is used to identify the IP v4 packets.

  The Ethernet type field is used by the Ethernet version-II frames. IEEE 802.3 Ethernet frames do not use the type field. For IEEE 802.3 frames use the dsap, ssap or snap-pid fields as match criteria.

  The snap-pid field, etype field, ssap and dsap fields are mutually exclusive and cannot be part of the same match criteria.

  The no form of this command removes the previously entered etype field as the match criteria.

- **Default**

  None

- **Parameters**

  - **etype-value** — The Ethernet type II frame Ethertype value to be used as a match criterion expressed in hexadecimal.

  **Values**

  0x0600 — 0xFFFF [1536..65535] - accepts in decimal or hex
Operational Commands

src-mac

Syntax

```
src-mac ieee-address [ieee-address-mask]
no src-mac
```

Context
config>qos>sap-ingress>mac-criteria>entry

Description
This command configures a source MAC address or range to be used as a service ingress QoS policy match
criterion.
The `no` form of this command removes the source mac as the match criteria.

Default
none

Parameters

`ieee-address` — Enter the 48-bit IEEE mac address to be used as a match criterion.

Values
HH:HH:HH:HH:HH:HH or HH-HH-HH-HH-HH-HH where H is a hexadecimal digit

`ieee-address-mask` — This 48-bit mask can be configured using:

This 48 bit mask can be configured using the following formats

<table>
<thead>
<tr>
<th>Format Style</th>
<th>Format Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal</td>
<td>DDDDDDDDDDDDD</td>
<td>281474959933440</td>
</tr>
<tr>
<td>Hexadecimal</td>
<td>0xHHHHHHHHHHH</td>
<td>0x0FFFFFF00000</td>
</tr>
<tr>
<td>Binary</td>
<td>0bBBBBBBBB...B</td>
<td>0b11110000...B</td>
</tr>
</tbody>
</table>

To configure all packets with a source MAC OUI value of 00-03-FA are subject to a match condition,
then the entry should be specified as: 003FA00000 0xFFFFFFFFFFFF

Default
0xFFFFFFFFFFFF (hex) (exact match)

Values
0x000000000000000 — 0xFFFFFFFFFFFF (hex)
Service Meter QoS Policy Commands

meter

Syntax
meter meter-id [multipoint] [create]
no meter meter-id

Context config>qos>sap-ingress

Description
This command creates the context to configure an ingress service access point (SAP) QoS policy meter. This command allows the creation of multipoint meters. Only multipoint meters can receive ingress packets that need flooding to multiple destinations. By separating the unicast for multipoint traffic at service ingress and handling the traffic on separate multipoint meters special handling of the multipoint traffic is possible. Each meter acts as an accounting and (optionally) policing device offering precise control over potentially expensive multicast, broadcast and unknown unicast traffic. Only the back-end support of multipoint traffic (between the forwarding class and the meter based on forwarding type) needs to be defined. The individual classification rules used to place traffic into forwarding classes are not affected. Meters must be defined as multipoint at the time of creation within the policy.

The multipoint meters are for multipoint-destined service traffic. Within non-multipoint services, such as Epipe services, all traffic is considered unicast due to the nature of the service type. Multicast and broadcast-destined traffic in an Epipe service will not be mapped to a multipoint service meter.

When an ingress SAP QoS policy with multipoint meters is applied to an Epipe SAP, the multipoint meters are not created.

Any billing or statistical queries about a multipoint meter on a non-multipoint service returns zero values. Any meter parameter information requested about a multipoint meter on a non-multipoint service returns the meter parameters in the policy. Multipoint meters would not be created for non-multipoint services.

The no form of this command removes the meter-id from the SAP ingress QoS policy and from any existing SAPs using the policy. Any forwarding class mapped to the meter, will revert to their default meters. When a meter is removed, any pending accounting information for each SAP meter created due to the definition of the meter in the policy is discarded.

Parameters
meter-id — The meter-id for the meter, expressed as an integer. The meter-id uniquely identifies the meter within the policy. This is a required parameter each time the meter command is executed.

Values
1 — 32

adaptation-rule

Syntax
adaptation-rule [cir adaptation-rule] [pir adaptation-rule]
no adaptation-rule

Context config>qos>sap-ingress>meter

Description
This command defines the method used by the system to derive the operational CIR and PIR settings when the meter is provisioned in hardware. For the CIR and PIR parameters, individually the system attempts to
find the best operational rate depending on the defined constraint.

The no form of the command removes any explicitly defined constraints used to derive the operational CIR and PIR created by the application of the policy. When a specific adaptation-rule is removed, the default constraints for rate and cir apply.

Default: adaptation-rule cir closest pir closest

Parameters:

- **adaptation-rule** — Specifies the adaptation rule to be used while computing the operational CIR or PIR value.
- **pir** — Defines the constraints enforced when adapting the PIR rate defined within the meter meter-id rate command. The pir parameter requires a qualifier that defines the constraint used when deriving the operational PIR for the meter. When the rate command is not specified, the default applies.
- **cir** — Defines the constraints enforced when adapting the CIR rate defined within the meter rate command. The cir parameter requires a qualifier that defines the constraint used when deriving the operational CIR for the meter. When the cir parameter is not specified, the default constraint applies.
- **max** — The max (maximum) option is mutually exclusive with the min and closest options. When max is defined, the operational PIR/CIR will be the next multiple of 8 that is equal to or lesser than the specified rate.
- **min** — The min (minimum) option is mutually exclusive with the max and closest options. When min is defined, the operational PIR/CIR will be the next multiple of 8 kbps that is equal to or higher than the specified rate.
- **closest** — The closest parameter is mutually exclusive with the min and max parameter. When closest is defined, the operational PIR/CIR will be the next multiple of 8 kbps that is closest to the specified rate.

---

### cbs

**Syntax**: cbs size-in-kbits

- **no cbs**

**Context**: config>qos>sap-ingress>meter

**Description**: This command provides a mechanism to override the default CBS for the meter. The committed burst size parameter specifies the maximum burst size that can be transmitted by the source while still complying with the CIR. If the transmitted burst is lower than the CBS value then the packets are marked as in-profile by the meter to indicate that the traffic is complying meter configured parameters.

The no form of this command returns the CBS size to the default value.

**Default**: default

**Parameters**:

- **size-in-kbits** — Specifies the size parameter is an integer expression of the number of kilobits reserved for the meter. For example, if a value of 100 KBits is desired, then enter the value 100. The bucket size is rounded off to the next highest 4096 bytes boundary.

**Values**: 4 — 2146959, default
Service Meter QoS Policy Commands

mbs

Syntax  

mbs  size-in-kbits
no mbs

Context  

config>qos>sap-ingress>meter

Description  

This command provides the explicit definition of the maximum amount of tokens allowed for a specific meter. The value is given in Kilobits and overrides the default value for the context.

In case of trtcm, the maximum burst size parameter specifies the maximum burst size that can be transmitted by the source at the PIR while complying with the PIR. If the transmitted burst is lower than the MBS value then the packets are marked as out-profile by the meter to indicate that the traffic is not complying with CIR, but complying with PIR.

In case of srTCM, the MBS parameter specifies the maximum burst size that can be transmitted by the source while not complying with the CIR. The transmitted burst is lower than the MBS value then the packets are marked as out-profile by the meter to indicate that the traffic is not complying with CIR.

If the packet burst is higher than MBS then packets are marked as red are dropped by the meter.

The no form of this command returns the MBS size assigned to the meter to the value.

Default  

default

Parameters  

size-in-kbits — This parameter is an integer expression of the maximum number of Kilobits of buffering allowed for the meter. For example, for a value of 100 KBits, enter the value 100.

Values  

4 — 2146959, default

mode

Syntax  

mode {trtcm1 | trtcm2 | srtcmt}
no mode

Context  

config>qos>sap-ingress>meter

Description  

This command defines the mode of the meter. The mode can be configured as Two Rate Three Color Marker (trTCM1) or Single Rate Three Color Marker (srTCM). The mode command can be executed at anytime.

Note:
1. The meter counters are reset to zero when the meter mode is changed.
2. For more information on the interpretation of rate parameters when the meter mode is configured as "trtcm2", refer to the command description of the policer rate command.

The no form of the command sets the default mode trtcm1.

Default  

trtcm1

Parameters  

trtcm1 — Implements the policing algorithm defined in RFC2698. Meters the packet stream and marks its packets either green, yellow, or red. A packet is marked red if it exceeds the PIR. Otherwise, it is marked either yellow or green depending on whether it exceeds or doesn't exceed the CIR. The trTCM1
is useful, for example, for ingress policing of a service, where a peak rate needs to be enforced separately from a committed rate. Two token buckets are used, the CBS bucket and the MBS bucket. Tokens are added to the buckets based on the CIR and PIR rates. The algorithm deducts tokens from both the CBS and the MBS buckets to determine a profile for the packet.

**trtcm2** — Implements the policing algorithm defined in RFC4115. Meters the packet stream and marks its packets either green, yellow, or red. A packet is marked red if it exceeds the PIR. Otherwise, it is marked either yellow or green depending on whether it exceeds or does not exceed the CIR. The trtcm2 is useful, for example, for ingress policing of a service, where a peak rate needs to be enforced separately from a committed rate. Two token buckets are used, the CBS bucket and the EBS bucket. Tokens are added to the buckets based on the CIR and EIR rates. The algorithm deducts tokens from either the CBS bucket (that is, when the algorithm identifies the packet as in-profile or green packet) or the EBS bucket (that is, when the algorithm identifies the packet as out-of-profile or yellow packet).

Note: In this mode, the value of the PIR rate configured by the user is used as the policer’s EIR rate.

**srtcm** — Meters an IP packet stream and marks its packets either green, yellow, or red. Marking is based on a CIR and two associated burst sizes, a CBS and an Maximum Burst Size (MBS). A packet is marked green if it doesn't exceed the CBS, yellow if it does exceed the CBS, but not the MBS, and red otherwise. The srTCM is useful, for example, for ingress policing of a service, where only the length, not the peak rate, of the burst determines service eligibility.

---

**rate**

**Syntax**

rate cir cir-rate-in-kbps [pir pir-rate-in-kbps]

no rate

**Context**

cfg>qos>sap-ingress>meter

**Description**

This command defines the administrative PIR and CIR parameters for the meter.

The rate command can be executed at anytime, altering the PIR and CIR rates for all meters created through the association of the SAP Ingress QoS policy with the meter-id.

**Note:** When the meter mode is configured in trtcm2 mode, the system interprets the PIR rate parameter as EIR for use by RFC 4115 algorithm.

The **no** form of the command returns all meters created with the meter-id by association with the QoS policy to the default PIR and CIR parameters (max, 0).

**Default**

rate cir 0 pir max — The max default specifies the amount of bandwidth in kilobits per second (thousand bits per second). The max value is mutually exclusive to the **pir-rate** value.

**Parameters**

- cir cir-rate-in-kbps — The cir parameter overrides the default administrative CIR used by the meter. When the rate command has not been executed or the cir parameter is not explicitly specified, the default CIR (0) is assumed.
  
  Fractional values are not allowed and must be given as a positive integer.

  The actual CIR rate is dependent on the meter’s **adaptation-rule** parameters and the hardware.

  **Values**

  - 0 — 20000000, max
pir pir-rate-in-kbps — Defines the administrative PIR rate, in kilobits, for the meter. When this command is executed, a valid PIR setting must be explicitly defined. When the rate command has not been executed, the default PIR of max is assumed. When the rate command is executed, a PIR setting is optional.

Fractional values are not allowed and must be given as a positive integer.

The actual PIR rate is dependent on the meter’s adaptation-rule parameters and the hardware.

Note: If the meter mode is configured as trtc2, the system configures the policer’s EIR rate, based on the value of the PIR rate configured by the user.

Values 0 — 2000000, max
Show Commands

sap-ingress

Syntax        sap-ingress [policy-id] [detail]

Context       show>qos

Description   This command displays SAP ingress QoS policy information.

Parameters    policy-id — Displays information about the specific policy ID.

    Default    all SAP ingress policies
    Values     1 — 65535

detail — Displays detailed policy information including policy associations.

Sample Output

Show SAP Ingress Output — The following table describes SAP ingress show command output.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy-Id</td>
<td>The ID that uniquely identifies the policy.</td>
</tr>
<tr>
<td>Scope</td>
<td>Exclusive — Implies that this policy can only be applied to a single SAP.</td>
</tr>
<tr>
<td></td>
<td>Template — Implies that this policy can be applied to multiple SAPs on the router.</td>
</tr>
<tr>
<td>Description</td>
<td>A text string that helps identify the policy’s context in the configuration file.</td>
</tr>
<tr>
<td>Default FC</td>
<td>Specifies the default forwarding class for the policy.</td>
</tr>
<tr>
<td>Criteria-type</td>
<td>IP — Specifies that an IP criteria-based SAP ingress policy is used to select the appropriate ingress and corresponding forwarding class for matched traffic.</td>
</tr>
<tr>
<td></td>
<td>MAC — Specifies that a MAC criteria-based SAP is used to select the appropriate ingress meters and corresponding forwarding class for matched traffic.</td>
</tr>
<tr>
<td></td>
<td>Displays the meter ID.</td>
</tr>
<tr>
<td>Mode</td>
<td>Specifies the configured mode of the meter (trTcm1 or srTcm).</td>
</tr>
<tr>
<td>Label</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>CIR Admin</td>
<td>Specifies the administrative Committed Information Rate (CIR) parameters for the meters.</td>
</tr>
<tr>
<td>CIR Rule</td>
<td></td>
</tr>
<tr>
<td>min</td>
<td>The operational CIR for the meters will be equal to or greater than the administrative rate specified using the rate command.</td>
</tr>
<tr>
<td>max</td>
<td>The operational CIR for the meters will be equal to or less than the administrative rate specified using the rate command.</td>
</tr>
<tr>
<td>closest</td>
<td>The operational PIR for the meters will be the rate closest to the rate specified using the rate command without exceeding the operational PIR.</td>
</tr>
<tr>
<td>PIR Admin</td>
<td>Specifies the administrative Peak Information Rate (PIR) parameters for the meters.</td>
</tr>
<tr>
<td>PIR Rule</td>
<td></td>
</tr>
<tr>
<td>min</td>
<td>The operational PIR for the meters will be equal to or greater than the administrative rate specified using the rate command.</td>
</tr>
<tr>
<td>max</td>
<td>The operational PIR for the meters will be equal to or less than the administrative rate specified using the rate command.</td>
</tr>
<tr>
<td>closest</td>
<td>The operational PIR for the meters will be the rate closest to the rate specified using the rate command.</td>
</tr>
<tr>
<td>CBS</td>
<td>def — Specifies the default CBS value for the meters.</td>
</tr>
<tr>
<td></td>
<td>value — Specifies the value to override the default reserved buffers for the meters.</td>
</tr>
<tr>
<td>MBS</td>
<td>def — Specifies the default MBS value.</td>
</tr>
<tr>
<td></td>
<td>value — Specifies the value to override the default MBS for the.</td>
</tr>
<tr>
<td>UCast</td>
<td>Specifies the default unicast forwarding type meters mapping.</td>
</tr>
<tr>
<td>MCast</td>
<td>Specifies the overrides for the default multicast forwarding type mapping.</td>
</tr>
<tr>
<td>BCast</td>
<td>Specifies the default broadcast forwarding type meters mapping.</td>
</tr>
<tr>
<td>Unknown</td>
<td>Specifies the default unknown unicast forwarding type meters mapping.</td>
</tr>
<tr>
<td>Match Criteria Entry</td>
<td>Specifies an IP or MAC criteria entry for the policy.</td>
</tr>
</tbody>
</table>
Sample Output

*A:Dut-G# show qos sap-ingress 100 detail

===============================================================================
QoS Sap Ingress
===============================================================================
Sap Ingress Policy (100)

<table>
<thead>
<tr>
<th>Policy-id</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope</td>
<td>Template</td>
</tr>
<tr>
<td>Default FC</td>
<td>be</td>
</tr>
<tr>
<td>Criteria-type</td>
<td>MAC</td>
</tr>
<tr>
<td>Sub-Criteria-type</td>
<td>dot1p-only</td>
</tr>
<tr>
<td>Accounting</td>
<td>packet-based</td>
</tr>
<tr>
<td>Classifiers Allowed</td>
<td>16</td>
</tr>
<tr>
<td>Classifiers Reqrd (VPLS)</td>
<td>16</td>
</tr>
<tr>
<td>Classifiers Reqrd (EPIPE)</td>
<td>8</td>
</tr>
<tr>
<td>Meters Allowed</td>
<td>8</td>
</tr>
<tr>
<td>Meters Reqrd (VPLS)</td>
<td>9 Exceeded</td>
</tr>
<tr>
<td>Meters Reqrd (EPIPE)</td>
<td>8</td>
</tr>
</tbody>
</table>

---

**Label**	**Description** (Continued)
DSCP | Specifies a DiffServ Code Point (DSCP) name used for an ingress SAP QoS policy match.
FC | Specifies the entry’s forwarding class.
Src MAC | Specifies a source MAC address or range to be used as a Service Ingress QoS policy match.
Dst MAC | Specifies a destination MAC address or range to be used as a Service Ingress QoS policy match.
Dot1p | Specifies a IEEE 802.1p value to be used as the match.
Ethertype | Specifies an Ethernet type II Ethertype value to be used as a Service Ingress QoS policy match.
FC | Specifies the entry’s forwarding class.

**Service Association**

Service-Id | The unique service ID number which identifies the service in the service domain.
Customer-Id | Specifies the customer ID which identifies the customer to the service.
SAP | Specifies the a Service Access Point (SAP) within the service where the SAP ingress policy is applied.

Classifiers required | Indicates the number of classifiers for a VPLS or Epipe service.
Meters required | Indicates the number of meters for a VPLS or Epipe service.
### Service Meter QoS Policy Commands

**Description**: (Not Specified)

<table>
<thead>
<tr>
<th>Meter Mode</th>
<th>CIR Admin</th>
<th>CIR Rule</th>
<th>PIR Admin</th>
<th>PIR Rule</th>
<th>CBS Admin</th>
<th>MBS Admin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TrTcm</td>
<td>0</td>
<td>closest</td>
<td>max</td>
<td>closest</td>
<td>def</td>
</tr>
<tr>
<td>2</td>
<td>TrTcm</td>
<td>0</td>
<td>closest</td>
<td>max</td>
<td>closest</td>
<td>def</td>
</tr>
<tr>
<td>3</td>
<td>TrTcm</td>
<td>0</td>
<td>closest</td>
<td>max</td>
<td>closest</td>
<td>def</td>
</tr>
<tr>
<td>4</td>
<td>TrTcm</td>
<td>0</td>
<td>closest</td>
<td>max</td>
<td>closest</td>
<td>def</td>
</tr>
<tr>
<td>5</td>
<td>TrTcm</td>
<td>0</td>
<td>closest</td>
<td>max</td>
<td>closest</td>
<td>def</td>
</tr>
<tr>
<td>6</td>
<td>TrTcm</td>
<td>0</td>
<td>closest</td>
<td>max</td>
<td>closest</td>
<td>def</td>
</tr>
<tr>
<td>7</td>
<td>TrTcm</td>
<td>0</td>
<td>closest</td>
<td>max</td>
<td>closest</td>
<td>def</td>
</tr>
<tr>
<td>8</td>
<td>TrTcm</td>
<td>0</td>
<td>closest</td>
<td>max</td>
<td>closest</td>
<td>def</td>
</tr>
<tr>
<td>9</td>
<td>TrTcm</td>
<td>0</td>
<td>closest</td>
<td>max</td>
<td>closest</td>
<td>def</td>
</tr>
<tr>
<td>10</td>
<td>TrTcm</td>
<td>0</td>
<td>closest</td>
<td>max</td>
<td>closest</td>
<td>def</td>
</tr>
<tr>
<td>11</td>
<td>TrTcm</td>
<td>0</td>
<td>closest</td>
<td>max</td>
<td>closest</td>
<td>def</td>
</tr>
<tr>
<td>12</td>
<td>TrTcm</td>
<td>0</td>
<td>closest</td>
<td>max</td>
<td>closest</td>
<td>def</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FC</th>
<th>UCastM</th>
<th>MCastM</th>
<th>BCastM</th>
<th>UnknownM</th>
</tr>
</thead>
<tbody>
<tr>
<td>l2</td>
<td>4</td>
<td>def</td>
<td>def</td>
<td>def</td>
</tr>
<tr>
<td>af</td>
<td>3</td>
<td>def</td>
<td>def</td>
<td>def</td>
</tr>
<tr>
<td>l1</td>
<td>5</td>
<td>def</td>
<td>def</td>
<td>def</td>
</tr>
<tr>
<td>h2</td>
<td>7</td>
<td>def</td>
<td>def</td>
<td>def</td>
</tr>
<tr>
<td>ef</td>
<td>2</td>
<td>def</td>
<td>def</td>
<td>def</td>
</tr>
<tr>
<td>h1</td>
<td>6</td>
<td>def</td>
<td>def</td>
<td>def</td>
</tr>
<tr>
<td>nc</td>
<td>8</td>
<td>def</td>
<td>def</td>
<td>def</td>
</tr>
</tbody>
</table>

**Match Criteria**

<table>
<thead>
<tr>
<th>Entry</th>
<th>Description : (Not Specified)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Src MAC</td>
<td>: Atm-Vci : Disabled</td>
</tr>
<tr>
<td>Dst MAC</td>
<td>: Dot1p : 1/7</td>
</tr>
<tr>
<td>Ethernet-type</td>
<td>: Disabled</td>
</tr>
<tr>
<td>FC</td>
<td>: af</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entry</th>
<th>Description : (Not Specified)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Src MAC</td>
<td>: Atm-Vci : Disabled</td>
</tr>
<tr>
<td>Dst MAC</td>
<td>: Dot1p : 2/7</td>
</tr>
<tr>
<td>Ethernet-type</td>
<td>: Disabled</td>
</tr>
<tr>
<td>FC</td>
<td>: ef</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entry</th>
<th>Description : (Not Specified)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Src MAC</td>
<td>: Atm-Vci : Disabled</td>
</tr>
<tr>
<td>Dst MAC</td>
<td>: Dot1p : 3/7</td>
</tr>
<tr>
<td>Ethernet-type</td>
<td>: Disabled</td>
</tr>
<tr>
<td>FC</td>
<td>: l1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entry</th>
<th>Description : (Not Specified)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Src MAC</td>
<td>: Atm-Vci : Disabled</td>
</tr>
<tr>
<td>Dst MAC</td>
<td>: Dot1p : 4/7</td>
</tr>
<tr>
<td>Ethernet-type</td>
<td>: Disabled</td>
</tr>
<tr>
<td>FC</td>
<td>: l2</td>
</tr>
</tbody>
</table>
Entry : 5
Description : (Not Specified)
Src MAC : 
Dst MAC : 
Ethernet-type : Disabled
FC : h1

Entry : 6
Description : (Not Specified)
Src MAC : 
Dst MAC : 
Ethernet-type : Disabled
FC : h2

Entry : 7
Description : (Not Specified)
Src MAC : 
Dst MAC : 
Ethernet-type : Disabled
FC : nc

Associations
Service-Id : 100 (Epipe) Customer-Id : 1
- SAP : 1/1/1:100

*A:Dut-G#

*A:qos1# show qos sap-ingress 102 detail

QoS Sap Ingress
Sap Ingress Policy (102)

Policy-id : 102 Scope : Template
Default FC : be
Criteria-type : MAC
Sub-Criteria-type : dot1p-only
Accounting : packet-based
Classifiers Allowed : 32 Meters Allowed : 16
Classifiers Used : 32 Meters Used : 16

<table>
<thead>
<tr>
<th>Meter Mode</th>
<th>CIR Admin</th>
<th>CIR Rule</th>
<th>PIR Admin</th>
<th>PIR Rule</th>
<th>CBS</th>
<th>MBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TrTcm</td>
<td>100</td>
<td>closest</td>
<td>200</td>
<td>closest</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>TrTcm</td>
<td>100</td>
<td>closest</td>
<td>200</td>
<td>closest</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>TrTcm</td>
<td>100</td>
<td>closest</td>
<td>200</td>
<td>closest</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>TrTcm</td>
<td>100</td>
<td>closest</td>
<td>200</td>
<td>closest</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>TrTcm</td>
<td>100</td>
<td>closest</td>
<td>200</td>
<td>closest</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>TrTcm</td>
<td>100</td>
<td>closest</td>
<td>200</td>
<td>closest</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>TrTcm</td>
<td>100</td>
<td>closest</td>
<td>200</td>
<td>closest</td>
<td>32</td>
</tr>
<tr>
<td>8</td>
<td>TrTcm</td>
<td>100</td>
<td>closest</td>
<td>200</td>
<td>closest</td>
<td>32</td>
</tr>
<tr>
<td>9</td>
<td>TrTcm</td>
<td>100</td>
<td>closest</td>
<td>200</td>
<td>closest</td>
<td>32</td>
</tr>
<tr>
<td>10</td>
<td>TrTcm</td>
<td>100</td>
<td>closest</td>
<td>200</td>
<td>closest</td>
<td>32</td>
</tr>
<tr>
<td>11</td>
<td>TrTcm</td>
<td>100</td>
<td>closest</td>
<td>200</td>
<td>closest</td>
<td>32</td>
</tr>
<tr>
<td>12</td>
<td>TrTcm</td>
<td>100</td>
<td>closest</td>
<td>200</td>
<td>closest</td>
<td>32</td>
</tr>
</tbody>
</table>
Service Meter QoS Policy Commands

<table>
<thead>
<tr>
<th>FC</th>
<th>UCastM</th>
<th>MCastM</th>
<th>BCastM</th>
<th>UnknownM</th>
</tr>
</thead>
<tbody>
<tr>
<td>be</td>
<td>1</td>
<td>11</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>l2</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>af</td>
<td>7</td>
<td>15</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>l1</td>
<td>6</td>
<td>14</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>h2</td>
<td>5</td>
<td>13</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>ef</td>
<td>4</td>
<td>12</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>h1</td>
<td>3</td>
<td>10</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>nc</td>
<td>2</td>
<td>9</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

Match Criteria

Entry: 1
Src MAC:
Dst MAC:
Ethernet-type: Disabled
FC: nc

Entry: 2
Src MAC:
Dst MAC:
Ethernet-type: Disabled
FC: nc

Entry: 3
Src MAC:
Dst MAC:
Ethernet-type: Disabled
FC: nc

Entry: 4
Src MAC:
Dst MAC:
Ethernet-type: Disabled
FC: nc

Entry: 5
Src MAC:
Dst MAC:
Ethernet-type: Disabled
FC: nc

Entry: 6
Src MAC:
Dst MAC:
Ethernet-type: Disabled
FC: nc

Entry: 7
Src MAC:
Dst MAC:
Ethernet-type: Disabled
FC: nc
**Associations**

<table>
<thead>
<tr>
<th>Service-Id</th>
<th>Customer-Id</th>
<th>102 (VPLS)</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAP : 1/1/3:102</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAP : 1/1/7:102</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*A:qos1#

**For SAS-MX:**

*A:qos1# show qos sap-ingress 102 detail

**Sap Ingress Policy (102)**

<table>
<thead>
<tr>
<th>Policy-id</th>
<th>Scope</th>
<th>Template</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>be</td>
<td></td>
</tr>
</tbody>
</table>

**Criteria-type** : MAC

**Sub-Criteria-type** : dot1p-only

**Accounting** : packet-based

**Classifiers Allowed** : 32

**Classifiers Used** : 32

**Meters Allowed** : 16

**Meters Used** : 16

<table>
<thead>
<tr>
<th>Meter Mode</th>
<th>CIR Admin</th>
<th>CIR Rule</th>
<th>PIR Admin</th>
<th>PIR Rule</th>
<th>CBS Admin</th>
<th>MBS Admin</th>
<th>CBS Oper</th>
<th>MBS Oper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TrTcm</td>
<td>100</td>
<td>closest</td>
<td>200</td>
<td>closest</td>
<td>def</td>
<td>def</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>104</td>
<td></td>
<td>200</td>
<td></td>
<td>def</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>TrTcm</td>
<td>100</td>
<td>closest</td>
<td>200</td>
<td>closest</td>
<td>def</td>
<td>def</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>104</td>
<td></td>
<td>200</td>
<td></td>
<td>def</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>TrTcm</td>
<td>100</td>
<td>closest</td>
<td>200</td>
<td>closest</td>
<td>def</td>
<td>def</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>104</td>
<td></td>
<td>200</td>
<td></td>
<td>def</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>TrTcm</td>
<td>100</td>
<td>closest</td>
<td>200</td>
<td>closest</td>
<td>def</td>
<td>def</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>104</td>
<td></td>
<td>200</td>
<td></td>
<td>def</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>TrTcm</td>
<td>100</td>
<td>closest</td>
<td>200</td>
<td>closest</td>
<td>def</td>
<td>def</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>104</td>
<td></td>
<td>200</td>
<td></td>
<td>def</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>TrTcm</td>
<td>100</td>
<td>closest</td>
<td>200</td>
<td>closest</td>
<td>def</td>
<td>def</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>104</td>
<td></td>
<td>200</td>
<td></td>
<td>def</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>TrTcm</td>
<td>100</td>
<td>closest</td>
<td>200</td>
<td>closest</td>
<td>def</td>
<td>def</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>104</td>
<td></td>
<td>200</td>
<td></td>
<td>def</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>TrTcm</td>
<td>100</td>
<td>closest</td>
<td>200</td>
<td>closest</td>
<td>def</td>
<td>def</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>104</td>
<td></td>
<td>200</td>
<td></td>
<td>def</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>TrTcm</td>
<td>100</td>
<td>closest</td>
<td>200</td>
<td>closest</td>
<td>def</td>
<td>def</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>104</td>
<td></td>
<td>200</td>
<td></td>
<td>def</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>TrTcm</td>
<td>100</td>
<td>closest</td>
<td>200</td>
<td>closest</td>
<td>def</td>
<td>def</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>104</td>
<td></td>
<td>200</td>
<td></td>
<td>def</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>TrTcm</td>
<td>100</td>
<td>closest</td>
<td>200</td>
<td>closest</td>
<td>def</td>
<td>def</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>104</td>
<td></td>
<td>200</td>
<td></td>
<td>def</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>TrTcm</td>
<td>100</td>
<td>closest</td>
<td>200</td>
<td>closest</td>
<td>def</td>
<td>def</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>104</td>
<td></td>
<td>200</td>
<td></td>
<td>def</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>TrTcm</td>
<td>100</td>
<td>closest</td>
<td>200</td>
<td>closest</td>
<td>def</td>
<td>def</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>104</td>
<td></td>
<td>200</td>
<td></td>
<td>def</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>TrTcm</td>
<td>100</td>
<td>closest</td>
<td>200</td>
<td>closest</td>
<td>def</td>
<td>def</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>104</td>
<td></td>
<td>200</td>
<td></td>
<td>def</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>TrTcm</td>
<td>100</td>
<td>closest</td>
<td>200</td>
<td>closest</td>
<td>def</td>
<td>def</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>104</td>
<td></td>
<td>200</td>
<td></td>
<td>def</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>
### Service Meter QoS Policy Commands

<table>
<thead>
<tr>
<th>FC</th>
<th>UCastM</th>
<th>MCastM</th>
<th>BCastM</th>
<th>UnknownM</th>
</tr>
</thead>
<tbody>
<tr>
<td>be</td>
<td>1</td>
<td>11</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>l2</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>af</td>
<td>7</td>
<td>15</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>l1</td>
<td>6</td>
<td>14</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>h2</td>
<td>5</td>
<td>13</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>ef</td>
<td>4</td>
<td>12</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>h1</td>
<td>3</td>
<td>10</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>nc</td>
<td>2</td>
<td>9</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

**Match Criteria**

- **Entry**: 1
- **Src MAC** :
- **Dst MAC** :

*A:qos1#

### Sample output for SAP Ingress Queuing for 7210 SAS-X

```
A:SASX>show>qos# sap-ingress

Sap Ingress Policies

<table>
<thead>
<tr>
<th>Policy-Id</th>
<th>Scope</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Template</td>
<td>Default SAP ingress QoS policy.</td>
</tr>
<tr>
<td>10</td>
<td>Template</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>Template</td>
<td></td>
</tr>
<tr>
<td>1001</td>
<td>Template</td>
<td></td>
</tr>
<tr>
<td>1002</td>
<td>Template</td>
<td></td>
</tr>
<tr>
<td>1003</td>
<td>Template</td>
<td></td>
</tr>
<tr>
<td>1004</td>
<td>Template</td>
<td></td>
</tr>
<tr>
<td>1005</td>
<td>Template</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>Template</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>Template</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Template</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Template</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Template</td>
<td></td>
</tr>
</tbody>
</table>

A:SASX>show>qos#
```
Access Egress QoS Policies

In This Section

This section provides information to configure Access Egress QoS policies using the command line interface.

Topics in this section include:

- Overview on page 294
- Basic Configurations on page 294
- Create Access Egress QoS Policies on page 295
- Default Access Egress QoS Policy Values on page 297
Overview

An access egress policy defines the marking for the traffic egressing on the access ports. Access-egress policies are used at the Ethernet port and define the marking values to use for traffic egressing on the Ethernet port. It defines the marking values to use for a forwarding class (FC).

There is one default access egress policy which is identified as policy ID 1. The default policy can be copied but cannot be deleted or modified. A remarking policy can be defined for each access egress policy and remarking is disabled by default. Only remarking policy of type dot1p, dot1p-lsp-exp-shared, dscp or dot1p-dscp can be used with access-egress policy.

7210 SAS-X supports SAP-based egress marking and port-based egress marking on only access ports. Users have an option to turn on either sap-based marking or port-based marking using the command ‘sap-qos-marking’ under the CLI configure>port>ethernet>access>egress context. In SAP-based marking the remark policy defined in the SAP egress policy associated with each SAP is used to mark the packets egressing out of SAP if marking is enabled. In port-based marking, the remark policy defined in the access-egress policy associated with the access port determines the marking values to use for all the SAPs defined on that port. SAP-based marking is only supported for L2 SAPs, i.e. SAPs configured in Epipe, VPLS and PBB (I-SAPs only) service. Port-based marking is supported for L3 SAPs (i.e. SAPs configured in VPRN services), PBB B-SAPs and other L2 SAPs. More information on the CLI command ‘sap-qos-marking’ is available in the 7210 Systems guide. The access egress policy is used only when port-based marking has been enabled (that is, sap-qos-marking is set to disable). By default, sap-based marking is enabled and sap-qos-marking is set to enable.

The default access-egress policy is as shown below

```
*A:Dut-A>config>qos>access-egress# info detail
--
description "Default Access egress QoS policy."
no remarking
remark 2
--
```

Basic Configurations

A basic access egress QoS policy must conform to the following:

- Have a unique access egress QoS policy ID.
- Have a description of the policy features.
Create Access Egress QoS Policies

Configuring and applying QoS policies is optional. If no QoS policy is explicitly applied to an access port, a default QoS policy 1 is applied.

Access Egress QoS Policy

To create an access egress policy, you must define the following:

- A new policy ID value. The system will not dynamically assign a value.
- Include a description. The description provides a brief overview of policy features.
- Remark - By default, remarking is disabled.
- A new remarking policy of the appropriate type can be defined for each access egress policy. The policy ID for the remarking policy must be specified.
- Configure port-based marking under the configure> port> ethernet> access> egress context.

The following displays the access egress QoS policy configuration:

```
*A:7210-SAS-X>config-qos>access-egress# info detail
--
description "policy1"
 remarking
 remark 2
--
*A:7210-SAS-X>config-qos>access-egress#
```
Applying Access Egress QoS Policies

Apply access egress policies to the following entities:

- Ethernet ports

A policy can be applied to the ports that are in access mode.

Ethernet Ports

Use the following CLI syntax to apply a access-egress policy to an Ethernet port:

**CLI Syntax:**

```
config>port#
 ethernet access egress
 qos access-egress-policy-id
 sap-qos-marking disable
```

The following output displays the port configuration.

```
*A:7210-SAS-X>config>port>ethernet# info
--
 mode access
 access
 egress
 sap-qos-marking disable
 qos 10
 exit
 exit
--
*A:7210-SAS-X>config>port>ethernet#
```
Default Access Egress QoS Policy Values

The default access egress policy is identified as policy-id 1. The default policy cannot be edited or deleted. The following displays default policy parameters:

*A:7210-SAS-X>config>qos>access-egress# info detail
----------------------------------------------
description "Default Access egress QoS policy."
no remarking
----------------------------------------------
*A:7210-SAS-X>config>qos>access-egress#
Editing QoS Policies

Existing policies and entries can be edited through the CLI or NMS. The changes are applied immediately to all services where the policy is applicable.

To prevent configuration errors perform the following:

1. Copy the policy to a work area
2. Edit the policy
3. Over write the original policy
Deleting QoS Policies

Every access Ethernet port is associated, by default, with the default access egress policy (policy-id 1). You can replace the default policy with a customer-configured policy, but you cannot entirely remove the policy from the port configuration. When you remove a non-default access egress policy, the association reverts to the default policy-id 1.

A QoS policy cannot be deleted until it is removed from all access ports where they are applied.

*A:7210-SAS-X>config>qos# no access-egress 30
MINOR: CLI Could not remove Access egress policy "30" because it is in use.

Removing a Policy from the QoS Configuration

**CLI Syntax:**
config>qos# no access-egress policy-id

**Example:**
config>qos# no access-egress 100
config>qos# no access-egress 1010
Overview
Command Hierarchies

Configuration Commands

```
config
 — qos
 — access-egress policy-id [create]
 — no access-egress policy-id
 — description description-string
 — no description
 — remark policy-id
 — no remark
 — remarking { use-dot1p | use-dscp | all }
 — no remarking
```
Configuration Commands

Generic Commands

description

Syntax  description  description-string  
         no description

Context  config>qos>access-egress

Description  This command creates a text description stored in the configuration file for a configuration context.

The **description** command associates a text string with a configuration context to help identify the context in the configuration file.

The **no** form of this command removes any description string from the context.

Default  No description is associated with the configuration context.

Parameters  description-string — A text string describing the entity. Allowed values are any string up to 80 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

access-egress

Syntax  access-egress  policy-id  [create]
         no access-egress  policy-id

Context  config>qos

Description  This command is used to create or edit an access egress QoS policy. The egress policy defines the remark policy for the traffic egressing on the access port. Remarking is disabled by default on the access egress policies. The policy can be applied to multiple access ports. The access egress policy is common to services (SAPs) that are all egressing on a particular port.

Any changes made to an existing policy are applied to all access ports on which the policy is specified.

7210 SAS-X supports SAP-based egress marking and port-based egress marking on only access ports. User have an option to turn on either sap-based marking or port-based marking using the command ‘sap-qos-marking’ under the port context. In SAP-based marking the remark policy
defined in the SAP egress policy associated with each SAP is used to mark the packets egressing
out of SAP if marking is enabled. In port-based marking, the remark policy defined in the access-
egress policy associated with the access port determines the marking values to use for all the SAPs
defined on that port. SAP-based marking is only supported for L2 SAPs, that is, SAPs configured
in Epipe, VPLS and PBB (I-SAPs only) service. Port-based marking is supported for both L3
SAPs, that is, SAPs configured in VPRN services, PBB B-SAPs and other L2 SAPs. More
information on the CLI command ‘sap-qos-marking’ is available in the 7210 Systems guide. The
access egress policy is used only when port-based marking has been enabled (that is, sap-qos-
marking is set to disable).

The system uses the access egress policy for marking only if the port with which this policy is
associated is enabled for port-based marking (that is, the command sap-qos-marking is set to
disable). When port-based marking is enabled, the system is capable of marking all the packets
egressing out of the port with either dot1p or dscp or both (that is, both dot1p and dscp). If
remarking is enabled and the remark policy is of type ‘dot1p’ or ‘dot1p-lsp-exp-shared’ then the
dot1p bits are marked in the packet based on the FC to dot1p values specified in the remark policy.
If remarking is enabled and the remark policy is of type ‘dscp’ then the IP DSCP bits are marked
in the packet. If remarking is enabled and the remark policy is of type ‘dot1p-dscp’ then both
dot1p and IP DSCP bits are marked in the packet.

Note: When port-based marking is enabled and marking for both dot1p and IP DSCP bits is
configured, the system marks dot1p and IP DSCP bits for all the packets sent out of both L2 SAPs
and L3 SAPs. It is recommended that if both L2 and L3 SAPs are configured on the same port,
then remark policy of type dot1p, that marks only dot1p bits be used.

The no form of this command deletes the access-egress policy. A policy cannot be deleted until it
is removed from all access ports where it is applied. When an access-egress policy is removed
from an access port, the access port will revert to the default access-egress policy-id 1.

Parameters

- **policy-id** — The value that uniquely identifies the access-egress policy.
  - **Values** 1 — 65535

create — The keyword used to create an access-egress policy. The create keyword requirement can be
enabled/disabled in the environment>create context.

remark

- **Syntax** remark policy-id
  - [no] remark

- **Context** config>qos>access-egress

- **Description** This command specifies the remarking policy for the access egress policy.

  Only remark policy of type dot1p or dot1p-lsp-exp-shared or dscp or dot1p-dscp is allowed for use
  with access-egress policy.

Page 304 7210 SAS X OS Quality of Service Guide
Parameters

policy-id — The value that uniquely identifies the remark policy.

Values

1 — 655353

remarking

Syntax

[no] remarking{use-dot1p|use-dscp|all}

remarking

Context
config>qos>access-egress

Description
This command enables the system to remark egress packets. Remarking cannot be disabled on the 7210 SAS E devices. For 7210 SAS D, remarking can be enabled or disabled.

The user can specify if either dot1p or dscp or both needs to be used for marking the packets egressing the port. If use-dot1p is configured, then for all the FCs only the configured dot1p values will be used. If use-dscp is configured, then for all the FCs only the configured dscp values are used. If all is configured, then for all the FCs both the dot1p and dscp values configured is used (if both have been provided).

If only dot1p-value is configured for a given FC, then use the configured value to mark the dot1p bits in the VLAN tag of the packet on the egress. If only dscp-value is configured for a given FC, then use the configured value to mark DSCP bits in the IP header the packet on the egress. If both of them are configured simultaneously, both dscp bits and dot1p bits are marked in the appropriate headers if its an IP packet and if its a non-IP packet then only dot1p is marked in the Ethernet header.

Note: This applies to all SAPs configured on the port, irrespective of the service they belong to. DSCP marking, if enabled, also marks the packets associated with SAPs configured in an L2 VPN service.

The no form of the command disables remarking.

If remarking is enabled and no remark policy is explicitly attached then the default remark policy 2 is used.

Default

no remarking

If remarking is enabled by default, 'use-dot1p' is used. Dot1p and DSCP values are marked according to Table 38 on page 301 Remarking is disabled by default.

Parameters

use-dot1p — If use-dot1p is configured, then for all the FCs only the configured dot1p values will be used.

use-dscp — If use-dscp is configured, then for all the FCs only the configured dscp values are used.

all — If all is configured, then for all the FCs both the dot1p and dscp values configured is used (if both have been provided).
Operational Commands

**copy**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>copy access-egress src-pol dst-pol [overwrite]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context</td>
<td>config&gt;qos</td>
</tr>
<tr>
<td>Description</td>
<td>This command copies existing QoS policy entries for a QoS policy-id to another QoS policy-id. The copy command is a configuration level maintenance tool used to create new policies using existing policies. It also allows bulk modifications to an existing policy with the use of the overwrite keyword.</td>
</tr>
<tr>
<td>Parameters</td>
<td>access-egress src-pol dst-pol — Indicates that the source policy ID and the destination policy ID are SAP ingress policy IDs. Specify the source policy ID that the copy command will attempt to copy from and specify the destination policy ID to which the command will copy a duplicate of the policy. overwrite — Specifies to replace the existing destination policy. Everything in the existing destination policy will be overwritten with the contents of the source policy. If overwrite is not specified, an error will occur if the destination policy ID exists.</td>
</tr>
<tr>
<td>Values</td>
<td>1 — 65535</td>
</tr>
</tbody>
</table>
Show Commands

access-egress

Syntax  access-egress [policy-id] [association | detail]
Context show>qos

Description This command displays Access egress QoS policy information.

Parameters
  policy-id — Displays information about the specific policy ID.
  Values  1 — 65535
  association — Displays a list of ports on which the policy is applied.
  detail — Displays detailed policy information including policy associations.

Access Egress Output — The following table describes Access egress show command output.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy-Id</td>
<td>The ID that uniquely identifies the policy.</td>
</tr>
<tr>
<td>Remark</td>
<td>True — Remarking is enabled for the policy. False — Remarking is disabled for the policy.</td>
</tr>
<tr>
<td>Description</td>
<td>A text string that helps identify the policy’s context in the configuration file</td>
</tr>
<tr>
<td>Port-Id</td>
<td>Specifies the physical port identifier that associates the access egress QoS policy.</td>
</tr>
<tr>
<td>Remark Pol Id</td>
<td>Displays the policy ID of the remark policy defined for the access egress policy.</td>
</tr>
</tbody>
</table>

Sample Output

A:SAS-X>show>qos# access-egress 2

QoS Access Egress

| Policy-id : 2 | Scope : Template |
| Remark : True | Remark Pol Id: 3 |
| Description : policy1 |
```
*A:SAS-X>show>qos#
*A:SAS-X>show>qos# access-egress 2 association

QoS Access Egress

<table>
<thead>
<tr>
<th>Policy-id</th>
<th>2</th>
<th>Scope</th>
<th>Template</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remark</td>
<td>True</td>
<td>Remark Pol Id</td>
<td>3</td>
</tr>
<tr>
<td>Description</td>
<td>policy1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Associations

Port-id : 1/1/2
```

```
*A:SAS-X>show>qos#
*A:SAS-X>show>qos# access-egress 2 detail

QoS Access Egress

<table>
<thead>
<tr>
<th>Policy-id</th>
<th>2</th>
<th>Scope</th>
<th>Template</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remark</td>
<td>True</td>
<td>Remark Pol Id</td>
<td>3</td>
</tr>
<tr>
<td>Description</td>
<td>policy1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Associations

Port-id : 1/1/2
```
SAP Egress Policies

In This Section

This section provides information to configure SAP egress policies using the command line interface.

Topics in this section include:

- Overview on page 310
The SAP Egress policy defines the Service Level Agreement (SLA) for service packets as they egress on the SAP. Egress SAP QoS policies allow the definition of queue parameters along with remark policy.

By default, the system allocates and associates “8” queues for use by each SAP created in the system. The system predefines the FC to queue map. Each queue must have a CIR rate, PIR rate, and a ‘cir-level’. The pir-level of the queue is assigned by the system based on the cir-level configured by the user. The CIR rate determines the amount of committed bandwidth to be made available to this queue. The PIR rate forces a hard limit on the packets transmitted through the queue. The hardware does not support a linear range of values for the rate parameters (both cir and pir). The user can specify the computation method of rates to match the rates supported by the hardware, through Adaptation-rules.

Each queue is also associated with a scheduler. The scheduler uses the queues cir and pir rate, cir-level, pir-level and pir-weight to distribute the available bandwidth among the queues. When multiple queues are in use, the level parameter determines the scheduling order of the queues. Queues with higher value of level parameter are scheduled out first.

A queue-management policy can be associated with a queue to manage the buffer allocation for in-profile and out-of profile packets. Note: Only a remark policy of type ‘dot1p-only’ or ‘dot1p-lsp-exp-shared’ is available for use with SAP Egress policy.

The following table shows the default FC to queue map assigned by the system.

### Table 36: FC to Queue Map

<table>
<thead>
<tr>
<th>FC</th>
<th>Queue Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>Queue #8</td>
</tr>
<tr>
<td>H1</td>
<td>Queue #7</td>
</tr>
<tr>
<td>EF</td>
<td>Queue #6</td>
</tr>
<tr>
<td>H2</td>
<td>Queue #5</td>
</tr>
<tr>
<td>L1</td>
<td>Queue #4</td>
</tr>
<tr>
<td>AF</td>
<td>Queue #3</td>
</tr>
<tr>
<td>L2</td>
<td>Queue #2</td>
</tr>
<tr>
<td>BE</td>
<td>Queue #1</td>
</tr>
</tbody>
</table>

NOTE: For more information on service egress scheduling, refer to the “QoS Schedulers” section.
Configuration Guidelines

- When a SAP is created eight queues are created and associated with it. User cannot create or delete any queues.
- The ‘pir-level’ of the queue is assigned by the system based on the ‘cir-level’ configured by the user. User cannot change this.
- The Forwarding Class (FC) to queue map is static and cannot be configured by the user.

Basic Configurations

A basic SAP Egress policy must confirm to the following:

- Each SAP Egress must have a unique policy ID.
- Define the queue parameters (cir, pir, cir-level, pir-weight) for all the queues.

Create a SAP Egress Policy

To create a new SAP Egress policy, define the following:

- A SAP Egress policy name.
- Provide a brief description of the policy features.
- Provide the queue parameters for all the queues.

Use the following CLI syntax to configure a SAP Egress policy:

CLI Syntax:
A:SASX# /configure qos sap-egress
   - no sap-egress <policy-id>
   - sap-egress <policy-id> [create]

<policy-id>          : [1..65535]
<create>             : keyword - mandatory while creating an entry.

[no] description      - Description for this sap-egress policy
 queue                + Configure a queue
[no] remark           - Specify Remark policy for this policy
[no] remarking        - Enable/disable remarking
[no] scope            - Specify scope of the policy
The following output displays the SAP Egress policy configuration:

A:SASX>config>qos>sap-egress# info
----------------------------------------------
description "Default SAP egress QoS policy."
  queue 1
  exit
  queue 2
  exit
  queue 3
  exit
  queue 4
  exit
  queue 5
  exit
  queue 6
  exit
  queue 7
  exit
  queue 8
  exit

*A:SAS-X-C>config>qos>sap-egress# info detail
--------------------------------------------------------------------
description "Default SAP egress QoS policy."
scope template
no remarking
remark 2
  queue 1
    port-parent cir-level 1 pir-weight 1
    adaptation-rule pir closest cir closest
    rate cir 0 pir max
    queue-mgmt "default"
    exit
  queue 2
    port-parent cir-level 1 pir-weight 1
    adaptation-rule pir closest cir closest
    rate cir 0 pir max
    queue-mgmt "default"
    exit
  queue 3
    port-parent cir-level 1 pir-weight 1
    adaptation-rule pir closest cir closest
    rate cir 0 pir max
    queue-mgmt "default"
    exit
  queue 4
    port-parent cir-level 1 pir-weight 1
    adaptation-rule pir closest cir closest
    rate cir 0 pir max
    queue-mgmt "default"
    exit
  queue 5
    port-parent cir-level 1 pir-weight 1
    adaptation-rule pir closest cir closest
    rate cir 0 pir max
    queue-mgmt "default"
    exit
  queue 6
    port-parent cir-level 1 pir-weight 1
adaptation-rule pir closest cir closest
rate cir 0 pir max
queue-mgmt "default"
exit
queue 7
  port-parent cir-level 1 pir-weight 1
  adaptation-rule pir closest cir closest
  rate cir 0 pir max
  queue-mgmt "default"
exit
queue 8
  port-parent cir-level 1 pir-weight 1
  adaptation-rule pir closest cir closest
  rate cir 0 pir max
  queue-mgmt "default"
exit
----------------------------------------------
*A:SAS-X-C>config>qos>sap-egress#
A:SASX>config>qos>sap-egress# info detail
----------------------------------------------
description "Default SAP egress QoS policy."
scope template
no remarking
remark 2
queue 1
  port-parent cir-level 1 pir-weight 1
  adaptation-rule pir closest cir closest
  rate cir 0 pir max
  queue-mgmt "default"
exit
queue 2
  port-parent cir-level 1 pir-weight 1
  adaptation-rule pir closest cir closest
  rate cir 0 pir max
  queue-mgmt "default"
exit
queue 3
  port-parent cir-level 1 pir-weight 1
  adaptation-rule pir closest cir closest
  rate cir 0 pir max
  queue-mgmt "default"
exit
queue 4
  port-parent cir-level 1 pir-weight 1
  adaptation-rule pir closest cir closest
  rate cir 0 pir max
  queue-mgmt "default"
exit
queue 5
  port-parent cir-level 1 pir-weight 1
  adaptation-rule pir closest cir closest
  rate cir 0 pir max
  queue-mgmt "default"
Editing QoS Policies

Existing policies and entries can be edited through the CLI or NMS. The changes are applied immediately to all services where the policy is applicable.

To prevent configuration errors perform the following:

1. Copy the policy to a work area
2. Edit the policy
3. Over write the original policy
SAP Egress Policy Command Reference

Command Hierarchies

Configuration Commands

```
config
 — qos
 — sap-egress <policy-id> create
 — [no] description description-string
 — queue <queue-id>
 — [no] port-parent [cir-level level] [pir-weight weight]
 — [no] adaptation-rule [pir adaptation-rule] [cir adaptation-rule]
 — [no] rate cir <rate> pir<rate>
 — queue-mgmt <name>
 — no queue-mgmt
 — scope [exclusive | template]
 — [no] remark <policy-id>
 — [no] remarking
```

Copy Commands

```
config
 — qos
 — copy sap-egress <src-pol> <dst-pol> [overwrite]
```

Show Commands

```
show
 — qos
 — sap-egress [<policy-id>] [detail | association]
```
Configuration Commands

Generic Commands

description

Syntax

```
description description-string
no description
```

Context

```
config>qos>access-egress
```

Description

This command creates a text description stored in the configuration file for a configuration context.

The `description` command associates a text string with a configuration context to help identify the context in the configuration file.

The `no` form of this command removes any description string from the context.

Default

No description is associated with the configuration context.

Parameters

`description-string` — A text string describing the entity. Allowed values are any string up to 80 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.
SAP Egress Policy Commands

adaptation-rule

Syntax

adaptation-rule [cir adaptation-rule] [pir adaptation-rule]
no adaptation-rule

Context

config>qos>sap-egress>queue
config>qos>sap-ingress>queue

Description

This command defines the method used by the system to derive the operational CIR and PIR settings when the queue is provisioned in hardware. For the CIR and PIR parameters individually, the system attempts to find the best operational rate depending on the defined constraint.

The no form of the command removes any explicitly defined constraints used to derive the operational CIR and PIR created by the application of the policy. When a specific adaptation-rule is removed, the default constraints for cir and pir apply.

Default

adaptation-rule pir closest cir closest

Parameters

adaptation-rule — Specifies the adaptation rule to be used while computing the operational CIR or PIR value.

Values

pir — Defines the constraints enforced when adapting the PIR rate defined within the queue queue-id rate command. The pir parameter requires a qualifier that defines the constraint used when deriving the operational PIR for the queue. When the rate command is not specified, the default applies.

cir — Defines the constraints enforced when adapting the CIR rate defined within the queue queue-id rate command. The cir parameter requires a qualifier that defines the constraint used when deriving the operational CIR for the queue. When the cir parameter is not specified, the default constraint applies.

max — The max (maximum) option is mutually exclusive with the min and closest options. The hardware step size varies with the configured rate.

min — The min (minimum) option is mutually exclusive with the max and closest options. The hardware step size varies with the configured rate.

closest — The closest parameter is mutually exclusive with the min and max parameter. The hardware step size varies with the configured rate.
port-parent

Syntax

```
port-parent [cir-level cir-level][pir-weight pir-weight]
no port-parent
```

Context

```
config> qos>sap-egress>queue
config> qos>sap-ingress>queue
```

Description

The system creates and associates a port-scheduler with every access port on the system. Every queue within a SAP is associated with the port scheduler available on the port on which the SAP is created. This command provides the context to configure the queue parameters ‘cir-level’ and ‘pir-weight’. The port scheduler uses these parameters to apportion the bandwidth to all the queues competing for the available bandwidth.

The **no** form of the command reverts the queue to use the default cir-level and pir-weight values.

Default

Port-parent with default values for cir-level “1” and pir-weight “1”.

Parameters

**cir-level cir-level** — Specifies the priority of the queue with respect to other queues. The priority of the queue is used only in the CIR loop. Level "8" is the highest priority and level "1" is the lowest priority.

   Level “8” is treated specially by the schedulers. The scheduler tries to ensure that the configured CIR rate is always made available to queues configured at this level, irrespective of whether CIR for other queues are being met or not. In other words, the system tries to satisfy CIR for all the level-8 queues before it tries to satisfy the CIR of queues configured at other levels. PIR rate configured for level-8 queues is ignored by the system.

   In the PIR loop, the priority of the queues cannot be configured. The system assigns the priority to the queues based on the configured cir-level. Refer to the QoS scheduler section of the user guide to see the default assignment of pir-levels to the queue corresponding to the cir-level configured by the user.

   **Values**

   1 — 8 (8 is the highest priority)

   **Default**

   1

**pir-weight pir-weight** — Specifies the relative weight of the queue with respect to the other queues. The weight parameter is used only in the PIR loop. If the level parameter of a queue is set to ‘8’, the weight parameter is not used.

   **Values**

   1 — 100

   **Default**

   1

queue

Syntax

```
queue queue-id
```

Context

```
config> qos>sap-egress
config> qos>sap-ingress
```

Description

This command is used to configure the queue parameters.
Parameters  
  queue-id — id of the queue.

Values      1 — 8

queue-mgmt

Syntax    [no] queue-mgmt name

Context  
  config>qos>sap-egress>queue
  config>qos>sap-ingress>queue

Description  This command associates the specified queue management policy with this queue.

The queue management policy is used to specify the queue buffer parameters and queue slope policy parameters.

The no form of the command associates the default SAP egress queue management policy with this queue.

Parameters  
  name — The name of the queue management policy

Values      1—32 characters

rate

Syntax    rate cir cir-rate-in-kbps [pir pir-rate-in-kbps]
  no rate

Context  
  config>qos>sap-egress>queue
  config>qos>sap-ingress>queue

Description  This command defines the administrative Peak Information Rate (PIR) and the administrative Committed Information Rate (CIR) parameters for the queue. The PIR defines the maximum rate that the queue can transmit packets through the port. Defining a PIR does not necessarily guarantee that the queue can transmit at the intended rate. The actual rate sustained by the queue can be limited by oversubscription factors or available egress bandwidth. The CIR defines the rate at which the system prioritizes the queue over other queues competing for the same bandwidth.

The rate command can be executed at anytime, altering the PIR and CIR rates for all queues created on the access ports.

The no form of this command returns all queues created with the queue-id by association with the QoS policy to the default PIR and CIR parameters (max, 0).

Default  
  rate cir 0 pir max — The max default specifies the amount of bandwidth in kilobits per second (thousand bits per second). The max value is mutually exclusive to the pir-rate value.
### Parameters

**cir cir-rate-in-kbps** — The cir parameter overrides the default administrative CIR used by the queue. If the rate command is not executed or the cir parameter is not explicitly specified, the default CIR value is used.

- **Values**
  - 0 — 10000000, max
- **Default**
  - 0

**pir pir-rate-in-kbps** — Defines the administrative PIR rate, in kilobits, for the queue. When the rate command is executed, a PIR setting is optional. If the rate command is not executed, the default PIR of maximum value is used.

- **Values**
  - 1 — 10000000, max
- **Default**
  - max

### remark

**Syntax**

```plaintext
[no] remark <policy-id>
```

**Context**

config>qos>sap-egress

**Description**

This command associates the specified remark policy with this SAP. Remark policies of type dot1p and dot1p-lsp-exp-shared can be specified. It allows the users to specify the dot1p values to use for marking the ethernet header fields of the packets sent out through this SAP.

The **no** form of the command associates the default the remark policy “2” with this SAP.

- **Default**
  - 2

**Parameters**

- **policy-id** — The ID of the remark policy.
  - **Values**
    - 1 — 65535

### remarking

**Syntax**

```plaintext
[no] remarking
```

**Context**

config>qos>sap-egress

**Description**

This command is used to enable or disable remarking on service egress.

The **no** form of the command disables remarking on service egress.
**sap-egress**

**Syntax**  sap-egress <policy-id> [create]

**Context**  config>qos

**Description**  This command enables the context to configure a SAP Egress policy. The SAP egress policy determines the QoS treatment to packets at service egress.

The system creates and associates eight queues to each of the SAPs in the system. User cannot create or delete a queue. SAP egress policy allows the user to define the queue parameters for the eight queues.

**Default**  1

**Parameters**

*policy-id* — The ID of the SAP Egress policy

**Values**  1 — 65535

**scope**

**Syntax**  scope {exclusive | template} no scope

**Context**  config>qos>sap-egress

**Description**  This command configures the scope as exclusive or template.

The **no** form of this command sets the scope of the policy to the default of **template**.

**Default**  template

**Parameters**

*exclusive* — When the scope of a policy is defined as exclusive, the policy can only be applied to one interface. If a policy with an exclusive scope is assigned to a second interface an error message is generated. If the policy is removed from the exclusive interface, it will become available for assignment to another exclusive interface.

*template* — When the scope of a policy is defined as template, the policy can be applied to multiple interfaceports on the router.

Default QoS policies are configured with template scope. An error is generated if you try to modify the scope parameter from **template** to exclusive **scope** on default policies.
Operational Commands

**copy**

**Syntax**  
`copy sap-egress <src-pol> <dst-pol> [overwrite]`

**Context**  
`config>qos`

**Description**  
This command copies the existing SAP egress QoS policy entries to another SAP egress QoS policy.

The copy command is a configuration level maintenance tool used to create new policies using existing policies. It also allows bulk modifications to an existing policy with the use of the overwrite keyword.

If the destination policy already exists, the key word overwrite must be specified.

**Parameters**  
- `src-pol` — Specifies the source policy.
  - **Values**  
    - 1—65535
  
- `dst-pol` — Specifies the destination policy.
  - **Values**  
    - 1—65535
  
- `overwrite` — The information in the destination policy is overwritten by the information in the source policy.
Show Commands

sap-egress

Syntax  sap-egress [policy-id] [association | detail]

Context  show>qos

Description  This command displays sap egress QoS policy information.

Parameters

- **policy-id**  — Displays the policy id of the sap-egress policy.
- **association**  — Displays associations related to the specified sap-egress policy.
- **detail**  — Displays detailed policy information including the policy associations.

**SAP Egress Output**  — The following table describes Access egress show command output.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy-Id</td>
<td>The ID that uniquely identifies the policy.</td>
</tr>
<tr>
<td>Remark</td>
<td>True  — Remarking is enabled for all the Dot1q-tagged packets that egress the ports on which the sap-egress QoS policy is applied and remarking is enabled. False  — Remarking is disabled for the policy.</td>
</tr>
<tr>
<td>Remark Pol Id</td>
<td>Displays the policy id of the remarking policy.</td>
</tr>
<tr>
<td>Accounting</td>
<td>Specifies whether the accounting mode is packet-based or frame-based.</td>
</tr>
<tr>
<td>Scope</td>
<td>Exclusive  — Implies that this policy can be applied only to a single access egress port. Template  — Implies that this policy can be applied to multiple access ports on the router.</td>
</tr>
<tr>
<td>Description</td>
<td>A text string that helps identify the policy’s context in the configuration file</td>
</tr>
</tbody>
</table>

Queue Rates and Rules
<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QueueId</td>
<td>Displays the Queue identifier associated with the sap-egress QoS policy.</td>
</tr>
</tbody>
</table>
| Explicit/Default | **Explicit** — Specifies the egress IEEE 802.1P (dot1p) bits marking for fc-name if explicitly configured.  
|                  | **Default** — Specifies the default dot1p value according to FC-Dot1p marking map as defined in Table 20, Default SAP Egress Policy ID 1 Definition, on page 48 if explicit values are not configured.  |
| CIR              | Specifies the administrative Committed Information Rate (CIR) parameters for the queue. The CIR defines the rate at which the system prioritizes the queue over other queues competing for the same bandwidth. |
| CIR Adpt Rule    | **min** — The operational CIR for the queue will be equal to or greater than the administrative rate specified using the rate command.  
|                  | **max** — The operational CIR for the queue will be equal to or less than the administrative rate specified using the rate command.  
|                  | **closest** — The operational CIR for the queue will be the rate closest to the rate specified using the rate command without exceeding the operational PIR.  |
| PIR              | Specifies the administrative Peak Information Rate (PIR) parameters for the queue. The PIR defines the maximum rate that the queue can transmit packets through the access port. |
| PIR Adpt Rule    | **min** — The operational PIR for the queue will be equal to or greater than the administrative rate specified using the rate command.  
|                  | **max** — The operational PIR for the queue will be equal to or less than the administrative rate specified using the rate command.  
|                  | **closest** — The operational PIR for the queue will be the rate closest to the rate specified using the rate command.  |

**Parent Details**

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QueueId</td>
<td>Displays the Queue identifier associated with the sap-egress QoS policy</td>
</tr>
<tr>
<td>Label</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------------------------------------------------</td>
</tr>
<tr>
<td>Port</td>
<td>Indicates if the parent scheduler is port scheduler or not.</td>
</tr>
<tr>
<td>CIR Level</td>
<td>Displays the priority of the queue in the CIR loop.</td>
</tr>
<tr>
<td>PIR Weight</td>
<td>Displays the weight of the queue used in the PIR loop.</td>
</tr>
</tbody>
</table>

**High Slope/Low slope**

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QueueId</td>
<td>Displays the Queue identifier associated with the sap-egress QoS policy.</td>
</tr>
<tr>
<td>State</td>
<td>Displays the state of the queue. The state of the queue can be either “Up” or “Down”</td>
</tr>
<tr>
<td>Start Avg</td>
<td>Specifies the low priority or high priority RED slope position for the shared buffer average utilization value where the packet discard probability starts to increase above zero.</td>
</tr>
<tr>
<td>Max Avg</td>
<td>Specifies the percentage of the shared buffer space for the buffer pool at which point the drop probability becomes “1”. This parameter is expressed as a decimal integer.</td>
</tr>
<tr>
<td>Max Prob</td>
<td>Specifies the high priority RED slope position for the maximum non-one packet discard probability value before the packet discard probability rises directly to one.</td>
</tr>
</tbody>
</table>

**Burst Sizes and Time Average Factor**

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QueueId</td>
<td>Displays the Queue identifier associated with the sap-egress QoS policy.</td>
</tr>
<tr>
<td>CBS</td>
<td>Displays the configured CBS value</td>
</tr>
<tr>
<td>MBS</td>
<td>Displays the configured MBS value</td>
</tr>
<tr>
<td>Time Average Factor</td>
<td>Displays the value of the time average factor in use</td>
</tr>
<tr>
<td>Queue-Mgmt</td>
<td>Displays the Queue management policy in use</td>
</tr>
</tbody>
</table>

**Service Associations**

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service-Id</td>
<td>The unique service ID number which identifies the service in the service domain.</td>
</tr>
</tbody>
</table>
### Sample Output

A:SASX>config>qos# show qos sap-egress 1 detail

---

QoS Sap Egress
---

Sap Egress Policy (1)
---

Scope : Template
Remark : False     Remark Pol Id : 2
Accounting : frame-based
Description : Default SAP egress QoS policy.

---

Queue Rates and Rules
---

<table>
<thead>
<tr>
<th>QueueId</th>
<th>CIR</th>
<th>CIR Adpt Rule</th>
<th>PIR</th>
<th>PIR Adpt Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue1</td>
<td>0</td>
<td>closest</td>
<td>max</td>
<td>closest</td>
</tr>
<tr>
<td>Queue2</td>
<td>0</td>
<td>closest</td>
<td>max</td>
<td>closest</td>
</tr>
<tr>
<td>Queue3</td>
<td>0</td>
<td>closest</td>
<td>max</td>
<td>closest</td>
</tr>
<tr>
<td>Queue4</td>
<td>0</td>
<td>closest</td>
<td>max</td>
<td>closest</td>
</tr>
<tr>
<td>Queue5</td>
<td>0</td>
<td>closest</td>
<td>max</td>
<td>closest</td>
</tr>
<tr>
<td>Queue6</td>
<td>0</td>
<td>closest</td>
<td>max</td>
<td>closest</td>
</tr>
<tr>
<td>Queue7</td>
<td>0</td>
<td>closest</td>
<td>max</td>
<td>closest</td>
</tr>
<tr>
<td>Queue8</td>
<td>0</td>
<td>closest</td>
<td>max</td>
<td>closest</td>
</tr>
</tbody>
</table>

---

Parent Details
---

<table>
<thead>
<tr>
<th>QueueId</th>
<th>Port</th>
<th>CIR Level</th>
<th>PIR Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue1</td>
<td>True</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Queue</td>
<td>State</td>
<td>Start-Avg(%)</td>
<td>Max-Avg(%)</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>Queue1</td>
<td>Down</td>
<td>70</td>
<td>90</td>
</tr>
<tr>
<td>Queue2</td>
<td>Down</td>
<td>70</td>
<td>90</td>
</tr>
<tr>
<td>Queue3</td>
<td>Down</td>
<td>70</td>
<td>90</td>
</tr>
<tr>
<td>Queue4</td>
<td>Down</td>
<td>70</td>
<td>90</td>
</tr>
<tr>
<td>Queue5</td>
<td>Down</td>
<td>70</td>
<td>90</td>
</tr>
<tr>
<td>Queue6</td>
<td>Down</td>
<td>70</td>
<td>90</td>
</tr>
<tr>
<td>Queue7</td>
<td>Down</td>
<td>70</td>
<td>90</td>
</tr>
<tr>
<td>Queue8</td>
<td>Down</td>
<td>70</td>
<td>90</td>
</tr>
</tbody>
</table>

### Low Slope

<table>
<thead>
<tr>
<th>Queue</th>
<th>State</th>
<th>Start-Avg(%)</th>
<th>Max-Avg(%)</th>
<th>Max-Prob(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue1</td>
<td>Down</td>
<td>50</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Queue2</td>
<td>Down</td>
<td>50</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Queue3</td>
<td>Down</td>
<td>50</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Queue4</td>
<td>Down</td>
<td>50</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Queue5</td>
<td>Down</td>
<td>50</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Queue6</td>
<td>Down</td>
<td>50</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Queue7</td>
<td>Down</td>
<td>50</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Queue8</td>
<td>Down</td>
<td>50</td>
<td>75</td>
<td>75</td>
</tr>
</tbody>
</table>

### Burst Sizes and Time Average Factor

<table>
<thead>
<tr>
<th>Queue</th>
<th>CBS</th>
<th>MBS</th>
<th>Time Average Factor</th>
<th>Queue-Mgmt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue1</td>
<td>def</td>
<td>def</td>
<td>7</td>
<td>default</td>
</tr>
</tbody>
</table>
Queue2          def         def         7         default
Queue3          def         def         7         default
Queue4          def         def         7         default
Queue5          def         def         7         default
Queue6          def         def         7         default
Queue7          def         def         7         default
Queue8          def         def         7         default

Associations

Service-Id                : 1 (Epipe)         Customer-Id          : 1
- SAP : 1/1/1:1
Service-Id                : 101 (Epipe)       Customer-Id          : 1
- SAP : 1/1/2:101

Mirror SAPs

No Mirror SAPs Found.

A:SASX>config>qos#
In This Section

This section provides information about the scheduler support available in the 7210 SAS X.

Topics in this section include:

- Overview on page 332
The system creates a port scheduler for all the ports (both access ports and network ports) in the system and distributes the available bandwidth to all the queues using that port to send out packets. The port scheduler works either at line-rate or configured egress rate. The port scheduler allocates bandwidth to the SAPs configured on the access port or to the queues configured on the network port.

The system creates a SAP scheduler for all the SAPs in the system. It distributes the available port bandwidth to all the queues allocated to a SAP. The SAP scheduler allocates bandwidth to the queues based on the configured CIR, PIR rates and the priority and weight assigned to the queues.

**Note:** The SAP aggregate rate can be configured for the SAP scheduler when SAP based shaping is in use. For more information, refer to the section on scheduling.

Listed below are the two passes made by the port scheduler:

- belowCIR pass
- aboveCIR pass

In the belowCIR pass, the port scheduler distributes the available port bandwidth among all the queues created on the port based on the configured cir-level, until the configured CIR rate is met. Queues with higher cir-level are scheduled first. The system services queues with CIR-Level “8” prior to servicing other queues in the system.

Note: To ensure that all the queues in the system are serviced by the scheduler, the queues with cir-level “8” must be capped to a pre-determinate rate.

In the aboveCIR pass, the port scheduler distributes the remaining port bandwidth among all the queues based on its pir-level and pir-weight. The pir-level determines the priority of the queue in the aboveCIR pass. The pir-weight determines the proportion of bandwidth available for the queue when competing for bandwidth with other queues at the same level.

The pir-level assigned by the system is given in **Table 37**:

<table>
<thead>
<tr>
<th>CIR Level Configured for use in CIR loop</th>
<th>PIR level assigned by system for use in PIR loop</th>
</tr>
</thead>
<tbody>
<tr>
<td>8(highest)</td>
<td>N/A</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>
Table 37: pir-level Assignments (Continued)

<table>
<thead>
<tr>
<th>CIR Level Configured for use in CIR loop</th>
<th>PIR level assigned by system for use in PIR loop</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1(lowest)</td>
<td>1(lowest)</td>
</tr>
</tbody>
</table>

A queue configured with cir-level "8" in the system always get the configured CIR rate as long as bandwidth is available, irrespective of whether the CIR or PIR of other queues in the system are met. For a queue with the cir-level "8" the configured PIR is ignored by the system.
Scheduling

7210 SAS-X implements egress SAP scheduling and network port egress scheduling.

Listed below are the various modes of scheduling:

1. Egress SAP scheduling:
   → FC based scheduling (without SAP aggregate shaper)
   → SAP based scheduling (with SAP aggregate shaper)

2. Network port egress scheduling

---

**FC Based Scheduling (without SAP aggregate shaper)**

The Figure 4 depicts FC based scheduling (without SAP aggregate shaper)

![Diagram of FC based scheduling](image)

*Note: This diagram depicts only an example, in the system all the "S" queues are always created and allocated to a SAP.*

**Figure 4: FC based scheduling (without SAP aggregate shaper)**

Two levels of scheduling occur at the SAP egress:
- Queue level
- Port egress rate or line rate level

At the queue level, the cir-level and pir-level determine the scheduling priority. The queue’s pir-weight determines the proportion of bandwidth given to the queue when multiple queues of the SAP at the same level are vying for available SAP bandwidth.

The port egress rate determines the outgoing traffic rate at a given port.

**Table 38: Scheduling Order when Multiple SAPs are Configured on a Port**

<table>
<thead>
<tr>
<th>Pass</th>
<th>Scheduling Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>belowCIRpass</td>
<td>The cir-level applies across all SAPs, that is, the cir-level “8” queues of all SAPs are scheduled before cir-level “7” queues of all SAPs, and so on.</td>
</tr>
<tr>
<td>aboveCIRpass</td>
<td>The pir-level applies across all SAPs, that is, pir-level “4” queues of all SAPs are scheduled before pir-level “3” queues of all SAPs, and so on.</td>
</tr>
</tbody>
</table>
SAP Based Scheduling (with SAP aggregate shaper)

Three levels of scheduling occur at the SAP egress:

- Queue level
- SAP aggregate shaper level
- Port egress rate or line rate level

At the queue level, the cir-level and pir-level determine the scheduling priority. The queue's pir-weight determines the proportion of bandwidth given to the queue when multiple queues of the SAP at the same level are vying for available SAP bandwidth.

The SAP aggregate shaper determines the bandwidth given to all FCs or queues belonging to the SAP. The CIR rate is set by system to the sum of the CIR rate of all queues that belong to the SAP.

The port egress rate determines the outgoing traffic rate at a given port.
### Table 39: Scheduling Order when Multiple SAPs are Configured on a Port

<table>
<thead>
<tr>
<th>Pass</th>
<th>Scheduling Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>belowCIRpass</td>
<td>All SAPs configured on the same port are scheduled in round-robin fashion, sharing the available bandwidth equally.</td>
</tr>
<tr>
<td>aboveCIRpass</td>
<td>All SAPs configured on the same port are scheduled in round-robin fashion, sharing the available bandwidth equally.</td>
</tr>
</tbody>
</table>

### Table 40: Scheduling Order for Queues within an SAP

<table>
<thead>
<tr>
<th>Pass</th>
<th>Scheduling Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>belowCIRpass</td>
<td>The scheduler picks the queue with the highest cir-level among all the queues in use in a SAP and schedules it (that is, the cir-level “8” queues of the SAP are scheduled before cir-level “7” queues and so on.) until CIR of all the queues are met or available bandwidth is exhausted.</td>
</tr>
<tr>
<td>aboveCIRpass</td>
<td>The scheduler picks the queue with the highest cir-level among all the queues in use in a SAP and schedules it (that is, pir-level “4” queues of the SAP are scheduled before pir-level “3” queues and so on.) until PIR of all the queues are met or available bandwidth is exhausted.</td>
</tr>
</tbody>
</table>
Network Port Egress Scheduling

Two levels of scheduling occur at the network egress:

- Queue level
- Port egress rate or line rate level

At the queue level, the cir-level and pir-level determine the scheduling priority. The queue’s pir-weight determines the proportion of bandwidth given to the queue when multiple queues at the same level are vying for available port bandwidth.

The port egress rate determines the outgoing traffic rate at a given port.

Table 41: Scheduling Order when Multiple SAPs Configured on a Port

<table>
<thead>
<tr>
<th>Pass</th>
<th>Scheduling Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>belowCIRpass</td>
<td>The cir-level applies across all SAPs, that is, the cir-level “8” queues of all SAPs are scheduled before cir-level “7” queues of all SAPs, and so on.</td>
</tr>
<tr>
<td>aboveCIRpass</td>
<td>The pir-level applies across all SAPs, that is, pir-level “4” queues of all SAPs are scheduled before pir-level “3” queues of all SAPs, and so on.</td>
</tr>
</tbody>
</table>
Queue Management Policies

In This Section

This section provides information to configure queue management policies using the command line interface.

Topics in this section include:

- Overview on page 340
- Basic Configurations on page 341
Overview

A set of profiles or templates are available in hardware for configuring the queue parameters such as CBS, MBS, and WRED slopes parameters per queue. These profiles are available for use with multiple queues of the system. Queue management policy allows the user to define the queue parameters and allow sharing among the queues.

A single system buffer pool is available for use by all the queues in the system. Users can allocate the amount of buffers that each queue can use by specifying the CBS and MBS parameters in the queue management policy.

Weighted Random Early Detection (WRED) is available to manage buffers during periods of congestion. WRED slopes are supported for each queue in the system. The Queue Management Policies allow the user to configure slope parameters that dictate a WRED profile for each queue. Each queue supports two slopes:

- Slope for in-profile or high priority traffic.
- Slope for out-of-profile or low priority traffic.

Each slope allows specifying the start-average, the max-average, the drop-probability and the Time Average Factor (TAF). Each queue has a default slope policy. Multiple queues in the system can share a single policy. If a policy is shared the system computes the WRED drop probabilities for each of the queues separately based on their average queue length.
Basic Configurations

A basic queue management policy must confirm to the following:

- Each slope policy must have a unique policy ID.
- High slope and low slope are shut down by default.
- Default values can be modified but parameters cannot be deleted.

Creating a Queue Management Policy

To create a new queue management policy, define the following:

- A queue management policy name.
- Provide a brief description of the policy features.
- Provide CBS and MBS values for default queue management policy.
- The high slope for the high priority WRED slope graph.
- The low slope for the low priority WRED slope graph.
- The time average factor (TAF).
- Slope parameters such as max-avg, start-avg, max-prob, time-average-factor have default values.

Use the following CLI syntax to configure a queue management policy:

**CLI Syntax:**

```
config>qos
queue-mgmt name
 description description-string
 cbs kbytes
 mbs kbytes
 high-slope
 start-avg percent
 max-avg percent
 max-prob percent
 no shutdown
 low-slope
 start-avg percent
 max-avg percent
 max-prob percent
 no shutdown
 time-average-factor taf
```
The following output displays the queue management policy configuration:

```
A:7210-x>config>qos>queue-mgmt# info

--
| high-slope|
| shutdown |
| start-avg 40 |
| max-avg 50 |
| exit |
| low-slope|
| shutdown |
| start-avg 40 |
| max-avg 80 |
| exit |
| cbs 5000 |
| mbs 800000 |
| time-average-factor 7 |
--
```

### Editing QoS Policies

Existing policies and entries can be edited through the CLI or NMS. The changes are applied immediately to all services where the policy is applicable.

To prevent configuration errors perform the following:

1. Copy the policy to a work area
2. Edit the policy
3. Over write the original policy
Command Hierarchies

Configuration Commands

```plaintext
cfg
 qos
 [no] queue-mgmt name
 [no] description description-string
 [no] no description
 [no] cbs size-in-kbytes
 [no] mbs size-in-kbytes
 [no] high-slope
 [no] max-avg percent
 [no] max-prob percent
 [no] shutdown
 [no] start-avg percent
 [no] low-slope
 [no] max-avg percent
 [no] max-prob percent
 [no] shutdown
 [no] start-avg percent
 [no] time-average-factor value
 scope {exclusive |template}
```

Show Commands

```plaintext
shw
 qos
 queue-mgmt [<name>] [detail]
```

Operational Commands

```plaintext
config
 qos
 copy queue-mgmt<src-name> <dst-name> [overwrite]
```
# Generic Commands

## description

**Syntax**

```
description description-string
no description
```

<table>
<thead>
<tr>
<th>Context</th>
<th>config&gt;qos&gt;queue-mgmt</th>
</tr>
</thead>
</table>

**Description**

This command creates a text description stored in the configuration file for a configuration context.

The `description` command associates a text string with a configuration context to help identify the context in the configuration file.

The `no` form of this command removes any description string from the context.

**Default**

No description is associated with the configuration context.

**Parameters**

`description-string` — A text string describing the entity. Allowed values are any string up to 80 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.
Operational Commands

copy

Syntax  

```
copy queue-mgmt <src-name> <dst-name> [overwrite]
```

Context  

```
config>qos
```

Description  

This command copies the existing Queue management policy entries to another Queue management policy.

The `copy` command is a configuration level maintenance tool used to create new policies using existing policies. It also allows bulk modifications to an existing policy with the use of the `overwrite` keyword.

Parameters

- **src-name** — Specifies the name of the source policy.
  - **Values**  
    - 1 — 32 characters

- **dst-name** — Specifies the name of the destination policy.
  - **Values**  
    - 1 — 32 characters

- **overwrite** — The information in the destination policy is overwritten by the information in the source policy.
Queue Management Policy QoS Commands

cbs

Syntax  
[no] cbs size-in-kbytes

Context  
config>qos>queue-mgmt

Description  
This command specifies the CBS value (Minimum depth of the queue in kilo bytes).

Parameters  
size-in-kbytes — Specifies the minimum depth of the queue in kilo bytes.

Values  
0 — 500000|default

high-slope

Syntax  
[no] high-slope

Context  
config>qos>queue-mgmt

Description  
This command is used to configure the in-profile WRED slope parameters.

low-slope

Syntax  
[no] low-slope

Context  
config>qos>queue-mgmt

Description  
This command is used to configure the out-of-profile WRED slope parameters.

mbs

Syntax  
[no] mbs size-in-kbytes

Context  
config>qos>queue-mgmt

Description  
This command specifies the MBS value (Maximum depth of the queue in kilo bytes).

Parameters  
size-in-kbytes — Specifies the minimum depth of the queue in kilo bytes.

Values  
1 — 500000|default
queue-mgmt

Syntax  
[no] queue-mgmt name

Context  
config>qos

Description  
This command enables the context to configure a QoS queue management policy. A set of profiles/templates are available in hardware for configuring the queue parameters such as CBS, MBS, and WRED slopes parameters per queue. These profiles are available for use with multiple queues of the system. Queue management policy allows the user to define the queue parameters and allow for sharing among the queues.

Parameters

name  — The name of the queue management policy.

Values  
Valid names consist of any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

time-average-factor

Syntax  
time-average-factor value
no time-average-factor

Context  
config>qos>queue-mgmt

Description  
This command is used to configure the time-average factor.

Default  
7

Parameters

value  — Represents the Time Average Factor (TAF), expressed as a decimal integer. The value specified for TAF affects the speed at which the shared buffer average utilization tracks the instantaneous shared buffer utilization. A low value weights the new shared buffer average utilization calculation more to the shared buffer instantaneous utilization, zero using it exclusively. A high value weights the new shared buffer average utilization calculation more to the previous shared buffer average utilization value.

Values  
0 — 15

scope

Syntax  
scope {exclusive | template}
no scope

Context  
config>qos>queue-mgmt

Description  
This command configures the scope as exclusive or template.

The no form of this command sets the scope of the policy to the default of template.
Default  template

Parameters  exclusive — When the scope of a policy is defined as exclusive, the policy can only be applied to one interface. If a policy with an exclusive scope is assigned to a second interface an error message is generated.

If the policy is removed from the exclusive interface, it will become available for assignment to another exclusive interface.

template — When the scope of a policy is defined as template, the policy can be applied to multiple interface ports on the router.

Default QoS policies are configured with template scope. An error is generated if you try to modify the scope parameter from template to exclusive scope on default policies.
WRED Slope Commands

max-avg

Syntax  
max-avg percent  
no max-avg

Context  
config>qos>queue-mgmt>high-slope  
config>qos>queue-mgmt>low-slope

Description  
This command is used to configure the maximum average value.

Default  
max-avg 90 — High slope default is 90% buffer utilization.  
max-avg 75 — Low slope default is 75% buffer utilization.

Parameters  
percent — Specifies the maximum average for the high or low slopes.

Values  
0 — 100

max-prob

Syntax  
max-prob percent  
no max-prob

Context  
config>qos>queue-mgmt>high-slope  
config>qos>queue-mgmt>low-slope

Description  
This command is used to configure the maximum probability value.

Default  
max-avg 75 — High slope default is 75% maximum drop probability.  
max-avg 75 — Low slope default is 75% maximum drop probability.

Parameters  
percent — Specifies the maximum probability for the high or low slopes.

Values  
1 — 99

shutdown

Syntax  
[no] shutdown

Context  
config>qos>queue-mgmt>high-slope  
config>qos>queue-mgmt>low-slope

Description  
This command enables or disables the administrative status of the WRED slope.
By default, all slopes are shutdown and have to be explicitly enabled (no shutdown).

The no form of this command administratively enables the WRED slope.

**Default**  
**shutdown** - WRED slope disabled implying a zero (0) drop probability

### start-avg

**Syntax**  
*start-avg percent*
*no start-avg*

**Context**  
config>qos>queue-mgmt>high-slope
config>qos>queue-mgmt>low-slope

**Description**  
This command is used to configure the starting average value.

**Default**  
**max-avg 70** — High slope default is 70% buffer utilization.
**max-avg 50** — Low slope default is 50% buffer utilization.

**Parameters**  
*percent* — Specifies the starting average for the high or low slopes.

**Values**  
0 — 100
Show Commands

queue-mgmt

Syntax  
queue-mgmt [\(<name>\)] [detail]

Context  
show\(>\)qos

Description  
This command displays queue management policy information.

Parameters  
name — The name of the queue management policy.

detail — Displays detailed information about the queue management policy.

Output  
Queue Management Policy Output Fields — The following table describes queue management policy output fields.

Table 42: Show Queue Management Policy Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy</td>
<td>The ID that uniquely identifies the policy.</td>
</tr>
<tr>
<td>Description</td>
<td>A string that identifies the policy’s context in the configuration file.</td>
</tr>
<tr>
<td>Time Avg</td>
<td>The weighting between the previous shared buffer average utilization result and the new shared buffer utilization.</td>
</tr>
<tr>
<td>CBS</td>
<td>Displays the committed burst size.</td>
</tr>
<tr>
<td>MBS</td>
<td>Displays the maximum burst size.</td>
</tr>
<tr>
<td>Slope Parameters</td>
<td></td>
</tr>
<tr>
<td>Start Avg</td>
<td>Specifies the low priority or high priority RED slope position for the shared buffer average utilization value where the packet discard probability starts to increase above zero.</td>
</tr>
<tr>
<td>Max Avg</td>
<td>Specifies the percentage of the shared buffer space for the buffer pool at which point the drop probability becomes 1, expressed as a decimal integer</td>
</tr>
<tr>
<td>Admin State</td>
<td>Up — The administrative status of the RED slope is enabled. Down — The administrative status of the RED slope is disabled. Specifies the low priority or high priority RED slope position for the maximum non-one packet discard probability value before the packet discard probability rises directly to one.</td>
</tr>
</tbody>
</table>
### Table 42: Show Queue Management Policy Output Fields (Continued)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Prob.</td>
<td>Specifies the high priority RED slope position for the maximum non-one packet discard probability value before the packet discard probability rises directly to one.</td>
</tr>
</tbody>
</table>

#### Service Associations

- **SAP Egress Policy Id**: Displays the SAP Egress policy Id.
- **Queue Ids**: Displays the Queue Ids

#### Sample Output

*A:SASX>config>qos>queue-mgmt# show qos queue-mgmt 20 detail

```
===
QoS Queue Management Policy
===
Policy : 20
Description : (Not Specified)
CBS : 1 MBS : 10
Time Avg : 7

High Slope Parameters

Start Avg : 70 Admin State : Disabled
Max Avg : 90 Max Prob. : 75

Low Slope Parameters

Start Avg : 50 Admin State : Disabled
Max Avg : 75 Max Prob. : 75

Associations

SAP Egress Policy Id : 200
Queue Ids : 1, 2, 3, 4, 5, 6, 7, 8

Associations

No Associations Found.
```
Network Queues

No Network Queue Policy Associations found.
Remark Policies

In This Section

This section provides information to configure remark policies using the command line interface.

Topics in this section include:

- Overview on page 358
- Basic Configurations on page 360
The remark policies are used to configure the marking behavior for the system at the egress of access SAPs, network ports and network IP interfaces. These policies allow the user to define the forwarding class to egress marking values and allow them to use the available hardware resources efficiently. Based on the packet encapsulation used, the remark policy allows the user to define and associate appropriate policies to service egress and network egress QoS policies. The 7210 SAS supports the use of the following types of remark policies for different QoS policies:

1. **dot1p** - Used for service egress and network qos [port type] policies.
2. **dscp** - Used for network qos [port type] policies.
4. **dot1p-dscp** - Used for network qos [port type] policies.
5. **dot1p-lsp-exp-shared** - Used for service egress and network qos [ip-interface type] policies.

The 7210 SAS uses a common pool of hardware resources to mark dot1p values for service egress and lsp-exp values for network IP interface. Remark policies of type dot1p-lsp-exp-shared allow the user to specify one remark policy, for which the system allocates one entry from the common pool, and this entry is used at both service egress and network IP interface.

The type of the remark policy identifies the bits marked in the packet header. Each of these remark policy types can be associated with only appropriate QoS policies and service entities as listed in Table 43.

**Table 43: Summary of remark policy and attachment points**

<table>
<thead>
<tr>
<th>Remark Policy Type</th>
<th>Qos Policy</th>
<th>Attachment Point</th>
<th>Packet Header Bits Marked</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot1p</td>
<td>SAP-egress policy,</td>
<td>SAP, Network Port</td>
<td>• Dot1p bits in the L2 header for service packets sent out of a SAP</td>
</tr>
<tr>
<td></td>
<td>Network policy (port)</td>
<td></td>
<td>• Dot1p bits in the L2 header for IP and MPLS packets sent out of network port</td>
</tr>
<tr>
<td>dscp</td>
<td>Network policy (port)</td>
<td>Network Port</td>
<td>DSCP bits in the IP header for IP packets sent out of network port</td>
</tr>
<tr>
<td>lsp-exp</td>
<td>Network policy (IP interface)</td>
<td>Network IP interface</td>
<td>EXP bits in the MPLS header for MPLS packets sent out of network port</td>
</tr>
</tbody>
</table>
**Table 43: Summary of remark policy and attachment points**

<table>
<thead>
<tr>
<th>Remark Policy Type</th>
<th>Qos Policy</th>
<th>Attachment Point</th>
<th>Packet Header Bits Marked</th>
</tr>
</thead>
</table>
| dot1p-lsp-exp-shared | SAP-egress policy, Network policy (IP interface) | SAP, Network IP Interface | • Dot1p bits in the L2 header for service packets sent out of SAP  
• EXP bits in the MPLS header for MPLS packets sent out of network port. |
Basic Configurations

A basic remark policy must confirm to the following:

- Each remark policy must have a unique policy ID.
- The remark policy type must be specified.
- The forwarding class to egress marking values must be specified.

Creating a Remark Policy

To create a new remark policy, define the following:

- A remark policy name and type.
- Provide a brief description of the policy features.
- Specify the forwarding class to egress marking values.

Use the following CLI syntax to configure a remark policy:

**CLI Syntax:**

```
A:7210-x>config>qos# remark 122 remark-type dscp create
```

The following output displays the remark policy configuration:

```
A:7210-x>config>qos>remark# info
--
fc af
 dscp-in-profile cs1
 dscp-out-profile cp3
exit
fc be
 dscp-in-profile nc2
 dscp-out-profile af11
exit
fc ef
 dscp-in-profile cp1
 dscp-out-profile cp2
exit
fc h1
 dscp-in-profile cp9
 dscp-out-profile cp4
exit
fc h2
 dscp-in-profile cp1
```
Editing QoS Policies

Existing policies and entries can be edited through the CLI or NMS. The changes are applied immediately to all services where the policy is applicable.

To prevent configuration errors perform the following:

1. Copy the policy to a work area
2. Edit the policy
3. Over write the original policy
Remark Policy Command Reference

Command Hierarchies

Configuration Commands

```
config
 — qos
 — [no] remark <policy-id> remark-type {dot1p | dscp | lsp-exp | dot1p-lsp-exp-shared | dot1p-dscp}
 — create
 — [no] description description-string
 — [no] fc fc-name
 — dot1p-in-profile dot1p-priority
 — no dot1p-in-profile
 — dot1p-out-profile dot1p-priority
 — no dot1p-out-profile
 — dscp-in-profile dscp-name
 — no dscp-in-profile
 — dscp-out-profile dscp-name
 — no dscp-out-profile
 — lsp-exp-in-profile lsp-exp-value
 — no lsp-exp-in-profile
 — lsp-exp-out-profile lsp-exp-value
 — no lsp-exp-out-profile
 — dot1p-lsp-exp-in-profile dot1p lsp-exp-value
 — no dot1p-lsp-exp-in-profile
 — dot1p-lsp-exp-out-profile dot1p lsp-exp-value
 — no dot1p-lsp-exp-out-profile
```

Show Commands

```
show
 — qos
 — remark-policy [<policy-id>] [association|detail]
```

Operational Commands

```
config
 — qos
 — copy remark <src-pol> <dst-pol> [overwrite]
```
Configuration Commands

Generic Commands

description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>[no] description description-string</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context</td>
<td>config&gt;qos&gt;remark</td>
</tr>
<tr>
<td>Description</td>
<td>This command creates a text description stored in the configuration file for a configuration context.</td>
</tr>
<tr>
<td></td>
<td>The description command associates a text string with a configuration context to help identify the context in the configuration file.</td>
</tr>
<tr>
<td></td>
<td>The no form of this command removes any description string from the context.</td>
</tr>
<tr>
<td>Default</td>
<td>No description is associated with the configuration context.</td>
</tr>
<tr>
<td>Parameters</td>
<td>description-string — A text string describing the entity. Allowed values are any string up to 80 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.</td>
</tr>
</tbody>
</table>
Operational Commands

copy

**Syntax**  
copy remark <src-pol> <dst-pol> [overwrite]

**Context**  
config>qos

**Description**  
This command copies existing remark policy entries to another remark policy.

The `copy` command is a configuration level maintenance tool used to create new policies using existing policies. It also allows bulk modifications to an existing policy with the use of the `overwrite` keyword.

If the destination policy already exists, the key word overwrite must be specified.

**Parameters**  
- `src-pol` — Specifies the source policy.
  - **Values**  
    - 1—65535
  - `dst-pol` — Specifies the destination policy.
    - **Values**  
      - 1—65535
  - `overwrite` — The information in the destination policy is overwritten by the information in the source policy.
Remark Policy QoS Commands

remark

Syntax

[no] remark <policy-id> remark-type {dot1p | dscp | lsp-exp | dot1p-lsp-exp-shared | dot1p-dscp}
create

Context

config>qos

Description

This command creates a new remark policy of the specified type. The 7210 SAS allows the sharing of this policy between different service entities to optimize the hardware resources used.

The following types of remark policies are available:

- dot1p (Used for service egress and network qos [port type] policies)
- dscp (Used for network qos [port type] policies)
- lsp-exp (Used for network qos [ip-interface type] policies)
- dot1p-lsp-exp-shared (Used for service egress and network qos [ip-interface type] policies)
- dot1p-dscp (Used for network qos [port type] policies).

The device uses a common pool of hardware resources to mark dot1p values for service egress and lsp-exp values for network IP interface. Remark policies of type dot1p-lsp-exp-shared allow the user to define a single policy, the system allocates a single hardware resource and this policy can be used for multiple SAPs or network IP interfaces. The users can define a single policy of type dot1p or lsp-exp and use it with multiple SAPs and network IP interfaces respectively.

The ‘remark-type’ of the policy also determines the values user is allowed to configure in the policy. For example, if remark-type is dot1p, user is allowed to only specify the forwarding class to dot1p values.

Default
dot1p-lsp-exp-shared

Parameters

policy-id — The policy ID of the remark policy.

Values

- Valid names consist of any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

remark-type — Specifies the type of marking values in the remark policy.

Values

- dot1p — Specifies FC to 802.1 Dot1p value.
- lsp-exp— Specifies FC to MPLS LSP EXP values
- dot1p-lsp-exp-shared— Specifies FC to both 802.1 Dot1p and MPLS LSP EXP values.
dscp — Specifies the FC to IP DSCP values
dot1p-dscp - Specifies the FC to both 802.1 Dot1p and IP DSCP values.

fc

Syntax [no] fc fc-name

Context config>qos>remark

Description This command specifies the forwarding class name and provides the context to configure the marking value for the FC. Based on the type of remark policy created, the FC command allows the user to specify the appropriate marking values. The fc command overrides the default parameters for the forwarding class to the values defined.

The no form of the command removes the forwarding class lsp-exp/dot1p/dscp/dot1p-LSP-EXP map associated with the fc. The forwarding class reverts to the defined parameters in the default remark policy.

Default none

Parameters fc-name — Specifies a case-sensitive system-defined forwarding class name for which policy entries are created.

Values be, l2, af, l1, h2, ef, h1, nc
Remark Policy Forwarding Class Commands

dot1p-in-profile

Syntax

    dot1p-in-profile dot1p-priority
    no dot1p-in-profile

Context

    config>qos>remark>fc

Description

    This command specifies the dot1p in-profile value.

Parameters

    dot1p-priority — A 3-bit value expressed as a decimal integer. This value is used for the IEEE 802.1 dot1p bits in the vlan tag of the ethernet header.

        Values

            0 — 7

dot1p-out-profile

Syntax

    dot1p-out-profile dot1p-priority
    no dot1p-out-profile

Context

    config>qos>remark>fc

Description

    This command specifies the dot1p out-of-profile value.

Parameters

    dot1p-priority — A 3-bit value expressed as a decimal integer. This value is used for the IEEE 802.1 dot1p bits in the vlan tag of the ethernet header.

        Values

            0 — 7
dscp-in-profile

Syntax

    dscp-in-profile dscp-name
    no dscp-in-profile

Context

    config>qos>remark>fc

Description

    This command specifies the dscp in-profile value.

Parameters

    dscp-name — This value is used for the IP DSCP bits in the IP header.

        Values

            be|cp1|cp2|cp3|cp4|cp5|cp6|cp7|cs1|cp9|af11|cp11|
            af12|cp13|af13|cp15|es2|cp17|af21|cp19|af22|cp21|
            af23|cp23|cs3|cp25|af31|cp27|af32|cp29|af33|cp31|cs4|
            cp33|af41|cp35|af42|cp37|af43|cp39|cs5|cp41|cp42|
dscp-out-profile

Syntax

dscp-out-profile dscp-name
no dscp-out-profile

Context
config>qos>remark>fc

Description
This command specifies the dscp out-profile value.

Parameters

dscp-name — This value is used for the IP DSCP bits in the IP header.

Values
be|cp1|cp2|cp3|cp4|cp5|cp6|cp7|cs1|cp9|af11|cp11|
af12|cp13|af13|cp15|cs2|cp17|af21|cp19|af22|cp21|
af23|cp23|cs3|cp25|af31|cp27|af32|cp29|af33|cp31|cs4|
cp33|af41|cp35|af42|cp37|af43|cp39|cs5|cp41|cp42|
cp43|cp44|cp45|ef|cp47|nc1|cp49|cp50|cp51|cp52|cp53|
cp54|cp55|nc2|cp57|cp58|cp59|cp60|cp61|cp62|cp63

lsp-exp-in-profile

Syntax

lsp-exp-in-profile lsp-exp-value
no lsp-exp-in-profile

Context
config>qos>remark>fc

Description
This command specifies the in-profile LSP EXP value for the forwarding class. This value is used for all in-profile LSP labeled packets which require marking the egress on the forwarding class queue.

When multiple LSP EXP values are associated with the forwarding class at network egress, the last name entered overwrites the previous value.

The no form of the command reverts to the factory default in-profile EXP setting.

Parameters

lsp-exp-value — A 3-bit LSP EXP bit value expressed as a decimal integer.

Values
0 — 7
lsp-exp-out-profile

Syntax  lsp-exp-out-profile lsp-exp-value
       no lsp-exp-out-profile

Context  config>qos>remark>fc

Description  This command specifies the in-profile LSP EXP value for the forwarding class. This value is used for all out-of-profile LSP labeled packets which require marking the egress on the forwarding class queue.

When multiple LSP EXP values are associated with the forwarding class at network egress, the last name entered overwrites the previous value.

The no form of the command reverts to the factory default in-profile EXP setting.

Parameters  lsp-exp-value — A 3-bit LSP EXP bit value expressed as a decimal integer.

Values  0 — 7

dot1p-lsp-exp-in-profile

Syntax  dot1p-lsp-exp-in-profile dot1p | lsp-exp value
       no dot1p-lsp-exp-in-profile

Context  config>qos>remark>fc

Description  This command specifies the in-profile Dot1p LSP EXP value for the forwarding class. This value is used for all in-profile LSP labeled packets which require marking the egress on the forwarding class queue.

When multiple Dot1p LSP EXP values are associated with the forwarding class at network egress, the last name entered overwrites the previous value.

The no form of the command reverts to the factory default in-profile Dot1p LSP EXP setting.

Parameters  dot1p | lsp-exp value — A 3-bit Dot1p LSP EXP bit value, expressed as a decimal integer.

Values  0 — 7
**dot1p-lsp-exp-out-profile**

**Syntax**
```
dot1p-lsp-exp-out-profile dot1p | lsp-exp value
no dot1p-lsp-exp-out-profile
```

**Context**
```
config>qos>remark>fc
```

**Description**
This command specifies the in-profile Dot1p LSP EXP value for the forwarding class. This value is used for all out-of-profile LSP labeled packets which require marking the egress on the forwarding class queue.

When multiple Dot1p LSP EXP values are associated with the forwarding class at network egress, the last name entered overwrites the previous value.

The `no` form of the command reverts to the factory default in-profile Dot1p LSP EXP setting.

**Parameters**
```
dot1p | lsp-exp value — A 3-bit Dot1p LSP EXP bit value, expressed as a decimal integer.
```

**Values**
```
0 — 7
```
Show Commands

remark-policy

Syntax
remark-policy [<policy-id>] [association|detail]

Context
show>qos

Description
This command displays remark policy information.

Parameters
- policy-id — The ID of the remark policy.
- detail — Displays detailed information about the remark policy.

Output
Remark Policy Output Fields — The following table describes remark policy output fields.

Table 44: Show Remark Policy Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy ID</td>
<td>The ID that uniquely identifies the policy.</td>
</tr>
<tr>
<td>Remark Policy-id</td>
<td>Displays the policy-id of the remark policy.</td>
</tr>
<tr>
<td>Type</td>
<td>Displays the type of remark policy.</td>
</tr>
<tr>
<td>Description</td>
<td>A string that identifies the policy’s context in the configuration file.</td>
</tr>
<tr>
<td>FC Name</td>
<td>Specifies the forwarding class name.</td>
</tr>
<tr>
<td>dot1P/LSP EXP In value</td>
<td>dot1p/LSP EXP value for in-profile packets.</td>
</tr>
<tr>
<td>dot1P/LSP EXP Out value</td>
<td>dot1p/LSP EXP value for out-of-profile packets.</td>
</tr>
<tr>
<td>DCSP In value</td>
<td>DSCP value used for in-profile packets</td>
</tr>
<tr>
<td>DCSP Out value</td>
<td>DSCP value used for out-of-profile packets</td>
</tr>
<tr>
<td>Service Associations</td>
<td></td>
</tr>
<tr>
<td>SAP Egress Policy Id</td>
<td>Displays the policy ID of the SAP Egress policy.</td>
</tr>
<tr>
<td>Service-Id</td>
<td>The unique service ID number which identifies the service in the service domain.</td>
</tr>
<tr>
<td>Customer-Id</td>
<td>Specifies the customer ID which identifies the customer to the service.</td>
</tr>
</tbody>
</table>
Table 44: Show Remark Policy Output Fields (Continued)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAP</td>
<td>Specifies the a Service Access Point (SAP) within the service where the SAP ingress policy is applied.</td>
</tr>
</tbody>
</table>

Network

| Network Policy Id | Displays the network policy Id. |

Interface Association

<table>
<thead>
<tr>
<th>Interface</th>
<th>Displays the associated interface.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Addr.</td>
<td>Displays the IP address of the interface.</td>
</tr>
</tbody>
</table>

Sample Output

*A:SAS-X-C>config>qos# show qos remark-policy

==============================================================================
<table>
<thead>
<tr>
<th>SAS Remarking Policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy-Id Type</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>500</td>
</tr>
<tr>
<td>505</td>
</tr>
<tr>
<td>510</td>
</tr>
<tr>
<td>515</td>
</tr>
<tr>
<td>520</td>
</tr>
<tr>
<td>525</td>
</tr>
<tr>
<td>530</td>
</tr>
<tr>
<td>535</td>
</tr>
<tr>
<td>540</td>
</tr>
<tr>
<td>545</td>
</tr>
<tr>
<td>550</td>
</tr>
<tr>
<td>555</td>
</tr>
<tr>
<td>560</td>
</tr>
<tr>
<td>565</td>
</tr>
<tr>
<td>570</td>
</tr>
</tbody>
</table>

• indicates that the corresponding row element may have been truncated.

*A:SAS-X-C>config>qos# show qos remark-policy 500 association

==============================================================================

QoS Remarking Policies

-------------------------------------------------------------------------------

Remark Policy-id : 500    Type : dot1p-lsp-exp-shared
Description       : (Not Specified)
Associations

SAP Egress

SAP Egress Policy Id : 5001

Associations

Service-Id : 500 (VPLS)       Customer-Id : 1
  - SAP : lag-2:500

SAP Egress Policy Id : 5701

Associations

Service-Id : 570 (VPLS)       Customer-Id : 1
  - SAP : lag-2:570

SAP Egress Policy Id : 6401

Associations

Service-Id : 640 (VPLS)       Customer-Id : 1
  - SAP : lag-2:640

SAP Egress Policy Id : 10001

Associations

Service-Id : 1000 (VPLS)      Customer-Id : 1
  - SAP : lag-2:1000

SAP Egress Policy Id : 10701

Associations

Service-Id : 1070 (VPLS)      Customer-Id : 1
  - SAP : lag-2:1070

SAP Egress Policy Id : 11401

Associations

Service-Id : 1140 (VPLS)      Customer-Id : 1
  - SAP : lag-2:1140

SAP Egress Policy Id : 15001

Associations
Service-Id : 1500 (VPLS)  
- SAP : lag-4:1500

SAP Egress Policy Id : 15701

Associations

Service-Id : 1570 (VPLS)  
- SAP : lag-4:1570

SAP Egress Policy Id : 16401

Associations

Service-Id : 1640 (VPLS)  
- SAP : lag-4:1640

SAP Egress Policy Id : 20001

Network

Network Policy Id : 50

Interface Association

Interface : ip-192.162.105.4  
IP Addr. : 192.162.105.4/24  
Port Id : 1/1/23

Interface : ip-192.162.20.4  
IP Addr. : 192.162.20.4/24  
Port Id : lag-3

Interface : ip-192.162.45.4  
IP Addr. : 192.162.45.4/24  
Port Id : lag-5

Interface : ip-192.162.80.4  
IP Addr. : 192.162.80.4/24  
Port Id : 1/1/22

Network Policy Id : 550

Interface Association

Interface : ip-192.162.100.4  
IP Addr. : 192.162.100.4/24  
Port Id : 1/1/23

Interface : ip-192.162.40.4  
IP Addr. : 192.162.40.4/24  
Port Id : lag-5

Interface : ip-192.162.65.4  
IP Addr. : 192.162.65.4/24  
Port Id : 1/1/13

Network Policy Id : 1050

Interface Association

Network Policy Id : 1550
Interface Association
No Interface Association Found.

Network Policy Id : 2050

Interface Association
No Interface Association Found.

*A:SAS-X-C>config>qos# show qos remark-policy 500 detail

QoS Remarking Policies

Remark Policy-id : 500 Type : dot1p-lsp-exp-shared
Description : (Not Specified)

<table>
<thead>
<tr>
<th>FC Name</th>
<th>dot1P / LSP EXP</th>
<th>In Value</th>
<th>dot1P / LSP EXP</th>
<th>Out Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>be</td>
<td></td>
<td>3</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>l2</td>
<td></td>
<td>1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>af</td>
<td></td>
<td>6</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>l1</td>
<td></td>
<td>7</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>h2</td>
<td></td>
<td>0</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ef</td>
<td></td>
<td>5</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>h1</td>
<td></td>
<td>4</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>nc</td>
<td></td>
<td>2</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Associations
SAP Egress Policy Id : 5001

Associations
Service-Id : 500 (VPLS) Customer-Id : 1
- SAP : lag-2:500

SAP Egress Policy Id : 5701

Associations
Service-Id : 570 (VPLS) Customer-Id : 1
- SAP : lag-2:570

SAP Egress Policy Id : 6401
Associations

Service-Id : 640 (VPLS)       Customer-Id : 1
- SAP : lag-2:640

SAP Egress Policy Id : 10001

Associations

Service-Id : 1000 (VPLS)       Customer-Id : 1
- SAP : lag-2:1000

SAP Egress Policy Id : 10701

Associations

Service-Id : 1070 (VPLS)       Customer-Id : 1
- SAP : lag-2:1070

SAP Egress Policy Id : 11401

Associations

Service-Id : 1140 (VPLS)       Customer-Id : 1
- SAP : lag-2:1140

SAP Egress Policy Id : 15001

Associations

Service-Id : 1500 (VPLS)       Customer-Id : 1
- SAP : lag-4:1500

SAP Egress Policy Id : 15701

Associations

Service-Id : 1570 (VPLS)       Customer-Id : 1
- SAP : lag-4:1570

SAP Egress Policy Id : 16401

Associations

Service-Id : 1640 (VPLS)       Customer-Id : 1
- SAP : lag-4:1640

SAP Egress Policy Id : 20001
Service-Id : 2000 (Epipe) Customer-Id : 1
- SAP : 1/1/2/2000

SAP Egress Policy Id : 20701

Network Policy Id : 50

Interface Association

Interface : ip-192.162.105.4
IP Addr. : 192.162.105.4/24 Port Id : 1/1/23
Interface : ip-192.162.20.4
IP Addr. : 192.162.20.4/24 Port Id : lag-3
Interface : ip-192.162.45.4
IP Addr. : 192.162.45.4/24 Port Id : lag-5
Interface : ip-192.162.80.4
IP Addr. : 192.162.80.4/24 Port Id : 1/1/22
Network Policy Id : 550

Interface Association

Interface : ip-192.162.100.4
IP Addr. : 192.162.100.4/24 Port Id : 1/1/23
Interface : ip-192.162.40.4
IP Addr. : 192.162.40.4/24 Port Id : lag-5
Interface : ip-192.162.65.4
IP Addr. : 192.162.65.4/24 Port Id : 1/1/13
Network Policy Id : 1050

Interface Association

No Interface Association Found.
Network Policy Id : 1550

Interface Association

No Interface Association Found.
Network Policy Id : 2050

Interface Association

No Interface Association Found.

*A:SAS-X-C>config>qos# show qos remark-policy 500 detail*
QoS Remarking Policies

Remark Policy-id : 500           Type         : dot1p-lsp-exp-shared
Description        : (Not Specified)

-------------------------------------------------------------------------------
FC Name    dot1P / LSP EXP          dot1P / LSP EXP
In Value                 Out Value
-------------------------------------------------------------------------------
be             3                        6
l2             1                        4
af             6                        1
l1             7                        2
h2             0                        3
ef             5                        0
h1             4                        7
nc             2                        5
-------------------------------------------------------------------------------
Associations

SAP Egress

SAP Egress Policy Id          : 5001

Associations

Service-Id     : 500 (VPLS)                   Customer-Id  : 1
- SAP : lag-2:500

SAP Egress Policy Id          : 5701

Associations

Service-Id     : 570 (VPLS)                   Customer-Id  : 1
- SAP : lag-2:570

SAP Egress Policy Id          : 6401

Associations

Service-Id     : 640 (VPLS)                   Customer-Id  : 1
- SAP : lag-2:640

SAP Egress Policy Id          : 10001

Network

Network Policy Id             : 50
Interface Association

Interface : ip-192.162.105.4  
IP Addr. : 192.162.105.4/24  Port Id : 1/1/23
Interface : ip-192.162.20.4  
IP Addr. : 192.162.20.4/24  Port Id : lag-3
Interface : ip-192.162.45.4  
IP Addr. : 192.162.45.4/24  Port Id : lag-5
Interface : ip-192.162.80.4  
IP Addr. : 192.162.80.4/24  Port Id : 1/1/22
Network Policy Id : 550

Interface Association

Interface : ip-192.162.100.4  
IP Addr. : 192.162.100.4/24  Port Id : 1/1/23
Interface : ip-192.162.40.4  
IP Addr. : 192.162.40.4/24  Port Id : lag-5
Interface : ip-192.162.65.4  
IP Addr. : 192.162.65.4/24  Port Id : 1/1/13
Network Policy Id : 1050

Interface Association

Interface : ip-192.162.100.4  
IP Addr. : 192.162.100.4/24  Port Id : 1/1/23
Network Policy Id : 1550

Interface Association

Interface : ip-192.162.100.4  
IP Addr. : 192.162.100.4/24  Port Id : 1/1/23
Network Policy Id : 2050

Interface Association

Interface : ip-192.162.100.4  
IP Addr. : 192.162.100.4/24  Port Id : 1/1/23
Network Policy Id : 2550

No Interface Association Found.

Interface Association

Interface : ip-192.162.100.4  
IP Addr. : 192.162.100.4/24  Port Id : 1/1/23
Network Policy Id : 3050

Interface Association

Interface : ip-192.162.100.4  
IP Addr. : 192.162.100.4/24  Port Id : 1/1/23
Network Policy Id : 3550

No Interface Association Found.
In This Section

This section provides information on multipoint bandwidth management using the command line interface.

Topics in this section include:

- Overview on page 384
- Configuration Guidelines on page 385
Overview

In the 7210 SAS, multicast, unknown unicast, and broadcast traffic types are enqueued into a set of eight ingress queues. SAP ingress traffic and network traffic which are been policed by multipoint SAP ingress meters are enqueued into these queues before being replicated to appropriate egress port. There are a set of eight queues per node which are shared by all the services. Packets are enqueued to the appropriate queue based on the Forwarding Class (FC) assigned to the packet by the SAP ingress classification.

The Multipoint Bandwidth Management CLI commands are used to configure a bandwidth policy to manage different traffic types like broadcast, unknown unicast and multicast traffic. The aggregate ingress rate can be configured to control the amount of multipoint traffic per node. For each of the queues the user can specify the CIR/PIR and CBS/MBS to control the amount of traffic and packet buffers allocated per FC respectively.

If a policy is not configured explicitly by the user, a default multipoint ingress policy is used by the system. A default slope-policy is used by the system, but this policy cannot be configured by the user.

The default slope policy for a multipoint queue:

```
high-slope
 start-avg 70
 max-avg 90
 max-prob 75
 no shutdown
exit
low-slope
 start-avg 50
 max-avg 75
 max-prob 75
 no shutdown
exit
```
Configuration Guidelines

- The FC to multipoint queue map cannot be configured by the user. It is defined by the system.
- The maximum total amount of ingress multicast traffic which can be replicated is approximately 10Gbps.
- The maximum total amount of egress multicast traffic (after replication) is limited to approximately 23Gbps.
- The ingress multipoint queues are scheduled in strict priority order, with FC NC being scheduled first and FC BE being scheduled last.
- WRED slopes for the queues cannot be configured by the users.
Multipoint Bandwidth Management Command Reference

Command Hierarchies

Configuration Commands

```
config
 — multipoint-management
 — [no] bandwidth-policy policy-name [create]
 — [no] description description-string
 — [no] ingress-aggregate-rate <megabits-per-second>
 — queue <queue-id>
 — [no] adaptation-rule [pir <adaptation-rule>] [cir <adaptation-rule>]
 — [no] rate cir <cir-percent> [pir <pir-percent>]
 — [no] cbs <in kilo bytes>
 — [no] mbs <in kilo bytes>

config
 — system
 — multipoint-management
 — [no] bandwidth-policy <policy-name>
```

SHOW COMMANDS

```
show
 — system
 — multipoint-management <detail>
 — multipoint-management
 — bandwidth-policy
 — bandwidth-policy <detail>
 — bandwidth-policy <policy-name>
 — bandwidth-policy <policy-name> <detail>

CLEAR COMMANDS

```
clear
  — system
    — multipoint-management statistics
```
Configuration Commands

Generic Commands

description

Syntax

```
description  description-string
no description
```

Context

`config>system>multipoint-management>bandwidth-policy`

Description

This command creates a text description stored in the configuration file for a configuration context.

The `description` command associates a text string with a configuration context to help identify the context in the configuration file.

The `no` form of this command removes any description string from the context.

Default

No description is associated with the configuration context.

Parameters

`description-string` — A text string describing the entity. Allowed values are any string up to 80 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.
Multipoint Bandwidth Management Commands

multipoint-management

Syntax multipoint-management
Context config
cfgsystem

Description This command enables the context to configure Multipoint Bandwidth Management.

bandwidth-policy

Syntax [no] bandwidth-policy policy-name [create]
Context config>multipoint-management
cfgsystem>config>system>multipoint-management

Description This command specifies the name of the multipoint bandwidth management policy.

Parameters policy name — The name of the multipoint bandwidth management policy.

Values Valid names consist of any string up to 32 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces and so on), the entire string must be enclosed within double quotes.

create — Mandatory keyword to be specified to create a bandwidth policy.

ingress-aggregate-rate

Syntax [no] ingress-aggregate-rate <megabits-per-second>
Context config>multipoint-management>bandwidth-policy

Description This command configures the total multipoint ingress traffic rate.

Default 10000

Parameters megabits-per-second — Specifies the ingress aggregate rate in Mbps.

Values 1 — 10000
queue

Syntax queue <queue-id>

Context config>multipoint-management>bandwidth-policy

Description This command provides the context to configure the multipoint queue parameters. Eight queues
are available for the user to configure. The forwarding classes (FCs) assignment to queues is given
in Table 45.

Default None

Parameters queue id — Specifies the queue ID.

Values 1-8

Table 45: FC Queue Table

<table>
<thead>
<tr>
<th>FC</th>
<th>Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE</td>
<td>Queue1</td>
</tr>
<tr>
<td>L2</td>
<td>Queue2</td>
</tr>
<tr>
<td>AF</td>
<td>Queue3</td>
</tr>
<tr>
<td>L1</td>
<td>Queue4</td>
</tr>
<tr>
<td>H2</td>
<td>Queue5</td>
</tr>
<tr>
<td>EF</td>
<td>Queue6</td>
</tr>
<tr>
<td>H1</td>
<td>Queue7</td>
</tr>
<tr>
<td>NC</td>
<td>Queue8</td>
</tr>
</tbody>
</table>

adaptation-rule

Syntax [no] adaptation-rule [cir <adaptation-rule>] [pir <adaptation-rule>]

Context config>multipoint-management>bandwidth-policy>queue

Description This command defines the method used by the system to derive the operational CIR and PIR
settings when the queue’s rate is provisioned in hardware. For the CIR and PIR parameters,
individually the system attempts to find the best operational rate depending on the defined
constraint and the applicable hardware constraints.

The no form of the command removes any explicitly defined constraints used to derive the
operational CIR and PIR created by the application of the policy. When a specific adaptation-rule
is removed, the default constraints for cir and pir apply.
Parameters

adaptation-rule — Specifies the adaptation rule to be used while computing the operational CIR or PIR value.

max — The max (maximum) option is mutually exclusive with the min and closest options.

min — The min (minimum) option is mutually exclusive with the max and closest options.

closest — The closest parameter is mutually exclusive with the min and max parameter.

closest

rate

Syntax

[no] rate cir <cir-percent> [pir <pir-percent>]

Context

config>multipoint-management>bandwidth-policy>queue

Description

This command defines the administrative PIR and CIR parameters for the queue. The CIR and PIR rates are specified in percentage. The system determines the operational rate as a percentage of the ingress-aggregate-rate configured.

The no form of the command restores the CIR and PIR rates to default values.

Default

100

Parameters

cir-percent — Defines the percentage of the guaranteed rate allowed for the queue. When the rate command is executed, a valid CIR setting must be explicitly defined. When the rate command has not been executed, the default CIR of 0 is assumed. Fractional values are not allowed and must be given as a positive integer.

Values

0 — 100

pir-percent — Defines the percentage of the maximum rate allowed for the queue. When the rate command is executed, the PIR setting is optional. When the rate command has not been executed, or the PIR parameter is not explicitly specified, the default PIR of 100 is assumed. Fractional values are not allowed and must be given as a positive integer.

Values

1 — 100 percent

cbs

Syntax

[no] cbs <in kilo bytes>

Context

config>multipoint-management>bandwidth-policy>queue

Description

The Committed Burst Size (CBS) specifies the amount of reserved buffers for a specified queue. The value is given in kilo-bytes.
The CBS for a queue is used to determine whether the queue has exhausted its reserved buffers while en-queuing packets. Once the queue has exceeded the amount of buffers considered in reserve it must contend with other queues for the available shared buffer space within the system buffer pool. Access to the shared pool is controlled through Random Early Detection (RED) application. Oversubscription of CBS is not allowed.

Two RED slopes are maintained for each queue. A high priority slope is used by in-profile packets. A low priority slope is used by out-of-profile packets. The RED slopes are not user configurable.

The no form of this command returns the CBS size for the queue to the default value.

Default

- Queue1 — 1024KB
- Queue[2 to 6] — 2048 KB
- Queue[7 to 8] — 512KB

Parameters

- `<in kilo bytes>` — specifies the CBS values in kilo bytes.

Values

- 0 — 131072

mbs

Syntax

```
[no] mbs <in kilo bytes>
```

Context

```
config>multipoint-management>bandwidth-policy>queue
```

Description

The Maximum Burst Size (MBS) command is used to specify maximum amount of buffers that can be used by a particular queue from the shared pool of buffers. This value is specified in kilobytes.

The MBS value is used by a queue to determine whether it has exhausted its total allowed buffers while en-queuing packets. Once the queue has exceeded its maximum amount of buffers, all packets are discarded until the queue transmits a packet. A queue that has not exceeded its MBS size is not guaranteed that a buffer will be available when needed or that the packet’s RED slope will not force the discard of the packet.

The no form of the command returns the MBS size for the queue to the default value.

Default

- Queue[1 to 6] — 6144 KB
- Queue[7 to 8] — 2048KB

Parameters

- `<in kilo bytes>` — Specifies the MBS values in kilo bytes.

Values

- 0 — 131072
Show Commands

multipoint-management

Syntax multipoint-management
Context show
 show>system
Description This command displays the multipoint management information.

bandwidth-policy

Syntax bandwidth-policy
 bandwidth-policy <detail>
 bandwidth-policy <policy-name>
 bandwidth-policy <policy-name> <detail>
Context show>multipt-management
Description This command displays the multipoint management information for the bandwidth policies.
Parameters policy-name — The name of the policy.
 detail — Displays detailed information of the multipoint-management policy.
Output Multipoint-management Policy Output Fields — The following table describes Multipoint-
 management policy output fields.
Table 46: Show Multipoint-management Policy Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy</td>
<td>Displays the policy name of the Multipoint-management policy.</td>
</tr>
<tr>
<td>Description</td>
<td>A string that identifies the policy’s context in the configuration file.</td>
</tr>
<tr>
<td>Ingr. Aggr. Rate</td>
<td>Displays the Ingress aggregate rate.</td>
</tr>
<tr>
<td>Queue</td>
<td>Displays the queue ID of the queue.</td>
</tr>
<tr>
<td>CBS</td>
<td>Displays the configured CBS value.</td>
</tr>
<tr>
<td>CIR</td>
<td>Displays the committed information rate.</td>
</tr>
<tr>
<td>PIR</td>
<td>Displays the peak information rate.</td>
</tr>
<tr>
<td>Mgmt Plcy</td>
<td>Displays the configured management policy.</td>
</tr>
</tbody>
</table>
Table 46: Show Multipoint-management Policy Output Fields (Continued)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBS</td>
<td>Displays the configured MBS value.</td>
</tr>
<tr>
<td>CIR Adaptation Rule</td>
<td>Displays the adaptation rule in use.</td>
</tr>
<tr>
<td>PIR Adaptation Rule</td>
<td>Displays the adaptation rule in use.</td>
</tr>
<tr>
<td>Queue Statistics</td>
<td></td>
</tr>
<tr>
<td>Egress Queue</td>
<td>Displays the egress queue ID and the associated forwarding class.</td>
</tr>
<tr>
<td>Fwd Stats</td>
<td>Displays the forwarding statistics in octets and packets.</td>
</tr>
<tr>
<td>Drop Stats</td>
<td>Displays the drop statistics in octets and packets.</td>
</tr>
</tbody>
</table>

Sample Output

*A:Dut-G>show>mpoint-mgmt># bandwidth-policy detail

===
Bandwidth Policy Details
===
Policy Description: abc
Ingr. Aggr. Rate: Default

<table>
<thead>
<tr>
<th>Queue 1</th>
<th>Mgmt Pcly</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBS</td>
<td>default</td>
<td>MBS</td>
</tr>
<tr>
<td>CIR</td>
<td>default</td>
<td>MBS</td>
</tr>
<tr>
<td>PIR</td>
<td>default</td>
<td>MBS</td>
</tr>
<tr>
<td>Queue 2</td>
<td>Mgmt Pcly</td>
<td>None</td>
</tr>
<tr>
<td>CBS</td>
<td>default</td>
<td>MBS</td>
</tr>
<tr>
<td>CIR</td>
<td>default</td>
<td>MBS</td>
</tr>
<tr>
<td>PIR</td>
<td>default</td>
<td>MBS</td>
</tr>
<tr>
<td>Queue 3</td>
<td>Mgmt Pcly</td>
<td>None</td>
</tr>
<tr>
<td>CBS</td>
<td>default</td>
<td>MBS</td>
</tr>
<tr>
<td>CIR</td>
<td>default</td>
<td>MBS</td>
</tr>
<tr>
<td>PIR</td>
<td>default</td>
<td>MBS</td>
</tr>
<tr>
<td>Queue 4</td>
<td>Mgmt Pcly</td>
<td>None</td>
</tr>
<tr>
<td>CBS</td>
<td>default</td>
<td>MBS</td>
</tr>
<tr>
<td>CIR</td>
<td>default</td>
<td>MBS</td>
</tr>
<tr>
<td>PIR</td>
<td>default</td>
<td>MBS</td>
</tr>
<tr>
<td>Queue 5</td>
<td>Mgmt Pcly</td>
<td>None</td>
</tr>
<tr>
<td>CBS</td>
<td>default</td>
<td>MBS</td>
</tr>
<tr>
<td>CIR</td>
<td>default</td>
<td>MBS</td>
</tr>
<tr>
<td>PIR</td>
<td>default</td>
<td>MBS</td>
</tr>
<tr>
<td>Queue 6</td>
<td>Mgmt Pcly</td>
<td>None</td>
</tr>
<tr>
<td>CBS</td>
<td>default</td>
<td>MBS</td>
</tr>
<tr>
<td>CIR</td>
<td>default</td>
<td>MBS</td>
</tr>
<tr>
<td>PIR</td>
<td>default</td>
<td>MBS</td>
</tr>
<tr>
<td>Queue</td>
<td>Mgmt Plcy</td>
<td>CBS</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-----</td>
</tr>
<tr>
<td>7</td>
<td>None</td>
<td>default</td>
</tr>
<tr>
<td>8</td>
<td>None</td>
<td>default</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Queue</th>
<th>Mgmt Plcy</th>
<th>CBS</th>
<th>MBS</th>
<th>CIR</th>
<th>CIR Adaptation Rule</th>
<th>PIR</th>
<th>PIR Adaptation Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
<td>default</td>
<td>default</td>
<td>default</td>
<td>closest</td>
<td>closest</td>
<td>closest</td>
</tr>
<tr>
<td>2</td>
<td>None</td>
<td>default</td>
<td>default</td>
<td>default</td>
<td>closest</td>
<td>closest</td>
<td>closest</td>
</tr>
<tr>
<td>3</td>
<td>None</td>
<td>default</td>
<td>default</td>
<td>default</td>
<td>closest</td>
<td>closest</td>
<td>closest</td>
</tr>
<tr>
<td>4</td>
<td>None</td>
<td>default</td>
<td>default</td>
<td>default</td>
<td>closest</td>
<td>closest</td>
<td>closest</td>
</tr>
<tr>
<td>5</td>
<td>None</td>
<td>default</td>
<td>default</td>
<td>default</td>
<td>closest</td>
<td>closest</td>
<td>closest</td>
</tr>
<tr>
<td>6</td>
<td>None</td>
<td>default</td>
<td>default</td>
<td>default</td>
<td>closest</td>
<td>closest</td>
<td>closest</td>
</tr>
<tr>
<td>7</td>
<td>None</td>
<td>default</td>
<td>default</td>
<td>default</td>
<td>closest</td>
<td>closest</td>
<td>closest</td>
</tr>
<tr>
<td>8</td>
<td>None</td>
<td>default</td>
<td>default</td>
<td>default</td>
<td>closest</td>
<td>closest</td>
<td>closest</td>
</tr>
</tbody>
</table>

Bandwidth Policies:

- **Policy**: default
- **Description**: Ingr. Aggr. Rate: Default

* A:Dut-G>show# multipoint-management bandwidth-policy abc

Bandwidth Policies:

<table>
<thead>
<tr>
<th>Bw Policy</th>
<th>Description</th>
<th>Ingr. Aggr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>abc</td>
<td>Default</td>
<td></td>
</tr>
</tbody>
</table>
Bandwidth Policies : 1

*A:Dut-G>show#

*A:Dut-G>show>mpoint-mgmt># bandwidth-policy abc detail

Bandwidth Policy Details

Policy : abc
Description : Ingr. Aggr. Rate: Default

<table>
<thead>
<tr>
<th>Policy</th>
<th>Description</th>
<th>Mgmt Plcy</th>
<th>Ingr. Aggr. Rate: Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue 1</td>
<td></td>
<td>CBS</td>
<td>default</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIR</td>
<td>default</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PIR</td>
<td>default</td>
</tr>
<tr>
<td>Queue 2</td>
<td></td>
<td>CBS</td>
<td>default</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIR</td>
<td>default</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PIR</td>
<td>default</td>
</tr>
<tr>
<td>Queue 3</td>
<td></td>
<td>CBS</td>
<td>default</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIR</td>
<td>default</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PIR</td>
<td>default</td>
</tr>
<tr>
<td>Queue 4</td>
<td></td>
<td>CBS</td>
<td>default</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIR</td>
<td>default</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PIR</td>
<td>default</td>
</tr>
<tr>
<td>Queue 5</td>
<td></td>
<td>CBS</td>
<td>default</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIR</td>
<td>default</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PIR</td>
<td>default</td>
</tr>
<tr>
<td>Queue 6</td>
<td></td>
<td>CBS</td>
<td>default</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIR</td>
<td>default</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PIR</td>
<td>default</td>
</tr>
<tr>
<td>Queue 7</td>
<td></td>
<td>CBS</td>
<td>default</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIR</td>
<td>default</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PIR</td>
<td>default</td>
</tr>
<tr>
<td>Queue 8</td>
<td></td>
<td>CBS</td>
<td>default</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIR</td>
<td>default</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PIR</td>
<td>default</td>
</tr>
</tbody>
</table>

System Multipoint Bandwidth Policy Details

Policy : abc
Description : Ingr. Aggr. Rate: Default

Queue 1 : Mgmt Plcy : None
CBS : default MBS : default
CIR : default CIR Adaptation Rule: closest
PIR : default PIR Adaptation Rule: closest
Queue 2 : Mgmt Plcy : None
CBS : default MBS : default
CIR : default CIR Adaptation Rule: closest
PIR : default PIR Adaptation Rule: closest
Queue 3 : Mgmt Plcy : None
CBS : default MBS : default
CIR : default CIR Adaptation Rule: closest
PIR : default PIR Adaptation Rule: closest
Queue 4 : Mgmt Plcy : None
CBS : default MBS : default
CIR : default CIR Adaptation Rule: closest
PIR : default PIR Adaptation Rule: closest
Queue 5 : Mgmt Plcy : None
CBS : default MBS : default
CIR : default CIR Adaptation Rule: closest
PIR : default PIR Adaptation Rule: closest
Queue 6 : Mgmt Plcy : None
CBS : default MBS : default
CIR : default CIR Adaptation Rule: closest
PIR : default PIR Adaptation Rule: closest
Queue 7 : Mgmt Plcy : None
CBS : default MBS : default
CIR : default CIR Adaptation Rule: closest
PIR : default PIR Adaptation Rule: closest
Queue 8 : Mgmt Plcy : None
CBS : default MBS : default
CIR : default CIR Adaptation Rule: closest
PIR : default PIR Adaptation Rule: closest

Queue Statistics

<table>
<thead>
<tr>
<th>Egress Queue</th>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egress Queue 1 (be)</td>
<td>Fwd Stats: 0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Drop Stats: 0</td>
<td>0</td>
</tr>
<tr>
<td>Egress Queue 2 (l2)</td>
<td>Fwd Stats: 0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Drop Stats: 0</td>
<td>0</td>
</tr>
<tr>
<td>Egress Queue 3 (af)</td>
<td>Fwd Stats: 0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Drop Stats: 0</td>
<td>0</td>
</tr>
<tr>
<td>Egress Queue 4 (l1)</td>
<td>Fwd Stats: 0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Drop Stats: 0</td>
<td>0</td>
</tr>
<tr>
<td>Egress Queue 5 (h2)</td>
<td>Fwd Stats: 0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Drop Stats: 0</td>
<td>0</td>
</tr>
<tr>
<td>Egress Queue 6 (ef)</td>
<td>Fwd Stats: 0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Drop Stats: 0</td>
<td>0</td>
</tr>
<tr>
<td>Queue</td>
<td>Fwd Stats 1</td>
<td>Fwd Stats 2</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Egress Queue 7 (h1)</td>
<td>79</td>
<td>7426</td>
</tr>
<tr>
<td>Egress Queue 8 (nc)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Egress Queue 8 (nc)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

A:Dut-G>show>system#
Clear Commands

multipoint-management

Syntax multipart-point-management statistics

Context clear>system

Description This command clears the queue counters.
Standards and Protocol Support

Standards Compliance
IEEE 802.1ab-REV/D3 Station and Media Access Control Connectivity Discovery
IEEE 802.1D Bridging
IEEE 802.1p/Q VLAN Tagging
IEEE 802.1s Multiple Spanning Tree
IEEE 802.1w Rapid Spanning Tree Protocol
IEEE 802.1X Port Based Network Access Control
IEEE 802.1ad Provider Bridges
IEEE 802.1ah Provider Backbone Bridges
IEEE 802.1ag Service Layer OAM
IEEE 802.3ah Ethernet in the First Mile
IEEE 802.3 10BaseT
IEEE 802.3ad Link Aggregation
IEEE 802.3ae 10Gbps Ethernet
IEEE 802.3ah Ethernet OAM
IEEE 802.3u 100BaseTX
IEEE 802.3z 1000BaseSX/LX ITU-T Y.1731 OAM functions and mechanisms for Ethernet based networks draft-ietf-disman-alarm-mib-04.txt IANA-IFType-MIB
IEEE8023-LAG-MIB ITU-T G.8032 Ethernet Ring Protection Switching (version 2)

Protocol Support
BGP
RFC 1397 BGP Default Route Advertisement
RFC 1772 Application of BGP in the Internet
RFC 1997 BGP Communities Attribute
RFC 2385 Protection of BGP Sessions via MD5
RFC 2439 BGP Route Flap Dampening
RFC 2547 bis BGP/MPLS VPNs draft-ietf-idr-rcf2858bis-09.txt.
RFC 2918 Route Refresh Capability for BGP-4
RFC 3107 Carrying Label Information in BGP-4
RFC 3392 Capabilities Advertisement with BGP4
RFC 4271 BGP-4 (previously RFC 1771)
RFC 4360 BGP Extended Communities Attribute
RFC 4364 BGP/MPLS IP Virtual Private Networks (VPNs)(previously RFC 2547bis BGP/MPLS VPNs)
RFC 4760 Multi-protocol Extensions for BGP
RFC 4893 BGP Support for Four-octet AS Number Space
CIRCUIT EMULATION
RFC 4553 Structure-Agnostic Time Division Multiplexing (TDM) over Packet (SAToP)
RFC 5086 Structure-Aware Time Division Multiplexed (TDM) Circuit Emulation Service over Packet Switched Network (CESoPSN)
RFC 5287 Control Protocol Extensions for the Setup of Time-Division Multiplexing (TDM) Pseudowires in MPLS Networks
DHCP
RFC 2131 Dynamic Host Configuration Protocol (REV)
DIFFERENTIATED SERVICES
RFC 2474 Definition of the DS Field the IPv4 and IPv6 Headers (Rev)
RFC 2597 Assured Forwarding PHB Group (rev3260)
RFC 2598 An Expedited Forwarding PHB
RFC 2697 A Single Rate Three Color Marker
RFC 2698 A Two Rate Three Color Marker
RFC 4115 A Differentiated Service Two-Rate, Three-Color Marker with Efficient Handling of in-Profile Traffic
IPv6
RFC 2460 Internet Protocol, Version 6 (IPv6) Specification
RFC 2461 Neighbor Discovery for IPv6
RFC 2462 IPv6 Stateless Address Auto configuration
RFC 2463 Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 Specification
RFC 2464 Transmission of IPv6 Packets over Ethernet Networks
RFC 2740 OSPF for IPv6
RFC 3587 IPv6 Global Unicast Address Format
RFC 4007 IPv6 Scoped Address Architecture
RFC 4193 Unique Local IPv6 Unicast Addresses
RFC 4291 IPv6 Addressing Architecture
RFC 4552 Authentication/Confidentiality for OSPFv3
RFC 5095 Deprecation of Type 0 Routing Headers in IPv6

IS-IS
RFC 1142 OSI IS-IS Intra-domain Routing Protocol (ISO 10589)
RFC 1195 Use of OSI IS-IS for routing in TCP/IP & dual environments
RFC 2763 Dynamic Hostname Exchange for IS-IS
RFC 2966 Domain-wide Prefix Distribution with Two-Level IS-IS
RFC 2973 IS-IS Mesh Groups
RFC 3373 Three-Way Handshake for Intermediate System to Intermediate System (IS-IS) Point-to-Point Adjacencies
RFC 3567 Intermediate System to Intermediate System (ISIS) Cryptographic Authentication
RFC 3719 Recommendations for Interoperable Networks using IS-IS
RFC 3784 Intermediate System to Intermediate System (IS-IS) Extensions for Traffic Engineering (TE)
RFC 3787 Recommendations for Interoperable IP Networks
RFC 3847 Restart Signaling for IS-IS – GR helper

MPLS - LDP
RFC 3036 LDP Specification
Standards and Protocols

RFC 3037 LDP Applicability
RFC 3478 Graceful Restart Mechanism for LDP — GR helper
RFC 5283 LDP extension for Inter-Area LSP
RFC 5443 LDP IGP Synchronization

MPLS - General
RFC 3031 MPLS Architecture
RFC 3032 MPLS Label Stack Encoding
RFC 4379 Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures
RFC 4182 Removing a Restriction on the use of MPLS Explicit NULL

Multicast
RFC 1112 Host Extensions for IP Multicasting (Snooping)
RFC 2236 Internet Group Management Protocol, (Snooping)
RFC 3376 Internet Group Management Protocol, Version 3 (Snooping) [Only in 7210 SAS-M access-uplink mode]

NETWORK MANAGEMENT
ITU-T X.721: Information technology-OSI-Structure of Management Information
ITU-T X.734: Information technology-OSI-Systems Management: Event Report Management Function
M.3100/3120 Equipment and Connection Models
TMF 509/613 Network Connectivity Model
RFC 1157 SNMPv1
RFC 1215 A Convention for Defining Traps for use with the SNMP
RFC 1907 SNMPv2-MIB
RFC 2011 IP-MIB
RFC 2012 TCP-MIB
RFC 2013 UDP-MIB
RFC 2096 IP-FORWARD-MIB
RFC 2138 RADIUS
RFC 2206 RSVP-MIB
RFC 2571 SNMP-FRAMEWORKMIB
RFC 2572 SNMP-MPD-MIB
RFC 2573 SNMP-TARGET-&-NOTIFICATION-MIB
RFC 2574 SNMP-USER-BASEDSMMIB

OSPF
RFC 1765 OSPF Database Overflow
RFC 2328 OSPF Version 2
RFC 2370 Opaque LSA Support
RFC 3014 NOTIFICATION-LOGMIB
RFC 3164 Syslog
RFC 3273 HCRMON-MI
RFC 3412 - Message Processing and Dispatching for the Simple Network Management Protocol (SNMP)
RFC 3413 - Simple Network Management Protocol (SNMP) Applications
RFC 3414 - User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)
RFC 3418 - SNMP MIB
draft-ietf-mpls-lsr-mib-06.txt
draft-ietf-mpls-te-mib-04.txt
draft-ietf-mpls-ldp-mib-07.txt

MPLS - RSVP-TE
RFC 2430 A Provider Architecture DiffServ & TE
RFC 2702 Requirements for Traffic Engineering over MPLS
RFC2747 RSVP Cryptographic Authentication
RFC3097 RSVP Cryptographic Authentication
RFC 3209 Extensions to RSVP for Tunnels

OSPF
RFC 1765 OSPF Database Overflow
RFC 2328 OSPF Version 2
RFC 2370 Opaque LSA Support
RFC 3014 NOTIFICATION-LOGMIB
RFC 3164 Syslog
RFC 3273 HCRMON-MI
RFC 3412 - Message Processing and Dispatching for the Simple Network Management Protocol (SNMP)
RFC 3413 - Simple Network Management Protocol (SNMP) Applications
RFC 3414 - User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)
RFC 3418 - SNMP MIB
draft-ietf-mpls-lsr-mib-06.txt
draft-ietf-mpls-te-mib-04.txt
draft-ietf-mpls-ldp-mib-07.txt

PSEUDO-WIRE
RFC 3985 Pseudo Wire Emulation Edge-to-Edge (PWE3)
RFC 4385 Pseudo Wire Emulation Edge-to-Edge (PWE3) Control Word for Use over an MPLS PSN
RFC 3916 Requirements for Pseudo-Wire Emulation Edge-to-Edge (PWE3)
RFC 4448 Encapsulation Methods for Transport of Ethernet over MPLS Networks (draft-ietf-pwe3-ethernet-encap-11.txt)
RFC 4446 IANA Allocations for PWE3
RFC 4447 Pseudowire Setup and Maintenance Using LDP (draft-ietf-pwe3-control-protocol-17.txt)
RFC 5085, Pseudowire Virtual Circuit Connectivity Verification (VCCV): A Control Channel for Pseudowires
RFC 5659 An Architecture for Multi-Segment Pseudowire Emulation Edge-to-Edge
RFC6073, Segmented Pseudowire (draft-ietf-pwe3-segmented-pw-18.txt)
draft-ietf-l2vpn-vpws-iw-oam-02.txt
OAM Procedures for VPWS Interworking
draft-ietf-pwe3-oam-msg-map-14.txt, Pseudowire (PW) OAM Message Mapping
Pseudowire Preferential Forwarding Status bit definition
draft-pwe3-redundancy-02.txt
Pseudowire (PW) Redundancy

RADIUS
RFC 2865 Remote Authentication Dial In User Service
RFC 2866 RADIUS Accounting

SSH
draft-ietf-secsch-architecture.txt SSH Protocol Architecture
draft-ietf-secsch-userauth.txt SSH Authentication Protocol
draft-ietf-secsh-transport.txt SSH Transport Layer Protocol

draft-ietf-secsh-connection.txt SSH Connection Protocol

draft-ietf-secsh-newmodes.txt SSH Transport Layer Encryption Modes

TACACS+
draft-grant-tacacs-02.txt

TCP/IP
RFC 768 UDP
RFC 1350 The TFTP Protocol
RFC 791 IP
RFC 792 ICMP
RFC 793 TCP
RFC 826 ARP
RFC 854 Telnet
RFC 1519 CIDR
RFC 1812 Requirements for IPv4 Routers
RFC 2347 TFTP option Extension
RFC 2328 TFTP Blocksize Option
RFC 2349 TFTP Timeout Interval and Transfer Size option

Timing
ITU-T G.781 Telecommunication Standardization Section of ITU, Synchronization layer functions, issued 09/2008
ITU-T G.813 Telecommunication Standardization Section of ITU, Timing characteristics of SDH equipment slave clocks (SEC), issued 03/2003.

VPLS
RFC 4762 Virtual Private LAN Services Using LDP (previously draft-ietf-12vpn-vpls-ldp-08.txt)

VRRP
RFC 2787 Definitions of Managed Objects for the Virtual Router Redundancy Protocol
RFC 3768 Virtual Router Redundancy Protocol

Proprietary MIBs
ALCATEL-IGMP-SNOOPING-MIB.mib
TIMETRA-CAPABILITY-7210-SAS-M-V5v0.mib
(7210 SAS-M Only)
TIMETRA-CAPABILITY-7210-SAS-X-V5v0.mib (7210 SAS-X Only)
TIMETRA-CHASSIS-MIB.mib
TIMETRA-CLEAR-MIB.mib
TIMETRA-DOT3-OAM-MIB.mib
TIMETRA-FILTER-MIB.mib
TIMETRA-GLOBAL-MIB.mib
TIMETRA-IEEE8021-CFM-MIB.mib
TIMETRA-LAG-MIB.mib
TIMETRA-LOG-MIB.mib
TIMETRA-MIRROR-MIB.mib
TIMETRA-NTP-MIB.mib
TIMETRA-OAM-TEST-MIB.mib
TIMETRA-PORT-MIB.mib
TIMETRA-QOS-MIB.mib
TIMETRA-SAS-ALARM-INPUT-MIB.mib
TIMETRA-SAS-FILTER-MIB.mib
TIMETRA-SAS-IEEE8021-CFM-MIB.mib
TIMETRA-SAS-IEEE8021-PAE-MIB.mib
TIMETRA-SAS-IEEE8021-GLOBAL-MIB.mib
TIMETRA-SAS-LOG-MIB.mib
TIMETRA-SAS-MIRROR-MIB.mib
TIMETRA-SAS-MPOINDEX-MIB.mib (Only for 7210 SAS-X)
TIMETRA-SAS-PORT-MIB.mib
TIMETRA-SAS-QOS-MIB.mib
TIMETRA-SAS-SDP-MIB.mib
TIMETRA-SAS-SYSTEM-MIB.mib
TIMETRA-SAS-SERV-MIB.mib
TIMETRA-SAS-VERTR-MIB.mib
TIMETRA-SCHEDULER-MIB.mib
TIMETRA-SECURITY-MIB.mib
TIMETRA-SERV-MIB.mib
TIMETRA-SYSTEM-MIB.mib
TIMETRA-TC-MIB.mib
TIMETRA-ISIS-MIB.mib
TIMETRA-ROUTE-POLICY-MIB.mib
TIMETRA-MPLS-MIB.mib
TIMETRA-RSP-MIB.mib
TIMETRA-LDP-MIB.mib
TIMETRA-VRRP-MIB.mib
TIMETRA-VRTR-MIB.mib
INDEX

Q

QoS
 overview 18
 policies 19, 64
access egress
 overview 294
 configuring
 access egress policies 295, 296
 command reference 301, 315
 default values 297
frame-based accounting
 overview 78
 configuring
 enable 80
network policies
 overview 23
 configuring
 basic 97
 command reference 117
 default policy values 100
 overview 88
network queue policies
 overview 28
 adaptation rule 38
 CBS 40, 36
 PIR 37
 queue ID 35
 configuring
 applying to network ingress port 158
 basic 156
 default policy values 159
 overview 154
 command reference 167
SAP policies
 overview
 egress policies 46
 ingress policies 40
 configuring
 applying to services 244
 basic 198
 command reference 255
 ingress policy 199

slope policies
 overview 53, 340, 358, 384
 RED slopes 54
 shared buffer utilization 56
 configuring
 basic 341, 360