TABLE OF CONTENTS

Preface .. 11

Getting Started

Alcatel-Lucent 7210 SAS-Series System Configuration Process ... 15

CLI Usage

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLI Structure</td>
<td>18</td>
</tr>
<tr>
<td>Navigating in the CLI</td>
<td>20</td>
</tr>
<tr>
<td>CLI Contexts</td>
<td>20</td>
</tr>
<tr>
<td>Basic CLI Commands</td>
<td>22</td>
</tr>
<tr>
<td>CLI Environment Commands</td>
<td>25</td>
</tr>
<tr>
<td>CLI Monitor Commands</td>
<td>26</td>
</tr>
<tr>
<td>Getting Help in the CLI</td>
<td>27</td>
</tr>
<tr>
<td>The CLI Command Prompt</td>
<td>29</td>
</tr>
<tr>
<td>Displaying Configuration Contexts</td>
<td>30</td>
</tr>
<tr>
<td>EXEC Files</td>
<td>33</td>
</tr>
<tr>
<td>Entering CLI Commands</td>
<td>34</td>
</tr>
<tr>
<td>Command Completion</td>
<td>34</td>
</tr>
<tr>
<td>Unordered Parameters</td>
<td>34</td>
</tr>
<tr>
<td>Editing Keystrokes</td>
<td>35</td>
</tr>
<tr>
<td>Absolute Paths</td>
<td>36</td>
</tr>
<tr>
<td>History</td>
<td>38</td>
</tr>
<tr>
<td>Entering Numerical Ranges</td>
<td>39</td>
</tr>
<tr>
<td>Pipe/Match</td>
<td>41</td>
</tr>
<tr>
<td>Redirection</td>
<td>44</td>
</tr>
<tr>
<td>Basic Command Reference</td>
<td>45</td>
</tr>
</tbody>
</table>

File System Management

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The File System</td>
<td>80</td>
</tr>
<tr>
<td>Compact Flash Devices</td>
<td>80</td>
</tr>
<tr>
<td>USB Storage Device</td>
<td>81</td>
</tr>
<tr>
<td>URLs</td>
<td>82</td>
</tr>
<tr>
<td>Wildcards</td>
<td>83</td>
</tr>
<tr>
<td>File Management Tasks</td>
<td>84</td>
</tr>
<tr>
<td>Creating Directories</td>
<td>85</td>
</tr>
<tr>
<td>Copying Files</td>
<td>86</td>
</tr>
<tr>
<td>Moving Files</td>
<td>87</td>
</tr>
<tr>
<td>Removing Files and Deleting Directories</td>
<td>87</td>
</tr>
<tr>
<td>Displaying Directory and File Information</td>
<td>88</td>
</tr>
<tr>
<td>File Command Reference</td>
<td>89</td>
</tr>
</tbody>
</table>

Boot Options

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Initialization</td>
<td>102</td>
</tr>
<tr>
<td>Manual Mode</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>106</td>
</tr>
</tbody>
</table>
Table of Contents

Initial System Startup Process Flow
- Auto Init
 - Configuration Guidelines for use of Auto-init and Manual mode ... 106
- Configuration and Image Loading ... 109
 - Ping Check ... 112
 - Persistence .. 113
 - Configuration guidelines for use of software images with the 128MB 7210 SAS-D platform 115
 - Out-of-band (OOB) Ethernet Management Port .. 115
 - Configuration Guidelines for use of IPv6 for out-of-band management of the node 115
- Security for Console Port and Ethernet Management Port ... 116
- Reset the node to factory default setting .. 116

Initial System Startup Process Flow
- Initial System Startup Process Flow ... 120
- Configuration Notes .. 121
- Configuring Boot File Options with CLI ... 123
- BOF Configuration Overview ... 124
- Basic BOF Configuration .. 125
- Common Configuration Tasks .. 127
 - Searching for the BOF .. 128
 - Accessing the CLI .. 131
 - Console Connection ... 131
- Configuring BOF Parameters .. 133
- Service Management Tasks ... 134
 - System Administration Commands .. 134
 - Viewing the Current Configuration .. 134
 - Modifying and Saving a Configuration ... 136
 - Deleting BOF Parameters ... 137
 - Saving a Configuration to a Different Filename .. 139
 - Rebooting ... 139
- BOF Command Reference .. 141

System Management
- System Management Parameters .. 168
- System Information .. 168
 - System Name .. 168
 - System Contact ... 168
 - System Location ... 169
 - System Coordinates .. 169
 - Naming Objects ... 169
 - Common Language Location Identifier .. 170
- System Time .. 171
 - Time Zones .. 171
 - Network Time Protocol (NTP) ... 173
 - SNTP Time Synchronization .. 174
 - CRON ... 175
- High Availability ... 176
 - HA Features .. 176
 - Redundancy ... 176
 - Temperature Threshold Alarm and Fan Speed .. 178
- Synchronization .. 180
 - Line Timing Mode ... 180

Page 4

7210 SAS D, E OS Basic System Configuration Guide
Table of Contents

- **Synchronous Ethernet** .. 180
- **Network Synchronization** .. 181
- **Central Synchronization Sub-System** 182
- **Synchronization Status Messages (SSM)** 184
- **IEEE 1588v2 PTP** .. 185
 - **PTP Clock Synchronization** .. 189
 - **Performance Considerations** .. 192
 - **PTP Capabilities** ... 192
 - **PTP Ordinary Slave Clock For Frequency** 193
- **PTP Boundary Clock for Frequency and Time** 193
- **Configuration guidelines for PTP on 7210 SAS-D ETR** 194
- **Configuration to change reference from syncE to PTP** 195
- **Link Layer Discovery Protocol (LLDP)** 197
- **System Configuration Process Overview** 200
- **Configuration Notes** .. 201
 - **General** .. 201
- **Configuring System Management with CLI** 203
- **System Management** ... 204
 - **Saving Configurations** .. 204
- **Basic System Configuration** ... 205
- **Common Configuration Tasks** .. 206
 - **System Information** ... 207
 - **System Information Parameters** 208
 - **Coordinates** .. 210
 - **System Time Elements** ... 211
- **Configuring Backup Copies** .. 232
- **System Administration Parameters** 233
 - **Validating the Golden Bootstrap Image** 233
 - **Updating the Golden Bootstrap Image** 234
 - **Disconnect** .. 234
 - **Set-time** ... 235
 - **Display-config** ... 235
 - **Tech-support** .. 237
 - **Save** ... 237
 - **Reboot** .. 238
 - **Post-Boot Configuration Extension Files** 239
- **System Timing** ... 242
 - **Edit Mode** .. 242
 - **Configuring Timing References** 243
 - **Using the Revert Command** ... 244
- **Configuring System Monitoring Thresholds** 245
 - **Creating Events** ... 245
- **System Alarm Contact Inputs in 7210 SAS-E devices** 247
- **Configuring LLDP** ... 248
- **System Resource Allocation** .. 249
 - **Allocation of Ingress Internal TCAM resources** 249
 - **Allocation of Egress Internal TCAM resources** 250
 - **System Resource Allocation Examples** 251
Table of Contents

Standards and Protocol Support (7210 SAS D) ..393
Standards and Protocol Support (7210 SAS E) ..395
Index ..397
List of Tables

Getting Started
Table 1: Configuration Process .. 15

CLI Usage
Table 2: Console Control Commands .. 22
Table 3: Command Syntax Symbols .. 24
Table 4: CLI Environment Commands ... 25
Table 5: CLI Monitor Command Contexts 26
Table 6: Online Help Commands .. 27
Table 7: Command Editing Keystrokes ... 35
Table 8: CLI Range Use Limitations .. 39
Table 9: Regular Expression Symbols ... 42
Table 10: Special Characters ... 43
Table 11: Show Alias Output Fields .. 78

File System Management
Table 12: URL types and Syntax .. 82
Table 13: File Command Local and Remote File System Support 83

Boot Options
Table 14: Console Configuration Parameter Values 131
Table 15: Show BOF Output Fields .. 161
Table 16: Show BOF Output Fields (supported only on 7210 SAS-E) ... 162

System Management
Table 17: System-defined Time Zones 171
Table 18: Temperature Thresholds for 7210 SAS-D Devices 179
Table 19: Revertive, non-Revertive Timing Reference Switching Operation .. 183
Table 20: Local Clock Parameters When Profile is set to ieee1588-2008 ... 187
Table 21: Local Clock Parameters When Profile is set to: itu-telecom-freq ... 188
Table 22: Support Message Rates for Slave and Master Clock States ... 192
Table 23: System-defined Time Zones 212
Table 24: Values and the corresponding pps rate 284
Table 25: Show System CPU Output Fields 349
Table 26: Show Memory Pool Output Fields 359
Table 27: Show system resource-profile output fields 364
Table 28: Show System SNTP Output Fields 368
Table 29: Show System Time Output Fields 372
Table 30: Show System tod-suite Output Fields 374
Table 31: Show System Time-range Output Fields 377
Table 32: System Timing Output Fields 378
LIST OF FIGURES

CLI Usage
- **Figure 1:** Root Commands ... 18
- **Figure 2:** Operational Root Commands ... 19

File System Management

Boot Options
- **Figure 3:** Bootstrap Load Process - System Initialisation - Part I 103
- **Figure 4:** Files on the Flash ... 104
- **Figure 5:** Bootstrap Process - System Initialization - Part II-A 109
- **Figure 6:** Bootstrap Process - System Initialization - Part II-B 110
- **Figure 7:** Bootstrap Process - System Initialization - Part II-C 111
- **Figure 8:** Timos Boot - System Initialization - Part III 112
- **Figure 9:** System Startup Process Flow ... 120
- **Figure 10:** 7210 SAS E Front Panel Console Port 132
- **Figure 11:** 7210 SAS D Front Panel Console Port 132

System Management
- **Figure 12:** Conventional Network Timing Architecture (North American Nomenclature) 181
- **Figure 13:** Synchronization Reference Selection 182
- **Figure 14:** Peer Clocks .. 186
- **Figure 15:** Messaging Sequence Between the PTP Slave Clock and PTP Master Clocks 189
- **Figure 16:** PTP Slave Clock and Master Clock Synchronization Timing Computation 190
- **Figure 17:** Using IEEE 1588v2 For Time Distribution 191
- **Figure 18:** Slave Clock .. 193
- **Figure 19:** Boundary Clock .. 194
- **Figure 20:** LLDP Internal Architecture for a Network Node 198
- **Figure 21:** Customer Use Example For LLDP .. 199
- **Figure 22:** System Configuration and Implementation Flow 200
List of Figures
About This Guide

This guide describes system concepts and provides configuration explanations and examples to configure 7210 SAS-Series boot option file (BOF), file system and system management functions.

This document is organized into functional chapters and provides concepts and descriptions of the implementation flow, as well as Command Line Interface (CLI) syntax and command usage.

Audience

This manual is intended for network administrators who are responsible for configuring the 7210 SAS-Series routers. It is assumed that the network administrators have an understanding of networking principles and configurations. Protocols, standards, and processes described in this manual include the following:

- CLI concepts
- File system concepts
- Boot option, configuration, image loading, and initialization procedures
- Basic system management functions such as the system name, router location and coordinates, and CLLI code, time zones, Network Time Protocol (NTP), Simple Network Time Protocol (SNTP), and synchronization properties
List of Technical Publications

The 7210-SAS D, E OS documentation set is composed of the following books:

- 7210-SAS D, E OS Basic System Configuration Guide
 This guide describes basic system configurations and operations.

- 7210-SAS D, E OS System Management Guide
 This guide describes system security and access configurations as well as event logging and accounting logs.

- 7210-SAS D, E OS Interface Configuration Guide
 This guide describes card, Media Dependent Adapter (MDA), and port provisioning.

- 7210-SAS D, E OS Router Configuration Guide
 This guide describes logical IP routing interfaces and associated attributes such as an IP address, port, link aggregation group (LAG) as well as IP-based filtering.

- 7210-SAS D, E OS Routing Protocols Guide
 This guide provides an overview of routing concepts and provides configuration examples for protocols and route policies.

- 7210-SAS D, E OS Services Guide
 This guide describes how to configure service parameters such as customer information, and user services.

- 7210-SAS D, E OS OAM and Diagnostic Guide
 This guide describes how to configure features such as service mirroring and Operations, Administration and Management (OAM) tools.

- 7210-SAS D, E OS Quality of Service Guide
 This guide describes how to configure Quality of Service (QoS) policy management.
Technical Support

If you purchased a service agreement for your 7210 SAS-Series router and related products from a distributor or authorized reseller, contact the technical support staff for that distributor or reseller for assistance. If you purchased an Alcatel-Lucent service agreement, contact your welcome center:

Web: http://www1.alcatel-lucent.com/comps/pages/carrier_support.jhtml
Preface
In This Chapter

This chapter provides process flow information to configure basic router and system parameters, perform operational functions with directory and file management, and boot option tasks.

Alcatel-Lucent 7210 SAS-Series System Configuration Process

Table 1 lists the tasks necessary to configure boot option files (BOF) and system and file management functions. Each chapter in this book is presented in an overall logical configuration flow. Each section describes a software area and provides CLI syntax and command usage to configure parameters for a functional area. After the hardware installation has been properly completed, proceed with the 7210 SAS-Series device configuration tasks in the following order:

Table 1: Configuration Process

<table>
<thead>
<tr>
<th>Area</th>
<th>Task</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLI Usage</td>
<td>The CLI structure</td>
<td>CLI Usage on page 17</td>
</tr>
<tr>
<td></td>
<td>Basic CLI commands</td>
<td>Basic CLI Commands on page 22</td>
</tr>
<tr>
<td></td>
<td>Configure environment commands</td>
<td>CLI Environment Commands on page 25</td>
</tr>
<tr>
<td>Operational</td>
<td>Configure monitor commands</td>
<td>CLI Monitor Commands on page 26</td>
</tr>
<tr>
<td>functions</td>
<td>Directory and file management</td>
<td>File System Management on page 79</td>
</tr>
</tbody>
</table>

Table 1: Configuration Process

<table>
<thead>
<tr>
<th>Area</th>
<th>Task</th>
<th>Chapter (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boot options</td>
<td>Configure boot option files (BOF)</td>
<td>Boot Options on page 101</td>
</tr>
<tr>
<td>System configuration</td>
<td>Configure system functions, including host name, address, domain name, and time parameters.</td>
<td>System Management on page 167</td>
</tr>
<tr>
<td>Reference</td>
<td>List of IEEE, IETF, and other proprietary entities.</td>
<td>Standards and Protocol Support on page 391</td>
</tr>
</tbody>
</table>
In This Chapter

This chapter provides information about using the command-line interface (CLI).

Topics in this chapter include:

- CLI Structure on page 18
- Navigating in the CLI on page 20
- Basic CLI Commands on page 22
- CLI Environment Commands on page 25
- CLI Monitor Commands on page 26
- Getting Help in the CLI on page 27
- The CLI Command Prompt on page 29
- Displaying Configuration Contexts on page 30
- EXEC Files on page 33
- Entering CLI Commands on page 34
Alcatel-Lucent’s Operating System (OS) CLI is a command-driven interface accessible through the console, Telnet and secure shell (SSH). The CLI can be used for configuration and management of routers.

The CLI command tree is a hierarchical inverted tree. At the highest level is the ROOT level. Below this level are other tree levels with the major command groups; for example, configuration commands and show commands are levels below ROOT.

The CLI is organized so related commands with the same scope are at the same level or in the same context. Sublevels or subcontexts have related commands with a more refined scope.

Figure 1: Root Commands
Figure 2: Operational Root Commands
Navigating in the CLI

The following sections describe additional navigational and syntax information.

- CLI Contexts on page 20
- Basic CLI Commands on page 22
- CLI Environment Commands on page 25
- CLI Monitor Commands on page 26
- Entering Numerical Ranges on page 39

CLI Contexts

Use the CLI to access, configure, and manage Alcatel-Lucent’s 7210 SAS devices. CLI commands are entered at the command line prompt. Access to specific CLI commands is controlled by the permissions set by your system administrator. Entering a CLI command makes navigation possible from one command context (or level) to another.

When you initially enter a CLI session, you are in the ROOT context. Navigate to another level by entering the name of successively lower contexts. For example, enter either the `configure` or `show` commands at the ROOT context to navigate to the `config` or `show` context, respectively. For example, at the command prompt, enter `config`. The active context displays in the command prompt.

```
A:ALU-7210# config
A:ALU-7210>config#
```

In a given CLI context, you can enter commands at that context level by simply entering the text. It is also possible to include a command in a lower context as long as the command is formatted in the proper command and parameter syntax.

The following example shows two methods to navigate to a service SAP ingress level:

Method 1:

```
A:ALU-7210# config service epipe 6 sap 1/1/2 ingress
```

Method 2:

```
A:ALU-7210# configure
A:ALU-7210>config# service
A:ALU-7210>config>service# epipe 6
A:ALU-7210>config>service>epipe# sap 1/1/2
A:ALU-7210>config>service>epipe>sap# ingress
A:ALU-7210>config>service>epipe>sap>ingress#
```
The CLI returns an error message when the syntax is incorrect.

A:ALU-7210>config>service>epipe# sapp
 ^
Error: Bad command.
A:ALU-7210>config>service>epipe#
Basic CLI Commands

The console control commands are the commands that are used for navigating within the CLI and displaying information about the console session. Most of these commands are implemented as global commands. They can be entered at any level in the CLI hierarchy with the exception of the `password` command which must be entered at the ROOT level. The console control commands are listed in Table 2.

Table 2: Console Control Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><Ctrl-c></td>
<td>Aborts the pending command.</td>
<td></td>
</tr>
<tr>
<td><Ctrl-z></td>
<td>Terminates the pending command line and returns to the ROOT context.</td>
<td></td>
</tr>
<tr>
<td>back</td>
<td>Navigates the user to the parent context.</td>
<td>50</td>
</tr>
<tr>
<td>clear</td>
<td>Clears statistics for a specified entity or clears and resets the entity.</td>
<td>50</td>
</tr>
<tr>
<td>echo</td>
<td>Echos the text that is typed in. Primary use is to display messages to the screen within an <code>exec</code> file.</td>
<td>51</td>
</tr>
<tr>
<td>exec</td>
<td>Executes the contents of a text file as if they were CLI commands entered at the console.</td>
<td>51</td>
</tr>
<tr>
<td>exit</td>
<td>Returns the user to the previous higher context.</td>
<td>51</td>
</tr>
<tr>
<td>exit all</td>
<td>Returns the user to the ROOT context.</td>
<td>52</td>
</tr>
<tr>
<td>help</td>
<td>Displays help in the CLI.</td>
<td>52</td>
</tr>
<tr>
<td>?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>history</td>
<td>Displays a list of the most recently entered commands.</td>
<td>54</td>
</tr>
<tr>
<td>info</td>
<td>Displays the running configuration for a configuration context.</td>
<td>54</td>
</tr>
<tr>
<td>logout</td>
<td>Terminates the CLI session.</td>
<td>58</td>
</tr>
<tr>
<td>oam</td>
<td>Provides OAM test suite options. See the OAM section of the 7210 SAS OS OAM and Diagnostic Guide.</td>
<td></td>
</tr>
<tr>
<td>password</td>
<td>Changes the user CLI login password. The password can only be changed at the ROOT level.</td>
<td>59</td>
</tr>
<tr>
<td>ping</td>
<td>Verifies the reachability of a remote host.</td>
<td>59</td>
</tr>
<tr>
<td>pwc</td>
<td>Displays the present or previous working context of the CLI session.</td>
<td>61</td>
</tr>
</tbody>
</table>
Table 2: Console Control Commands (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>sleep</td>
<td>Causes the console session to pause operation (sleep) for one second or for the specified number of seconds. Primary use is to introduce a pause within the execution of an <code>exec</code> file.</td>
<td>62</td>
</tr>
<tr>
<td>ssh</td>
<td>Opens a secure shell connection to a host.</td>
<td>62</td>
</tr>
<tr>
<td>telnet</td>
<td>Telnet to a host.</td>
<td>62</td>
</tr>
<tr>
<td>traceroute</td>
<td>Determines the route to a destination address.</td>
<td>63</td>
</tr>
<tr>
<td>tree</td>
<td>Displays a list of all commands at the current level and all sublevels.</td>
<td>64</td>
</tr>
<tr>
<td>write</td>
<td>Sends a console message to a specific user or to all users with active console sessions.</td>
<td>64</td>
</tr>
</tbody>
</table>

The list of all system global commands is displayed by entering `help globals` in the CLI. For example:

```
A:ALU-7210>config>service# help globals
  back         - Go back a level in the command tree
  echo         - Echo the text that is typed in
  enable-admin - Enable the user to become a system administrator
  exec         - Execute a file - use `-echo` to show the commands and prompts on the screen
  exit         - Exit to intermediate mode - use option all to exit to root prompt
  help         - Display help
  history      - Show command history
  info         - Display configuration for the present node
  logout       - Log off this system
  oam          + OAM Test Suite
  ping         - Verify the reachability of a remote host
  pwc          - Show the present working context
  sleep        - Sleep for specified number of seconds
  ssh          - SSH to a host
  telnet       - Telnet to a host
  traceroute   - Determine the route to a destination address
  tree         - Display command tree structure from the context of execution
  write        - Write text to another user
```

A:ALU-7210>config>service#
Table 3 lists describes command syntax symbols.

Table 3: Command Syntax Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`</td>
<td>`</td>
</tr>
<tr>
<td><code>[]</code></td>
<td>Brackets indicate optional parameters. redirects <code>[number seconds]</code></td>
</tr>
<tr>
<td><code>< ></code></td>
<td>Angle brackets indicate that you must enter text based on the parameter inside the brackets. interface <code><interface-name></code></td>
</tr>
<tr>
<td><code>{ }</code></td>
<td>Braces indicate that one of the parameters must be selected. default-action `{drop</td>
</tr>
<tr>
<td><code>[[]]</code></td>
<td>Braces within square brackets indicates that you must choose one of the optional parameters. `* sdp sdp-id [{gre</td>
</tr>
</tbody>
</table>

Bold Commands in **bold** indicate commands and keywords. **Italic** Commands in **italics** indicate command options.
CLI Environment Commands

The CLI environment commands are found in the root>environment context of the CLI tree and controls session preferences for a single CLI session. The CLI environment commands are listed in Table 4.

Table 4: CLI Environment Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>alias</td>
<td>Enables the substitution of a command line by an alias.</td>
<td>65</td>
</tr>
<tr>
<td>create</td>
<td>Enables or disables the use of a create parameter check.</td>
<td>65</td>
</tr>
<tr>
<td>more</td>
<td>Configures whether CLI output should be displayed one screen at a time awaiting user input to continue.</td>
<td>65</td>
</tr>
<tr>
<td>reduced-prompt</td>
<td>Configures the maximum number of higher-level CLI context nodes to display by name in the CLI prompt for the current CLI session.</td>
<td>66</td>
</tr>
<tr>
<td>saved-ind-prompt</td>
<td>Saves the indicator in the prompt.</td>
<td>66</td>
</tr>
<tr>
<td>terminal</td>
<td>Configures the terminal screen length for the current CLI session.</td>
<td>67</td>
</tr>
<tr>
<td>time-display</td>
<td>Specifies whether time should be displayed in local time or UTC.</td>
<td>67</td>
</tr>
</tbody>
</table>
CLI Monitor Commands

Monitor commands display specified statistical information related to the monitor subject (such as filter, port, QoS, router, service) at a configurable interval until a count is reached. The CLI monitor commands are found in the root>monitor context of the CLI tree.

The monitor command output displays a snapshot of the current statistics. The output display refreshes with subsequent statistical information at each configured interval and is displayed as a delta to the previous display.

The <Ctrl-c> keystroke interrupts a monitoring process. Monitor command configurations cannot be saved. You must enter the command for each monitoring session. Note that if the maximum limits are configured, you can monitor the statistical information for a maximum of 60 * 999 sec ~ 1000 minutes.

The CLI monitor command contexts are listed in Table 4.

Table 5: CLI Monitor Command Contexts

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>filter</td>
<td>Enables IP and MAC filter monitoring at a configurable interval until that count is reached.</td>
<td>68</td>
</tr>
<tr>
<td>lag</td>
<td>Enables Link Aggregation Group (LAG) monitoring to display statistics for individual port members and the LAG.</td>
<td>71</td>
</tr>
<tr>
<td>port</td>
<td>Enables port traffic monitoring. The specified port(s) statistical information displays at the configured interval until the configured count is reached.</td>
<td>73</td>
</tr>
<tr>
<td>service</td>
<td>Monitors commands for a particular service.</td>
<td>75</td>
</tr>
</tbody>
</table>
Getting Help in the CLI

The **help** system commands and the `?` key display different types of help in the CLI. Table 6 lists the different help commands.

Table 6: Online Help Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>help <code>?</code></td>
<td>List all commands in the current context.</td>
</tr>
<tr>
<td>string <code>?</code></td>
<td>List all commands available in the current context that start with <code>string</code>.</td>
</tr>
<tr>
<td>command <code>?</code></td>
<td>Displays the command’s syntax and associated keywords.</td>
</tr>
<tr>
<td>command keyword <code>?</code></td>
<td>List the associated arguments for <code>keyword</code> in <code>command</code>.</td>
</tr>
<tr>
<td>string<Tab></td>
<td>Complete a partial command name (auto-completion) or list available commands that match <code>string</code>.</td>
</tr>
</tbody>
</table>

The **tree** and **tree detail** system commands are help commands useful when searching for a command in a lower-level context.

The following example displays a partial list of the **tree** and **tree detail** command output entered at the **config** level.
The CLI Command Prompt

By default, the CLI command prompt indicates the device being accessed and the current CLI context. For example, the prompt: A:ALA-1>config>router>if# indicates the active context, the user is on the device with hostname ALA-1 in the configure>router>interface context. In the prompt, the separator used between contexts is the “>” symbol.

At the end of the prompt, there is either a pound sign (“#”) or a dollar sign (“$”). A “#” at the end of the prompt indicates the context is an existing context. A “$” at the end of the prompt indicates the context has been newly created. New contexts are newly created for logical entities when the user first navigates into the context.

Since there can be a large number of sublevels in the CLI, the environment command reduced-prompt no of nodes in prompt allows the user to control the number of levels displayed in the prompt.

All special characters (#, $, etc.) must be enclosed within double quotes, otherwise it is seen as a comment character and all characters on the command line following the # are ignored. For example:

*A:ALU-7210>config>router# interface "primary#1"

When changes are made to the configuration file a “*” appears in the prompt string (*A:ALU-7210) indicating that the changes have not been saved. When an admin save command is executed the “*” disappears. This behavior is controlled in the saved-ind-prompt command in the environment context.
Displaying Configuration Contexts

The **info** and **info detail** commands display configuration for the current level. The **info** command displays non-default configurations. The **info detail** command displays the entire configuration for the current level, including defaults. The following example shows the output that displays using the **info** command and the output that displays using the **info detail** command.

*A:ALA>config>service>vpls# info

```
----------------------------------------------
stp
  shutdown
exit
sap 1/1/14:100 create
exit
sap 1/1/15:100 create
exit
no shutdown
```

*A:ALA>config>service>vpls# info detail

```
----------------------------------------------
no description
no disable-learning
no disable-aging
no discard-unknown
fdb-table-size 250
fdb-table-high-wmark 95
fdb-table-low-wmark 90
local-age 300
stp
  shutdown
  priority 32768
  hello-time 2
  forward-delay 15
  max-age 20
  hold-count 6
  mode rstp
exit
mac-move
  move-frequency 2
  retry-timeout 10
  shutdown
exit
sap 1/1/14:100 create
  no description
  no tod-suite
  limit-mac-move blockable
  no disable-aging
  no max-nbr-mac-addr
  no discard-unknown-source
  no mac-pinning
  stp
    path-cost 10
    priority 128
    no edge-port
    auto-edge
```
link-type pt-pt
do root-guard
do shutdown
exit
dot1ag
exit
no authentication-policy
no l2pt-termination
no bpdu-translation
ingress:
 qos 1
 no match-qinq-dot1p
 no filter
exit
egress:
 no qinq-mark-top-only
 no filter
 no agg-rate-limit
exit
no collect-stats
no accounting-policy
no shutdown
exit
sap 1/1/15:100 create
 no description
 no tod-suite
 limit-mac-move blockable
 no disable-aging
 no max-nbr-mac-addr
 no discard-unknown-source
 no mac-pinning
stp
 path-cost 10
 priority 128
 no edge-port
 auto-edge
 link-type pt-pt
 no root-guard
 no shutdown
exit
dot1ag
exit
no authentication-policy
no l2pt-termination
no bpdu-translation
ingress:
 qos 1
 no match-qinq-dot1p
 no filter
exit
egress:
 no qinq-mark-top-only
 no filter
 no agg-rate-limit
exit
no collect-stats
no accounting-policy
no shutdown
exit
Displaying Configuration Contexts

no shutdown

--
*A:ALA>config>service>vpls#
EXEC Files

The `exec` command allows you to execute a text file of CLI commands as if it were typed at a console device.

The `exec` command and the associated exec files can be used to conveniently execute a number of commands that are always executed together in the same order. For example, an `exec` command can be used by a user to define a set of commonly used standard command aliases.

The `echo` command can be used within an `exec` command file to display messages on screen while the file executes.
Entering CLI Commands

Command Completion

The CLI supports both command abbreviation and command completion. If the keystrokes entered are enough to match a valid command, the CLI displays the remainder of the command syntax when the <Tab> key or space bar is pressed. When typing a command, the <Tab> key or space bar invokes auto-completion. If the keystrokes entered are definite, auto-completion will complete the command. If the letters are not sufficient to identify a specific command, pressing the <Tab> key or space bar will display commands matching the letters entered. System commands are available in all CLI context levels.

Unordered Parameters

In a given context, the CLI accepts command parameters in any order as long as the command is formatted in the proper command keyword and parameter syntax. Command completion will still work as long as enough recognizable characters of the command are entered.

The following output shows different static-route command syntax and an example of the command usage.

*ALA-1>config>router# static-route
 - [no] static-route {<ip-prefix/prefix-length>|<ip-prefix> <netmask>}
 [preference <preference>] [metric <metric>] [enable|disable] next-hop <gateway>
 - [no] static-route {<ip-prefix/prefix-length>|<ip-prefix> <netmask>}
 [preference <preference>] [metric <metric>] [enable|disable] black-hole
Editing Keystrokes

When entering a command, special keystrokes allow for editing of the command. Table 7 lists the command editing keystrokes.

Table 7: Command Editing Keystrokes

<table>
<thead>
<tr>
<th>Editing Action</th>
<th>Keystrokes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete current character</td>
<td><Ctrl-d></td>
</tr>
<tr>
<td>Delete text up to cursor</td>
<td><Ctrl-u></td>
</tr>
<tr>
<td>Delete text after cursor</td>
<td><Ctrl-k></td>
</tr>
<tr>
<td>Move to beginning of line</td>
<td><Ctrl-a></td>
</tr>
<tr>
<td>Move to end of line</td>
<td><Ctrl-e></td>
</tr>
<tr>
<td>Get prior command from history</td>
<td><Ctrl-p></td>
</tr>
<tr>
<td>Get next command from history</td>
<td><Ctrl-n></td>
</tr>
<tr>
<td>Move cursor left</td>
<td><Ctrl-b></td>
</tr>
<tr>
<td>Move cursor right</td>
<td><Ctrl-f></td>
</tr>
<tr>
<td>Move back one word</td>
<td><Esc></td>
</tr>
<tr>
<td>Move forward one word</td>
<td><Esc><f></td>
</tr>
<tr>
<td>Convert rest of word to uppercase</td>
<td><Esc><c></td>
</tr>
<tr>
<td>Convert rest of word to lowercase</td>
<td><Esc><l></td>
</tr>
<tr>
<td>Delete remainder of word</td>
<td><Esc><d></td>
</tr>
<tr>
<td>Delete word up to cursor</td>
<td><Ctrl-w></td>
</tr>
<tr>
<td>Transpose current and previous character</td>
<td><Ctrl-t></td>
</tr>
<tr>
<td>Enter command and return to root prompt</td>
<td><Ctrl-z></td>
</tr>
<tr>
<td>Refresh input line</td>
<td><Ctrl-l></td>
</tr>
</tbody>
</table>
Absolute Paths

CLI commands can be executed in any context by specifying the full path from the CLI root. To execute an out-of-context command enter a forward slash “/” or backward slash “\” at the beginning of the command line. The forward slash “/” or backward slash “\” cannot be used with the environment alias command. The commands are interpreted as absolute path. Spaces between the slash and the first command will return an error. Commands that are already global (such as ping, telnet, exit, back, etc.) cannot be executed with a forward slash “/” or backward slash “\” at the beginning of the command line.

*A:ALA-12# configure router
*A:ALA-12>config>router# interface system address 1.2.3.4
*A:ALA-12>config>router# /admin save
*A:ALA-12>config>router# \clear router interface
*A:ALA-12>config>router#

The command may or may not change the current context depending on whether or not it is a leaf command. This is the same behavior the CLI performs when CLI commands are entered individually, for example:

*A:ALA-12# admin
*A:ALA-12>admin# save
or
*A:ALA-12# admin save
*A:ALA-12#

Note that an absolute path command behaves the same as manually entering a series of command line instructions and parameters.

For example, beginning in an IES context service ID 4 (IES 4),

CLI Syntax: config>service>ies> /clear card 1

behraves the same as the following series of commands.

Example: config>service>ies>exit all
clear card 1
configure service ies 4 (returns you to your starting point)
config>service>ies
If the command takes you to a different context, the following occurs:

CLI Syntax: config>service>ies>/configure service ies 5 create

becomes

Example:
- config>service>ies>exit all
- configure service vpls 5 create
- config>service>vpls>

CLI Usage
History

The CLI maintains a history of the most recently entered commands. The `history` command displays the most recently entered CLI commands.

```
*A:ALA-1# history
  1 environment terminal length 48
  2 environment no create
  3 show version
  4 configure port 1/1/1
  5 info
  6 \configure router isis
  7 \port 1/1/1
  8 con port 1/1/1
  9 \con port 1/1/1
 10 \configure router bgp
 11 info
 12 \configure system login-control
 13 info
 14 history
 15 show version
 16 history
*A:ALA-1# !3
A:cses-E11# show version
TiMOS-B-0.0.I232 both/i386 ALCATEL SAS-E 7210 Copyright (c) 2000-2008 Alcatel-Lucent.
All rights reserved. All use subject to applicable license agreements.
Built on Sat Oct 11 18:15:40 IST 2008 by panosbld in /panosbld/ws/panos/main
*A:ALU-7210#```
Entering Numerical Ranges

The 7210-SAS OS CLI allows the use of a single numerical range as an argument in the command line. A range in a CLI command is limited to positive integers and is denoted with two numbers enclosed in square brackets with two periods (“..”) between the numbers:

\[x..y]\]

where \(x\) and \(y\) are positive integers and \(y-x\) is less than 1000.

For example, it is possible to shut down ports 1 through 10 in Slot 1 on MDA 1. A port is denoted with “slot/mda/port”, where slot is the slot number, mda is the MDA number and port is the port number. To shut down ports 1 through 10 on Slot 1 and MDA 1, the command is entered as follows:

configure port 1/1/[1..10] shutdown

<Ctrl-C> can be used to abort the execution of a range command.

Specifying a range in the CLI does have limitations. These limitations are summarized in Table 8.

<table>
<thead>
<tr>
<th>Limitation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only a single range can be specified.</td>
<td>It is not possible to shut down ports 1 through 10 on MDA 1 and MDA 2, as the command would look like configure port 1/[1..2]/[1..10] and requires two ranges in the command, [1..2] for the MDA and [1..10] for the port number.</td>
</tr>
<tr>
<td>Ranges within quotation marks are interpreted literally.</td>
<td>In the CLI, enclosing a string in quotation marks (“string”) causes the string to be treated literally and as a single parameter. For example, several commands in the CLI allow the configuration of a descriptive string. If the string is more than one word and includes spaces, it must be enclosed in quotation marks. A range that is enclosed in quotes is also treated literally. For example, configure router interface &quot;A[1..10]&quot; no shutdown creates a single router interface with the name “A[1..10]”. However, a command such as: configure router interface A[1..10] no shutdown creates 10 interfaces with names A1, A2 .. A10.</td>
</tr>
</tbody>
</table>
The range cannot cause a change in contexts.

Commands should be formed in such a way that there is no context change upon command completion. For example, `configure port 1/1/[1..10]` will attempt to change ten different contexts. When a range is specified in the CLI, the commands are executed in a loop. On the first loop execution, the command changes contexts, but the new context is no longer valid for the second iteration of the range loop. A “Bad Command” error is reported and the command aborts.

Command completion may cease to work when entering a range.

After entering a range in a CLI command, command and key completion, which normally occurs by pressing the <Tab> or spacebar, may cease to work. If the command line entered is correct and unambiguous, the command works properly; otherwise, an error is returned.
Pipe/Match

The 7210-SAS OS supports the pipe feature to search one or more files for a given character string or pattern.

**Note:** When using the pipe/match command the variables and attributes must be spelled correctly. The attributes following the command and must come before the expression/pattern. The following displays examples of the pipe/match command to complete different tasks:

- Task: Capture all the lines that include “echo” and redirect the output to a file on the compact flash:
  ```bash
 admin display-config | match "echo" > cf3cfl:\echo_list.txt
  ```
- Task: Display all the lines that do not include “echo”:
  ```bash
 admin display-config | match invert-match "echo"
  ```
- Task: Display the first match of “vpls” in the configuration file:
  ```bash
 admin display-config | match max-count 1 "vpls"
  ```
- Task: Display everything in the configuration after finding the first instance of “interface”:
  ```bash
 admin display-config | match post-lines 999999 interface
  ```

**Command syntax:**

```
match pattern context {parents | children | all} [ignore-case] [max-count lines-count] [expression]
```

```
match pattern [ignore-case] [invert-match] [pre-lines pre-lines] [post-lines lines-count] [max-count lines-count] [expression]
```

**where:**

- **pattern** string or regular expression
- **context** keyword: display context associated with the matching line
- **parents** keyword: display parent context information
- **children** keyword: display child context information
- **all** keyword: display both parent and child context information
- **ignore-case** keyword
- **max-count** keyword: display only a specific number of instances of matching lines
- **lines-count** 1 — 2147483647
- **expression** keyword: pattern is interpreted as a regular expression
- **invert-match** keyword
- **pre-lines** keyword: display some lines prior to the matching line
- **pre-lines** 0 — 100
- **post-lines** keyword: display some lines after the matching line
- **post-lines** 1 — 2147483647
For example:

*A:Dut-G# show log log-id 99 | match ignore-case sap
"Processing of an access port state change event is finished and the status of all affected
SAPs on port 1/1/21 has been updated."
"Service Id 4001, SAP Id 1/1/21:0.* configuration modified"

A:Dut-C# show log log-id 98 | match max-count 1 "service 1001"
"Status of service 1001 (customer 1) changed to administrative state: up, operational
state: up"

*A:Dut-G# admin display-config | match post-lines 4 max-count 2 expression "vpls"
#--------------------------------------------------
... vpls 1 customer 1 svc-sap-type null-star create
description "Default tls description for service id 1"
  stp  shutdown
  exit
vpls 2 customer 1 svc-sap-type null-star create
description "Default tls description for service id 2"
  stp  shutdown
  exit
...
#--------------------------------------------------

Table 9 describes regular expression symbols and interpretation (similar to what is used for route policy regexp matching). Table 10 describes special characters.

Table 9: Regular Expression Symbols

<table>
<thead>
<tr>
<th>String</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>Matches any single character.</td>
</tr>
<tr>
<td>[ ]</td>
<td>Matches a single character that is contained within the brackets.</td>
</tr>
<tr>
<td>[abc]</td>
<td>matches “a”, “b”, or “c”.</td>
</tr>
<tr>
<td>[a-z]</td>
<td>matches any lowercase letter.</td>
</tr>
<tr>
<td>[0-9]</td>
<td>matches any number.</td>
</tr>
<tr>
<td>[^ ]</td>
<td>Matches a single character that is not contained within the brackets.</td>
</tr>
<tr>
<td>[^abc]</td>
<td>matches any character other than “a”, “b”, or “c”.</td>
</tr>
<tr>
<td>[^a-z]</td>
<td>matches any single character that is not a lowercase letter.</td>
</tr>
<tr>
<td>^</td>
<td>Matches the start of the line (or any line, when applied in multiline mode)</td>
</tr>
<tr>
<td>$</td>
<td>Matches the end of the line (or any line, when applied in multiline mode)</td>
</tr>
<tr>
<td>()</td>
<td>Define a “marked subexpression”. Every matched instance will be available to the next command as a variable.</td>
</tr>
<tr>
<td>*</td>
<td>A single character expression followed by &quot;*&quot; matches zero or more copies of the expression.</td>
</tr>
</tbody>
</table>
Table 9: Regular Expression Symbols (Continued)

<table>
<thead>
<tr>
<th>String</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{m,n}</td>
<td>Matches least $m$ and at most $n$ repetitions of the term</td>
</tr>
<tr>
<td>{m}</td>
<td>Matches exactly $m$ repetitions of the term</td>
</tr>
<tr>
<td>{m,}</td>
<td>Matches $m$ or more repetitions of the term</td>
</tr>
<tr>
<td>?</td>
<td>The preceding item is optional and matched at most once.</td>
</tr>
<tr>
<td>+</td>
<td>The preceding item is matched one or more times.</td>
</tr>
<tr>
<td>-</td>
<td>Used between start and end of a range.</td>
</tr>
<tr>
<td>\</td>
<td>An escape character to indicate that the following character is a match criteria and not a grouping delimiter.</td>
</tr>
<tr>
<td>&gt;</td>
<td>Redirect output</td>
</tr>
</tbody>
</table>

Table 10: Special Characters

<table>
<thead>
<tr>
<th>Options</th>
<th>Similar to</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[:upper:]</td>
<td>[A-Z]</td>
<td>uppercase letters</td>
</tr>
<tr>
<td>[:lower:]</td>
<td>[a-z]</td>
<td></td>
</tr>
<tr>
<td>[:alpha:]</td>
<td>[A-Za-z]</td>
<td>upper- and lowercase letters</td>
</tr>
<tr>
<td>\w</td>
<td>[A-Za-z_]</td>
<td>word characters</td>
</tr>
<tr>
<td>[:alnum:]</td>
<td>[A-Za-z0-9]</td>
<td>digits, upper- and lowercase letters</td>
</tr>
<tr>
<td>[:digit:]</td>
<td>[0-9]</td>
<td>digits</td>
</tr>
<tr>
<td>\d</td>
<td>[0-9]</td>
<td>digits</td>
</tr>
<tr>
<td>[:xdigit:]</td>
<td>[0-9A-Fa-f]</td>
<td>hexadecimal digits</td>
</tr>
<tr>
<td>[:punct:]</td>
<td>[.,!?:...]</td>
<td>punctuation</td>
</tr>
<tr>
<td>[:blank:]</td>
<td>[\t]</td>
<td>space and TAB</td>
</tr>
<tr>
<td>[:space:]</td>
<td>[\t\n\r\f\v]</td>
<td>blank characters</td>
</tr>
<tr>
<td>\s</td>
<td>[\t\n\r\f\v]</td>
<td>blank characters</td>
</tr>
</tbody>
</table>
Enter CLI Commands

Redirection

The 7210-SAS OS supports redirection (“>”) which allows the operator to store the output of a CLI command as a local or remote file. Redirection of output can be used to automatically store results of commands in files (both local and remote).

```
'ping <customer_ip> > cf3cf1:/ping/result.txt'
'ping <customer_ip> > ftp://ron@ftp.alcatel.com/ping/result.txt'
```

In some cases only part of the output might be applicable. The pipe/match and redirection commands can be combined:

```
ping 10.0.0.1 | match expression "time.\d+" > cf3cf1:/ping/time.txt
```

This records only the RTT portion (including the word “time”).
Basic Command Reference

Command Hierarchies

- Global CLI Commands
- Environment Commands
- Monitor Commands

Global CLI Commands

- back
- clear
- echo [text-to-echo] [extra-text-to-echo] [more-text]
- enable-admin
- exec [-echo] [-syntax] filename
- exit [all]
- help
- history
- info [detail]
- logout
- password
- ping {ip-address | dns-name} [rapid | detail] [ttl time-to-live] [tos type-of-service] [size bytes] [pattern pattern] [source ip-address] [interval seconds] [{next-hop ip-address} | {interface interface-name} | bypass-routing] [count requests] [do-not-fragment] [router [router-instance]] [timeout timeout]
- pwc [previous]
- sleep [seconds]
- ssh {ip-address | dns-name | username@ip-addr} [-1 username] [-v SSH-version] [router router-instance]
- telnet {ip-address | dns-name} [port] [router router-instance]
- traceroute {ip-address | dns-name} [ttl value] [wait milliseconds] [no-dns] [source ip-address] [tos type-of-service]
- tree [detail]
- write {user | broadcast} message-string
Monitor Commands

```
monitor
 — filter
 — ip ip-filter-id entry entry-id [interval seconds] [repeat repeat] [absolute | rate]
 — mac mac-filter-id entry entry-id [interval seconds] [repeat repeat] [absolute | rate]
 — lag lag-id [lag-id...(up to 5 max)] [interval seconds] [repeat repeat] [absolute | rate]
 — port port-id [port-id...(up to 5 max)] [interval seconds] [repeat repeat] [absolute | rate]
 — service
 — id service-id
 — sap sap-id [interval seconds] [repeat repeat] [absolute | rate]
 — management-access-filter
 — ip entry <entry-id> [interval <seconds>] [repeat <repeat>] [absolute|rate]
```
Environment Commands

```
<root>
 — environment
 — alias <alias-name> <alias-command-name>
 — no alias alias-name
 — [no] create
 — [no] more
 — reduced-prompt [no. of nodes in prompt]
 — no reduced-prompt
 — [no] saved-ind-prompt
 — terminal
 — length lines
 — time-display {local | utc}
 — [no] time-stamp
```
Basic CLI Commands

Global Commands

enable-admin

**Syntax**

```
enable-admin
```

**Context**

```
<global>
```

**Description**

NOTE: See the description for the `admin-password` command. If the `admin-password` is configured in the `config>system>security>password` context, then any user can enter a special administrative mode by entering the `enable-admin` command.

`enable-admin` is in the default profile. By default, all users are given access to this command.

Once the `enable-admin` command is entered, the user is prompted for a password. If the password matches, the user is given unrestricted access to all the commands.

The minimum length of the password is determined by the `minimum-length` command. The complexity requirements for the password is determined by the `complexity` command.

The following displays a password configuration example:

```
A:ALA-1>config>system>security# info
--
...
 password
 aging 365
 minimum-length 8
 attempts 5 time 5 lockout 20
 attempts 5 time 5 lockout 20
 admin-password "rUYUz9XMo6I" hash
 exit

c
```

There are two ways to verify that a user is in the enable-admin mode:

- **show users** — Administrator can know which users are in this mode.
- Enter the `enable-admin` command again at the root prompt and an error message will be returned.

```
A:ALA-1# show users
User Type From Login time Idle time
--
admin Telnet 10.20.30.93 09AUG2004 08:35:23 0d 00:00:00 A
--
Number of users : 2
```

Root Commands
Global Commands

'A' indicates user is in admin mode

===============================================================================
A:ALA-1#
A:ALA-1# enable-admin
MINOR: CLI Already in admin mode.
A:ALA-1#

back

Syntax   back
Context   <GLOBAL>
Description   This command moves the context back one level of the command hierarchy. For example, if the current level is the config router ospf config router interface interface-id context, the back command moves the cursor to the config router context level.

clear

Syntax   clear
Context   <GLOBAL>
Description   This command clears statistics for a specified entity or clears and resets the entity.
Parameters   cron — Clears CRON history.
filter — Clears IP, MAC, and log filter counters.
lag — Clears LAG-related entities.
log — Closes and reinitializes the log specified by log-id.
port — Clears port statistics.
qos — Clears QoS statistics.
radius — Clears the RADIUS server state.
router — Clears router commands affecting the router instance in which they are entered.

Values   arp, authentication, bfd, dhcp, forwarding-table, icmp-redirect-route, interface, isis, ldp, mpls, ospf, rip, rsvp
saa — Clears the SAA test results.
screen — Clears the console or telnet screen.
service — Clears service ID and statistical entities.
system — Clears (re-enables) a previously failed reference.
tacplus — Clears the TACACS+ server state.
trace — Clears the trace log.
**echo**

**Syntax**

```
 echo [text-to-echo] [extra-text-to-echo] [more-text]
```

**Context**

<GLOBAL>

**Description**

This command echoes arguments on the command line. The primary use of this command is to allow messages to be displayed to the screen in files executed with the `exec` command.

**Parameters**

- `text-to-echo` — Specifies a text string to be echoed up to 256 characters.
- `extra-text-to-echo` — Specifies more text to be echoed up to 256 characters.
- `more-text` — Specifies more text to be echoed up to 256 characters.

**exec**

**Syntax**

```
 exec [-echo] [-syntax] {filename | [eof_string]}
```

**Context**

<GLOBAL>

**Description**

This command executes the contents of a text file as if they were CLI commands entered at the console.

Exec commands do not have `no` versions.

**Parameters**

- `-echo` — Echo the contents of the `exec` file to the session screen as it executes.
  - **Default** Echo disabled.
- `-syntax` — Perform a syntax check of the file without executing the commands. Syntax checking will be able to find invalid commands and keywords, but it will not be able to validate erroneous user-supplied parameters.
  - **Default** Execute file commands.

- `filename` — The text file with CLI commands to execute.

- `<<` — Stdin can be used as the source of commands for the exec command. When stdin is used as the exec command input, the command list is terminated with `<Ctrl-C>`, “EOF<Return>” or “`eof_string<Return>`”.

  If an error occurs entering an exec file sourced from stdin, all commands after the command returning the error will be silently ignored. The exec command will indicate the command error line number when the stdin input is terminated with an end-of-file input.

- `eof_string` — The ASCII printable string used to indicate the end of the exec file when stdin is used as the exec file source. `<Ctrl-C>` and “EOF” can always be used to terminate an exec file sourced from stdin.
  - **Default** `<Ctrl-C>`, EOF

**Related Commands**

- boot-bad-exec command on page 266 — Use this command to configure a URL for a CLI script to exec following a failed configuration boot.
- boot-good-exec command on page 266 — Use this command to configure a URL for a CLI script to exec following a successful configuration boot.
Global Commands

exit

Syntax      exit [all]
Context     <GLOBAL>

Description This command returns to the context from which the current level was entered. For example, if you
navigated to the current level on a context by context basis, then the exit command only moves the
cursor back one level.

A:Dut-G# configure
A:Dut-G>config# service
A:Dut-G>config>service# vpls 1
A:Dut-G>config>service>vpls# exit
A:Dut-G>config>service# exit
A:Dut-G# exit

If you navigated to the current level by entering a command string, then the exit command returns the
cursor to the context in which the command was initially entered.

A:Dut-G# configure service vpls 1
A:Dut-G>config>service>vpls# exit
A:Dut-G#

The exit all command moves the cursor all the way back to the root level.

A:Dut-G# configure
A:Dut-G>config# service
A:Dut-G>config>service# vpls 1
A:Dut-G>config>service>vpls# exit all
A:Dut-G#

Parameters  all — Exits back to the root CLI context.

help

Syntax      help
             help edit
             help global
             help special-characters
<GLOBAL>

Description This command provides a brief description of the help system. The following information displays:

Help may be requested at any point by hitting a question mark '?'.
In case of an executable node, the syntax for that node will be displayed with an
explanation of all parameters.
In case of sub-commands, a brief description is provided.

Global Commands:
   Help on global commands can be observed by issuing "help globals" at any time.
Editing Commands:
   Help on editing commands can be observed by issuing "help edit" at any time.

Parameters  help — Displays a brief description of the help system.
             help edit — Displays help on editing.

             Available editing keystrokes:
Delete current character ..................... Ctrl-d
Delete text up to cursor ..................... Ctrl-u
Delete text after cursor ..................... Ctrl-k
Move to beginning of line ................... Ctrl-a
Move to end of line ......................... Ctrl-e
Get prior command from history ............ Ctrl-p
Get next command from history .............. Ctrl-n
Move cursor left ............................ Ctrl-b
Move cursor right ............................. Ctrl-f
Move back one word .......................... Ctrl-w
Move forward one word ....................... Esc-f
Convert rest of word to uppercase .......... Esc-c
Convert rest of word to lowercase .......... Esc-l
Delete remainder of word ................... Esc-d
Delete word up to cursor .................... Ctrl-w
Transpose current and previous character ... Ctrl-t
Enter command and return to root prompt ... Ctrl-z
Refresh input line .......................... Ctrl-l

help global — Displays help on global commands.

Available global commands:

back            - Go back a level in the command tree
echo            - Echo the text that is typed in
exec            - Execute a file - use -echo to show the commands and
                 prompts on the screen
exit            - Exit to intermediate mode - use option all to exit to
                 root prompt
help            - Display help
history         - Show command history
info            - Display configuration for the present node
logout          - Log off this system
oam             + OAM Test Suite
ping            - Verify the reachability of a remote host
pwc             - Show the present working context
sleep           - Sleep for specified number of seconds
ssh             - SSH to a host
telnet          - Telnet to a host
traceroute      - Determine the route to a destination address
tree            - Display command tree structure from the context of
                 execution
write           - Write text to another user

help special-characters — Displays help on special characters.

Use the following CLI commands to display more information about commands and command syn-
tax:

? — Lists all commands in the current context.

string? — Lists all commands available in the current context that start with the string.

command ? — Display command’s syntax and associated keywords.

string<Tab> or string<Space> — Complete a partial command name (auto-completion) or list
available commands that match the string.
history

Syntax history
Context <GLOBAL>
Description This command lists the last 30 commands entered in this session.

Re-execute a command in the history with the !n command, where n is the line number associated with the command in the history output.

For example:
A:ALA-1# history
  68 info
  69 exit
  70 info
  71 filter
  72 exit all
  73 configure
  74 router
  75 info
  76 interface "test"
  77 exit
  78 reduced-prompt
  79 info
  80 interface "test"
  81 icmp unreachables exit all
  82 exit all
  83 reduced-prompt
  84 configure router
  85 interface
  86 info
  87 interface "test"
  88 info
  89 reduced-prompt
  90 exit all
  91 configure
  92 card 1
  93 card-type
  94 exit
  95 router
  96 exit
  97 history
A:ALA-1# !91
A:ALA-1# configure
A:ALA-1>config#

info

Syntax info [detail]
Context <GLOBAL>
Description This command displays the running configuration for the configuration context.
The output of this command is similar to the output of a `show config` command. This command, however, lists the configuration of the context where it is entered and all branches below that context level.

By default, the command only enters the configuration parameters that vary from the default values. The `detail` keyword causes all configuration parameters to be displayed.

For example,

```
*A:STU-1>config>service# info detail

--
customer 1 create
 description "Default customer"
 no contact
 no phone
exit
ies 1 customer 1 create
 no description
 interface "new" create
 no description
 address 21.0.0.2/8
 no mac
 arp-timeout 14400
 icmp
 redirects 100 10
 unreachables 100 10
 ttl-expired 100 10
 exit
 sap 1/1/18:0.* create
 no description
 ingress
 no match-qinq-dot1p
 no filter
 exit
 egress
 no qinq-mark-top-only
 no filter
 exit
 no shutdown
exit
vpls 100 customer 1 svc-sap-type dot1q create
 no description
 no disable-learning
 no disable-aging
 no discard-unknown
 fdb-table-size 250
 fdb-table-high-wmark 95
 fdb-table-low-wmark 90
 local-age 300
 stp
 shutdown
 priority 32768
 hello-time 2
 forward-delay 15
 max-age 20
 hold-count 6
 mode rstp
```
Global Commands

exit
mac-move
  move-frequency 2
  retry-timeout 10
  shutdown
exit
sap 1/1/14:100 create
  no description
  no tod-suite
  limit-mac-move blockable
  no disable-aging
  no max-nbr-mac-addr
  no discard-unknown-source
  no mac-pinning
stp
  path-cost 10
  priority 128
  no edge-port
  auto-edge
  link-type pt-pt
  no root-guard
  no shutdown
exit
dot1ag
exit
no authentication-policy
no l2pt-termination
no bpdu-translation
ingress
  qos 1
  no match-qing-dot1p
  no filter
exit
dot1ag
exit
no authentcation-policy
no l2pt-termination
no bpdu-translation
ingress
  qos 1
  no match-qing-dot1p
  no filter
exit
egress
  no qinq-mark-top-only
  no filter
  no agg-rate-limit
exit
no collect-stats
no accounting-policy
no shutdown
exit
sap 1/1/15:100 create
  no description
  no tod-suite
  limit-mac-move blockable
  no disable-aging
  no max-nbr-mac-addr
  no discard-unknown-source
  no mac-pinning
stp
  path-cost 10
  priority 128
  no edge-port
  auto-edge
  link-type pt-pt
  no root-guard
  no shutdown
exit
dot1ag
exit
no authentication-policy
no l2pt-termination
no bpdu-translation
ingress
    qos 1
    no match-qinq-dot1p
    no filter
    exit
egress
    no qinq-mark-top-only
    no filter
    no agg-rate-limit
    exit
    no collect-stats
    no accounting-policy
    no shutdown
    exit
    no shutdown
    exit
    ies 4001 customer 1 create
    no description
    interface "inband" create
    no description
    address 192.168.1.11/24
    no mac
    arp-timeout 14400
    icmp
        redirects 100 10
        unreachables 100 10
        ttl-expired 100 10
    exit
    sap 1/1/24:0.* create
    no description
    ingress
        no match-qinq-dot1p
        no filter
        exit
egress
        no qinq-mark-top-only
        no filter
        exit
        no shutdown
        exit
        no shutdown
        exit
interface "direct" create
    no description
    address 10.135.16.97/24
    no mac
    arp-timeout 14400
    icmp
        redirects 100 10
        unreachables 100 10
        ttl-expired 100 10
    exit
    sap 1/1/21:0.* create
    no description
    ingress
        no match-qinq-dot1p
        no filter
        exit
Global Commands

```
egrss
no qinq-mark-top-only
no filter
exit
no shutdown
exit
no shutdown
exit
no shutdown
exit

*A:STU-1>config>service#
```

**Parameters**

**detail** — Displays all configuration parameters including parameters at their default values.

logout

**Syntax**

```
logout
```

**Context**

```
<GLOBAL>
```

**Description**

This command logs out of the router session.

When the **logout** command is issued from the console, the login prompt is displayed, and any log IDs directed to the console are discarded. When the console session resumes (regardless of the user), the log output to the console resumes.

When a Telnet session is terminated from a **logout** command, all log IDs directed to the session are removed. When a user logs back in, the log IDs must be re-created.
password

Syntax    password
Context    <ROOT>
Description This command changes a user CLI login password.

When a user logs in after the administrator forces a new-password-at-login, or the password has expired (aging), then this command is automatically invoked.

When invoked, the user is prompted to enter the old password, the new password, and then the new password again to verify the correct input.

If a user fails to create a new password after the administrator forces a new-password-at-login or after the password has expired, the user is not allowed access to the CLI.

ping

Syntax    ping {ip-address | dns-name} [rapid | detail] [ttl time-to-live] [tos type-of-service] [size bytes] [pattern pattern] [source ip-address] [interval seconds] [(next-hop ip-address) | (interface interface-name) | bypass-routing] [count requests] [do-not-fragment] [router [router-instance] [timeout timeout]]
Context    <GLOBAL>
Description This command is the TCP/IP utility to verify IP reachability.
Parameters  
ip-address | dns-name — The remote host to ping. The IP address or the DNS name (if DNS name resolution is configured) can be specified.

Values      ipv4-address - a.b.c.d
            ipv6-address - x:x:x:x:x:x:x:x[-interface]
                            x:x:x:x:x:x[-interface]
                            x:x:x:x:d.d.d.d
                            x: 0 — FFFF H
                            d: 0 — 255 D

rapid | detail — The rapid parameter specifies to send ping requests rapidly. The results are reported in a single message, not in individual messages for each ping request. By default, five ping requests are sent before the results are reported. To change the number of requests, include the count option.

The detail parameter includes in the output the interface on which the ping reply was received.

Example output:

*A:ALU-7210# ping 192.xxx.xxx.xxx
PING 192.xxx.xxx.xxx 56 data bytes
64 bytes from 192.xxx.xxx.xxx: icmp_seq=1 ttl=64 time<10ms.
64 bytes from 1192.xxx.xxx.xxx: icmp_seq=2 ttl=64 time<10ms.
64 bytes from 192.xxx.xxx.xxx: icmp_seq=3 ttl=64 time<10ms.

### Global Commands

64 bytes from 192.xxx.xxx.xxx: icmp_seq=4 ttl=64 time<10ms.
64 bytes from 192.xxx.xxx.xxx: icmp_seq=5 ttl=64 time<10ms.

--- 192.xxx.xxx.xxx PING Statistics ---
5 packets transmitted, 5 packets received, 0.00% packet loss
round-trip min < 10ms, avg < 10ms, max < 10ms, stddev < 10ms
*A:ALU-7210#*

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ttl</code> time-to-live</td>
<td>The IP Time To Live (TTL) value to include in the ping request, expressed as a decimal integer.</td>
</tr>
<tr>
<td><code>tos</code> type-of-service</td>
<td>The type-of-service (TOS) bits in the IP header of the ping packets, expressed as a decimal integer.</td>
</tr>
<tr>
<td><code>size</code> bytes</td>
<td>The size in bytes of the ping request packets.</td>
</tr>
<tr>
<td><code>source</code> ip-address</td>
<td>The source IP address to use in the ping requests in dotted decimal notation.</td>
</tr>
<tr>
<td><code>interval</code> seconds</td>
<td>The interval in seconds between consecutive ping requests, expressed as a decimal integer.</td>
</tr>
<tr>
<td><code>next-hop</code> ip-address</td>
<td>This option disregards the routing table and will send this packet to the specified next hop address. This address must be on an adjacent router that is attached to a subnet that is common between this and the next-hop router.</td>
</tr>
</tbody>
</table>

### Examples

- `ttl 128`
- `tos 128`
- `size 64`
- `source 192.168.1.1`
- `interval 2`
- `next-hop 192.168.1.2`
bypass-routing — Send the ping request to a host on a directly attached network bypassing the routing table. The host must be on a directly attached network or an error is returned.

count requests — The number of ping requests to send to the remote host, expressed as a decimal integer.

   Default  5
   Values   1 — 10000

do-not-fragment — Specifies that the request frame should not be fragmented. This option is particularly useful in combination with the size parameter for maximum MTU determination.

router router-instance — Specify the router name or service ID.

   Default  Base
   Values   router-name: Base, management
              service-id: 1 — 2147483647

timeout timeout — Specify the timeout in seconds.

   Default  5
   Values   1 — 10

pwc

Syntax   pwc [previous]

Context  <GLOBAL>

Description  This command displays the present or previous working context of the CLI session. The pwc command provides a user who is in the process of dynamically configuring a chassis a way to display the current or previous working context of the CLI session. The pwc command displays a list of the CLI nodes that hierarchically define the current context of the CLI instance of the user. For example:

A:Dut-G>config>service>vpls# pwc
-----------------------------------------------------------------------------
Present Working Context :
-----------------------------------------------------------------------------
<root>
   configure
   service
   vpls 1

-----------------------------------------------------------------------------
A:Dut-G>config>service>vpls#

When the previous keyword is specified, the previous context displays. This is the context entered by the CLI parser upon execution of the exit command. The current context of the CLI is not affected by the pwc command.

Parameters  previous — Specifies to display the previous present working context.
Global Commands

sleep

Syntax  
```
sleep [seconds]
```

Context  <GLOBAL>

Description  This command causes the console session to pause operation (sleep) for 1 second (default) or for the specified number of seconds.

Parameters  
- `seconds` — The number of seconds for the console session to sleep, expressed as a decimal integer.
  - Default: 1
  - Values: 1 — 100

ssh

Syntax  
```
ssh [ip-addr | dns-name | username@ip-addr] [-l username] [-v SSH-version] [router router-instance]
```

Context  <GLOBAL>

Description  This command initiates a client SSH session with the remote host and is independent from the administrative or operational state of the SSH server. However, to be the target of an SSH session, the SSH server must be operational.

Quitting SSH while in the process of authentication is accomplished by either executing a ctrl-c or "~." (tilde and dot) assuming the "~" is the default escape character for SSH session.

Parameters  
- `ip-address | host-name` — The remote host to which to open an SSH session. The IP address or the DNS name (providing DNS name resolution is configured) can be specified.
- `-l user` — The user name to use when opening the SSH session.
- `router router-instance` — Specify the router name or service ID.
  - Values: router-name: Base, management (supported only on 7210 SAS-E), vpls-management.
  - Default: Base

telnet

Syntax  
```
telnet [ip-address | dns-name] [port] [router router-instance]
```

Context  <GLOBAL>

Description  This command opens a Telnet session to a remote host. Telnet servers in 7210 SAS networks limit a Telnet clients to three retries to login. The Telnet server disconnects the Telnet client session after three retries. The number of retry attempts for a Telnet client session is not user-configurable.
**Parameters**

*ip-address* — The IP address or the DNS name (providing DNS name resolution is configured) can be specified.

**Values**

- ipv4-address: `a.b.c.d`
- ipv6-address: `x:x:x:x:x:x (eight 16-bit pieces)`
- `x:x:x:x:d.d.d`
- `x: [0 .. FFFF]H`
- `d: [0 .. 255]D`

*dns-name* — Specify the DNS name (if DNS name resolution is configured).

**Values**

- 128 characters maximum

*port* — The TCP port number to use to Telnet to the remote host, expressed as a decimal integer.

**Default**

- 23

**Values**

- 1 — 65535

*router router-instance* — Specify the router name or service ID.

**Values**

- *router-name*: Base, management (supported only on 7210 SAS-E), vpls-management.

**Default**

- Base

---

### traceroute

**Syntax**

```
traceroute (ip-address | dns-name) [ttl ttl] [wait milliseconds] [no-dns] [source ip-address] [tos type-of-service] [router router-instance]
```

**Context**

*GLOBAL*

**Description**

The TCP/IP traceroute utility determines the route to a destination address. Note that aborting a traceroute with the `<Ctrl-C>` command could require issuing a second `<Ctrl-C>` command before the prompt is returned.

```
A:ALA-1# traceroute 192.168.xx.xx4
traceroute to 192.168.xx.xx4, 30 hops max, 40 byte packets
 1 192.168.xx.xx4 0.000 ms 0.000 ms 0.000 ms
A:ALA-1#
```

**Parameters**

*ip-address | dns-name* — The remote address to traceroute. The IP address or the DNS name (if DNS name resolution is configured) can be specified.

**Values**

- ipv4-address: `a.b.c.d`
- ipv6-address: `x:x:x:x:x:x (eight 16-bit pieces)`
- `x:x:x:x:d.d.d`
- `x: [0 .. FFFF]H`
- `d: [0 .. 255]D`

*ttl ttl* — The maximum Time-To-Live (TTL) value to include in the traceroute request, expressed as a decimal integer.

**Values**

- 1 — 255
Global Commands

**wait milliseconds** — The time in milliseconds to wait for a response to a probe, expressed as a decimal integer.

- **Default**: 5000
- **Values**: 1 — 60000

**no-dns** — When the **no-dns** keyword is specified, a DNS lookup for the specified host name will not be performed.

- **Default**: DNS lookups are performed

**source ip-address** — The source IP address to use as the source of the probe packets in dotted decimal notation. If the IP address is not one of the device’s interfaces, an error is returned.

**tos type-of-service** — The type-of-service (TOS) bits in the IP header of the probe packets, expressed as a decimal integer.

- **Values**: 0 — 255

**router router-instance** — Specifies the router name or service ID.

- **Values**
  - **router-name**: Base, management (supported only on 7210 SAS-E), vpls-management.
  - **service-id**: 1 — 2147483647
- **Default**: Base

**tree**

**Syntax**

```
write {user | broadcast} message-string
```

**Context** <GLOBAL>

**Description**

This command sends a console message to a specific user or to all users with active console sessions.

**Parameters**

- **user** — The name of a user with an active console session to which to send a console message.
  - **Values**: Any valid CLI username
- **broadcast** — Specifies that the **message-string** is to be sent to all users logged into the router.
- **message-string** — The message string to send. Allowed values are any string up to 250 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.
CLI Environment Commands

alias

Syntax  

\texttt{alias alias-name alias-command-line}

\texttt{no alias alias-name}

Context  
environment

Description  
This command enables the substitution of a command line by an alias. Use the alias command to create alternative or easier to remember/understand names for an entity or command string. If the string contains special characters (\#, $, spaces, etc.), the entire string must be enclosed within double quotes. Only a single command can be present in the command string. The \texttt{alias} command can be entered in any context but must be created in the \texttt{root>environment} context.

For example, to create an alias named \texttt{soi} to display OSPF interfaces, enter:

\begin{verbatim}
alias soi "show router ospf interface"
\end{verbatim}

Parameters

\texttt{alias-name} — The alias name. Do not use a valid command string for the alias. If the alias specified is an actual command, this causes the command to be replaced by the alias.

\texttt{alias-command-line} — The command line to be associated.

create

Syntax  

\texttt{[no] create}

Context  
environment

Description  
By default, the \texttt{create} command is required to create a new OS entity.

The \texttt{no} form of the command disables requiring the \texttt{create} keyword.

Default  

\texttt{create} — The create keyword is required.

more

Syntax  

\texttt{[no] more}

Context  
environment

Description  
This command enables per-screen CLI output, meaning that the output is displayed on a screen-by-screen basis. The terminal screen length can be modified with the \texttt{terminal} command.

The following prompt appears at the end of each screen of paginated output:

\begin{verbatim}
Press any key to continue (Q to quit)
\end{verbatim}

The \texttt{no} form of the command displays the output all at once. If the output length is longer than one screen, the entire output will be displayed, which may scroll the screen.
CLI Environment Commands

Default more — CLI output pauses at the end of each screen waiting for the user input to continue.

reduced-prompt

Syntax reduced-prompt [number of nodes in prompt]

no reduced-prompt

Context environment

Description This command configures the maximum number of higher CLI context levels to display in the CLI prompt for the current CLI session. This command is useful when configuring features that are several node levels deep, causing the CLI prompt to become too long.

By default, the CLI prompt displays the system name and the complete context in the CLI.

The number of nodes specified indicates the number of higher-level contexts that can be displayed in the prompt. For example, if reduced prompt is set to 2, the two highest contexts from the present working context are displayed by name with the hidden (reduced) contexts compressed into a ellipsis (“…”).

A:ALA-1>environment# reduced-prompt 2
A:ALA-1>vonfig>router# interface to-103
A:ALA-1>...router>if#

Note that the setting is not saved in the configuration. It must be reset for each CLI session or stored in an exec script file.

The no form of the command reverts to the default.

Default no reduced-prompt — Displays all context nodes in the CLI prompt.

Parameters number of nodes in prompt — The maximum number of higher-level nodes displayed by name in the prompt, expressed as a decimal integer.

Default 2

Values 0 — 15

saved-ind-prompt

Syntax [no] saved-ind-prompt

Context environment

Description This command enables saved indicator in the prompt. When changes are made to the configuration file a “*” appears in the prompt string indicating that the changes have not been saved. When an admin save command is executed the “*” disappears.

*A:ALA-48# admin save
Writing file to ftp://128.251.10.43/./sim48/sim48-config.cfg
Saving configuration .... Completed.
A:ALA-48#
terminal

Syntax

- `terminal`
- `no terminal`

Context  environment

Description
This command enables the context to configure the terminal screen length for the current CLI session.

length

Syntax

- `length lines`

Context
environment>terminal

Default
24 — Terminal dimensions are set to 24 lines long by 80 characters wide.

Parameters
- `lines` — The number of lines for the terminal screen length, expressed as a decimal integer.

Values
1 — 512

time-display

Syntax

- `time-display {local | utc}`

Context  environment

Description
This command displays time stamps in the CLI session based on local time or Coordinated Universal Time (UTC).

The system keeps time internally in UTC and is capable of displaying the time in either UTC or local time based on the time zone configured.

This configuration command is only valid for times displayed in the current CLI session. This includes displays of event logs, traps and all other places where a time stamp is displayed.

In general all time stamps are shown in the time selected. This includes log entries destined for console/session, memory, or SNMP logs. Log files on compact flash are maintained and displayed in UTC format.

Default
- `time-display local` — Displays time stamps based on the local time.

time-stamp

Syntax

- `time-stamp`

Context  environment

Description
This command displays time stamps in the CLI session.
Monitor CLI Commands

filter

Syntax

    filter

Context

    monitor

Description

    This command enables the context to configure criteria to monitor IP and MAC filter statistics.

ip

Syntax

    ip ip-filter-id entry entry-id [interval seconds] [repeat repeat] [absolute | rate]

Context

    monitor>filter

Description

    This command enables IP filter monitoring. The statistical information for the specified IP filter entry displays at the configured interval until the configured count is reached. The first screen displays the current statistics related to the specified IP filter. The subsequent statistical information listed for each interval is displayed as a delta to the previous display. When the keyword rate is specified, the "rate per second" for each statistic is displayed instead of the delta.

Monitor commands are similar to show commands but only statistical information displays. Monitor commands display the selected statistics according to the configured number of times at the interval specified.

Parameters

    ip-filter-id — Displays detailed information for the specified filter ID and its filter entries.
        Values
        1 — 65535

    entry entry-id — Displays information on the specified filter entry ID for the specified filter ID only.
        Values
        1 — 65535

    interval seconds — Configures the interval for each display in seconds.
        Default
        5 seconds
        Values
        3 — 60

    repeat repeat — Configures how many times the command is repeated.
        Default
        10
        Values
        1 — 999

    absolute — When the absolute keyword is specified, the raw statistics are displayed, without processing. No calculations are performed on the delta or rate statistics.

    rate — When the rate keyword is specified, the rate-per-second for each statistic is displayed instead of the delta.
Sample Output

A:ALA-1>monitor# filter ip 10 entry 1 interval 3 repeat 3 absolute
 Monitor statistics for IP filter 10 entry 1
 At time t = 0 sec (Base Statistics)
---------------------------------------------------------------
Ing. Matches: 0 Egr. Matches : 0
---------------------------------------------------------------
At time t = 3 sec (Mode: Absolute)
---------------------------------------------------------------
Ing. Matches: 0 Egr. Matches : 0
---------------------------------------------------------------
At time t = 6 sec (Mode: Absolute)
---------------------------------------------------------------
Ing. Matches: 0 Egr. Matches : 0
---------------------------------------------------------------
At time t = 9 sec (Mode: Absolute)
---------------------------------------------------------------
Ing. Matches: 0 Egr. Matches : 0

A:ALA-1>monitor#

A:ALA-1>monitor# filter ip 10 entry 1 interval 3 repeat 3 rate
 Monitor statistics for IP filter 10 entry 1
 At time t = 0 sec (Base Statistics)
---------------------------------------------------------------
Ing. Matches: 0 Egr. Matches : 0
---------------------------------------------------------------
At time t = 3 sec (Mode: Rate)
---------------------------------------------------------------
Ing. Matches: 0 Egr. Matches : 0
---------------------------------------------------------------
At time t = 6 sec (Mode: Rate)
---------------------------------------------------------------
Ing. Matches: 0 Egr. Matches : 0
---------------------------------------------------------------
At time t = 9 sec (Mode: Rate)
---------------------------------------------------------------
Ing. Matches: 0 Egr. Matches : 0

A:ALA-1>monitor#

mac

Syntax    mac mac-filter-id entry entry-id [interval seconds] [repeat repeat] [absolute | rate]
Context   monitor>filter
Description This command enables MAC filter monitoring. The statistical information for the specified MAC filter entry displays at the configured interval until the configured count is reached.
The first screen displays the current statistics related to the specified MAC filter. The subsequent statistical information listed for each interval is displayed as a delta to the previous display. When the keyword rate is specified, the "rate per second" for each statistic is displayed instead of the delta.

Monitor commands are similar to show commands but only statistical information displays. Monitor commands display the selected statistics according to the configured number of times at the interval specified.

**Parameters**

- **mac-filter-id** — The MAC filter policy ID.
  - **Values** 1 — 65535
- **entry entry-id** — Displays information on the specified filter entry ID for the specified filter ID only.
  - **Values** 1 — 65535
- **interval seconds** — Configures the interval for each display in seconds.
  - **Default** 5 seconds
  - **Values** 3 — 60
- **repeat repeat** — Configures how many times the command is repeated.
  - **Default** 10
  - **Values** 1 — 999
- **absolute** — When the absolute keyword is specified, the raw statistics are displayed, without processing. No calculations are performed on the delta or rate statistics.
- **rate** — When the rate keyword is specified, the rate-per-second for each statistic is displayed instead of the delta.

**Sample Output**

```
A:ALA-1>monitor>filter# mac 50 entry 10 interval 3 repeat 3 absolute
Monitor statistics for Mac filter 50 entry 10
At time t = 0 sec (Base Statistics)
Ing. Matches: 0 Egr. Matches : 0
At time t = 3 sec (Mode: Absolute)
Ing. Matches: 0 Egr. Matches : 0
At time t = 6 sec (Mode: Absolute)
Ing. Matches: 0 Egr. Matches : 0
At time t = 9 sec (Mode: Absolute)
Ing. Matches: 0 Egr. Matches : 0
```

```
A:ALA-1>monitor>filter# mac 50 entry 10 interval 3 repeat 3 rate
Monitor statistics for Mac filter 50 entry 10
```

At time t = 0 sec (Base Statistics)
Ing. Matches: 0                                Egr. Matches    : 0
At time t = 3 sec (Mode: Rate)
Ing. Matches: 0                                Egr. Matches    : 0
At time t = 6 sec (Mode: Rate)
Ing. Matches: 0                                Egr. Matches    : 0
At time t = 9 sec (Mode: Rate)
Ing. Matches: 0                                Egr. Matches    : 0

```
lag

Syntax
lag lag-id [lag-id...(up to 5 max)] [interval seconds] [repeat repeat] [absolute | rate]

Context
monitor

Description
This command monitors traffic statistics for Link Aggregation Group (LAG) ports. Statistical information for the specified LAG ID(s) displays at the configured interval until the configured count is reached.

The first screen displays the current statistics related to the specified LAG ID. The subsequent statistical information listed for each interval is displayed as a delta to the previous display. When the keyword rate is specified, the “rate per second” for each statistic is displayed instead of the delta.

Monitor commands are similar to show commands but only statistical information displays. Monitor commands display the selected statistics according to the configured number of times at the interval specified.

Parameters
lag-id — The number of the LAG.

 Default none — The LAG ID value must be specified.
 Values 1 — 6

interval seconds — Configures the interval for each display in seconds.

 Default 5 seconds
 Values 3 — 60

repeat repeat — Configures how many times the command is repeated.

 Default 10
 Values 1 — 999

absolute — When the absolute keyword is specified, the raw statistics are displayed, without processing. No calculations are performed on the delta or rate statistics.

rate — When the rate keyword is specified, the rate-per-second for each statistic is displayed instead of the delta.
```
Sample Output

A:ALA-12# monitor lag 2

Monitor statistics for LAG ID 2

<table>
<thead>
<tr>
<th>Port-id</th>
<th>Input Bytes</th>
<th>Input Packets</th>
<th>Output Bytes</th>
<th>Output Packets</th>
<th>Input Errors</th>
<th>Output Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1/1</td>
<td>2168900</td>
<td>26450</td>
<td>64</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/1/2</td>
<td>10677318</td>
<td>125610</td>
<td>2273750</td>
<td>26439</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/1/3</td>
<td>2168490</td>
<td>26445</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Totals</td>
<td>15014708</td>
<td>178505</td>
<td>2273814</td>
<td>26440</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

A:ALA-12#

management-access-filter

Syntax    management-access-filter
Context   monitor
Description This command enables the context to monitor management-access filters. These filters are configured in the `config>system>security>mgmt-access-filter` context.

ip

Syntax    ip entry entry-id [interval seconds] [repeat repeat] [absolute | rate]
Context   monitor>management-access-filter
Description This command monitors statistics for the MAF IP filter entry.
Parameters

- `entry entry-id` — Specifies an existing IP MAF entry ID.
  - Values: 1 — 9999

- `interval seconds` — Configures the interval for each display in seconds.
  - Default: 10
  - Values: 3 — 60

- `repeat repeat` — Configures how many times the command is repeated.
Root Commands

port

Syntax

port port-id [port-id...(up to 5 max)] [interval seconds] [repeat repeat] [absolute | rate]

Context

monitor

Description

This command enables port traffic monitoring. The specified port(s) statistical information displays at the configured interval until the configured count is reached.

The first screen displays the current statistics related to the specified port(s). The subsequent statistical information listed for each interval is displayed as a delta to the previous display. When the keyword rate is specified, the "rate per second" for each statistic is displayed instead of the delta.

Monitor commands are similar to show commands but only statistical information displays. Monitor commands display the selected statistics according to the configured number of times at the interval specified.

Parameters

port port-id — Specify up to 5 port IDs.

interval seconds — Configures the interval for each display in seconds.

  Default  5 seconds

  Values  3 — 60

repeat repeat — Configures how many times the command is repeated.

  Default  10

  Values  1 — 999

absolute — When the absolute keyword is specified, the raw statistics are displayed, without processing. No calculations are performed on the delta or rate statistics.

rate — When the rate keyword is specified, the rate-per-second for each statistic is displayed instead of the delta.

Sample Output

A:ALA-12>monitor# port 1/1/4 interval 3 repeat 3 absolute

Monitor statistics for Port 1/1/4

-------------------------------------------------------------------------------
| Input | Output |
-------------------------------------------------------------------------------
At time t = 0 sec (Base Statistics)
-------------------------------------------------------------------------------
Octets 0 0
Monitor CLI Commands

```plaintext
A:ALA-12>monitor#

Monitor statistics for Port 1/1/4

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octets</td>
<td>0</td>
</tr>
<tr>
<td>Packets</td>
<td>39</td>
</tr>
<tr>
<td>Errors</td>
<td>0</td>
</tr>
</tbody>
</table>

At time t = 0 sec (Base Statistics)

Octets | 0
Packets | 39
Errors | 0

At time t = 3 sec (Mode: Rate)

Octets | 0
Packets | 0
Errors | 0

At time t = 6 sec (Mode: Rate)

Octets | 0
Packets | 0
Errors | 0

At time t = 9 sec (Mode: Rate)

Octets | 0
Packets | 0
Errors | 0

A:ALA-12>monitor#
```

A:ALA-12>monitor# port 1/1/4 interval 3 repeat 3 rate

Monitor statistics for Port 1/1/4

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octets</td>
<td>0</td>
</tr>
<tr>
<td>Packets</td>
<td>39</td>
</tr>
<tr>
<td>Errors</td>
<td>0</td>
</tr>
</tbody>
</table>

At time t = 0 sec (Base Statistics)

Octets | 0
Packets | 39
Errors | 0

At time t = 3 sec (Mode: Rate)

Octets | 0
Packets | 0
Errors | 0

At time t = 6 sec (Mode: Rate)

Octets | 0
Packets | 0
Errors | 0

At time t = 9 sec (Mode: Rate)

Octets | 0
Packets | 0
Errors | 0

A:ALA-12>monitor#
service

Syntax  service

Context  monitor

Description  This command enables the context to configure criteria to monitor specific service SAP criteria.

id

Syntax  id  service-id

Context  monitor>service

Description  This command displays statistics for a specific service, specified by the service-id, at the configured interval until the configured count is reached.

The first screen displays the current statistics related to the service-id. The subsequent statistical information listed for each interval is displayed as a delta to the previous display. When the keyword rate is specified, the "rate per second" for each statistic is displayed instead of the delta.

Monitor commands are similar to show commands but only statistical information displays. Monitor commands display the selected statistics according to the configured number of times at the interval specified.

Parameters  service-id — The unique service identification number which identifies the service in the service domain.

sap

Syntax  sap  sap-id  [interval  seconds]  [repeat  repeat]  [absolute  |  rate]

Context  monitor>service>id  service-id

Description  This command monitors statistics for a SAP associated with this service.

This command displays statistics for a specific SAP, identified by the port-id and encapsulation value, at the configured interval until the configured count is reached.

The first screen displays the current statistics related to the SAP. The subsequent statistical information listed for each interval is displayed as a delta to the previous display. When the keyword rate is specified, the “rate per second” for each statistic is displayed instead of the delta.

Monitor commands are similar to show commands but only statistical information displays. Monitor commands display the selected statistics according to the configured number of times at the interval specified.

Parameters  sap-id — Specifies the physical port identifier portion of the SAP definition.

Values  sap-id:  null  [port-id  |  lag-id]
dot1q  [port-id  |  lag-id];*  |  qtag
qinq  [port-id  |  lag-id];qtag1.qtag2
port-id  slot/mda/port
lag-id

lag-id

lag keyword

id 1—200

qtag1 0—4094

qtag2 *, 0—4094

port-id — Specifies the physical port ID in the slot/mda/port format.

If the card in the slot has Media Dependent Adapters (MDAs) installed, the port-id must be in the slot_number/MDA_number/port_number format. For example 1/2/3 specifies port 3 on MDA 2 in slot 1.

qtag1, qtag2 — Specifies the encapsulation value used to identify the SAP on the port or sub-port. If this parameter is not specifically defined, the default value is 0.

Values

qtag1: 0—4094

qtag2: *, 0—4094

The values depend on the encapsulation type configured for the interface. The following table describes the allowed values for the port and encapsulation types.

<table>
<thead>
<tr>
<th>Port Type</th>
<th>Encap-Type</th>
<th>Allowed Values</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet</td>
<td>Null</td>
<td>0</td>
<td>The SAP is identified by the port.</td>
</tr>
<tr>
<td>Ethernet</td>
<td>Dot1q</td>
<td>0—4094</td>
<td>The SAP is identified by the 802.1Q tag on the port. Note that a 0 qtag1 value also accepts untagged packets on the dot1q port.</td>
</tr>
<tr>
<td>Ethernet</td>
<td>QinQ</td>
<td>qtag1: 0—4094</td>
<td>The SAP is identified by two 802.1Q tags on the port. Note that a 0 qtag1 value also accepts untagged packets on the dot1q port.</td>
</tr>
</tbody>
</table>

interval seconds — Configures the interval for each display in seconds.

Default 11 seconds

Values 11—60

repeat repeat — Configures how many times the command is repeated.

Default 10

Values 1—999

absolute — When the absolute keyword is specified, the absolute rate-per-second value for each statistic is displayed.

rate — When the rate keyword is specified, the rate-per-second for each statistic is displayed instead of the delta.

Sample Output

A:7210SAS-E>monitor>service>id# sap 1/1/1:100

Monitor statistics for Service 10000 SAP 1/1/1:100
At time t = 110 sec (Mode: Delta)

Ingress QoS Classifier Usage

Classifiers Allocated: 16 Meters Allocated : 8
Classifiers Used : 2 Meters Used : 2

Sap Statistics

Packets Octets
Ingress Stats: 1013264 0
Egress Stats: 163674 0

Sap STP Statistics

Forward transitions : 0 Bad BPDUs rcvd : 0
Cfg BPDUs rcvd : 0 Cfg BPDUs tx : 0
TCN BPDUs rcvd : 0 TCN BPDUs tx : 0
RST BPDUs rcvd : 0 RST BPDUs tx : 0
MST BPDUs rcvd : 0 MST BPDUs tx : 0

Sap per Meter Stats

Packets Octets
Ingress Meter 1 (Unicast)
For. InProf : 0 0
For. OutProf : 210645 0
Ingress Meter 11 (Multipoint)
For. InProf : 0 0
For. OutProf : 87238 0
Show Commands

alias

Syntax  alias
Context  <root>
Description  This command displays a list of existing aliases.

Output  Show Alias Fields — The following table describes alias output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alias-Name</td>
<td>Displays the name of the alias.</td>
</tr>
<tr>
<td>Alias-command-name</td>
<td>The command and parameter syntax that define the alias.</td>
</tr>
<tr>
<td>Number of aliases</td>
<td>The total number of aliases configured on the router.</td>
</tr>
</tbody>
</table>

Sample Output

A:ALA-103>config>system# show alias
==============================================================================
<table>
<thead>
<tr>
<th>Alias-Name</th>
<th>Alias-command-name</th>
</tr>
</thead>
<tbody>
<tr>
<td>sri</td>
<td>show router interface</td>
</tr>
<tr>
<td>sse</td>
<td>show service service-using epipe</td>
</tr>
<tr>
<td>ssvpls</td>
<td>show service service-using vpls</td>
</tr>
<tr>
<td>ssi</td>
<td>show service service-using ies</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Number of aliases: 5</td>
<td></td>
</tr>
</tbody>
</table>
==============================================================================
A:ALA-103>config>system#
In This Chapter

This chapter provides information about file system management.

Topics in this chapter include:

- The File System on page 80
  - Compact Flash Devices on page 80
  - USB Storage Device on page 81
  - URLs on page 82
  - Wildcards on page 83

- File Management Tasks on page 84
  - Modifying File Attributes on page 84
  - Creating Directories on page 85
  - Copying Files on page 86
  - Moving Files on page 87
  - Removing Files and Deleting Directories on page 87
  - Displaying Directory and File Information on page 88
The File System

The 7210 SAS file system is used to store files used and generated by the system, for example, image files, configuration files, logging files and accounting files.

The file commands allow you to copy, create, move, and delete files and directories, navigate to a different directory, display file or directory contents and the image version.

Compact Flash Devices

The file system is based on a DOS file system.

In 7210 SAS, the node has a single compact flash (internal). The name of this compact flash device is "cf1:;",

The above device names are relative device names as they refer to the devices local to the control processor with the current console session. As in the DOS file system, the colon (":") at the end of the name indicates it is a device.

The compact flash devices on the 7210 SAS devices are non-removable.

Note: From release 4.0R2, a warning message is displayed on the console and a trap (tmnxRootDirFull) is generated if the number of files and directories in the root directory crosses the threshold limit of "80". A warning will be generated for every new file or directory created after threshold limit is exceeded. This limit is applicable only for files and directories created in the root directory on cf1:\. There is no restriction on the number of files and directories created in the sub-directories. The number of files in the root directory might also increment by issuing the command "admin save" or "bof save". When this event is displayed it is expected that the user cleans up the root directory and removes the unnecessary files and directories or moves them to a sub-directory created under the root-directory to ensure that the number of entries (files or directories) in the root directory is below the limit. No warning is generated when the number of files and directories comes down below the threshold.

The number of files or directories present in the root directory can be determined by using the command "file dir cf1:;". For example:

*A:7210-SAS #
*A:7210-SAS #file dir

Volume in drive cf1 on slot A is /flash.

Volume in drive cf1 on slot A is formatted as FAT32.

Directory of cf1:"
USB Storage Device

Note: USB devices are supported only on 7210 SAS-E devices.

7210 SAS-7210 SASE platform supports USB interface which provides storage functionality. It supports USB version 1.1. It allows the use of USB sticks providing them an alternate storage location with larger capacity than the internal flash. The USB storage device is identified as uf1: by the system and supports DOS file system.

The USB storage device can be used to store Timos images, configuration files, accounting records, and log files. The BOF file can point to images on USB and be used to load Timos images and configuration files.

NOTE:

- During bootup, the system USB storage cannot be used to load boot.tim (that is, the bootloader). Hence, the bootloader required to boot the device must be stored on the compact flash (cf1).
- The list of USB devices and capacities that is supported for use with 7210 SAS is available in the release notes.
- When an USB device is unplugged or removed from the system a major alarm is raised. The alarm can be cleared using the shutdown command.
The arguments for the 7210 SAS OS file commands are modeled after standard universal resource locator (URL). A URL refers to a file (a file-url) or a directory (a directory-url).

7210 SAS OS supports operations on both the local file system and on remote files. For the purposes of categorizing the applicability of commands to local and remote file operations, URLs are divided into three types of URLs: local, ftp and tftp. The syntax for each of the URL types are listed in Table 12.

**Table 12: URL types and Syntax**

<table>
<thead>
<tr>
<th>URL Type</th>
<th>Syntax</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>local-url</strong></td>
<td>[cflash-id:]\path</td>
<td>cflash-id is the compact flash device name. Values: cf1:</td>
</tr>
<tr>
<td></td>
<td>[usb-flash-id:]\path</td>
<td>usb-flash-id is the USB device name. Values: uf1:</td>
</tr>
<tr>
<td><strong>ftp-url</strong></td>
<td>ftp://[username[:password]@]host/path</td>
<td>An absolute ftp path from the root of the remote file system. username is the ftp user name password is the ftp user password host is the remote host path is the path to the directory or file</td>
</tr>
<tr>
<td></td>
<td>ftp://[username[:password]@]host/./path</td>
<td>A relative ftp path from the user’s home directory. Note the period and slash (“./”) in this syntax compared to the absolute path.</td>
</tr>
<tr>
<td><strong>tftp-url</strong></td>
<td>tftp://host[/path]/filename</td>
<td>tftp is only supported for operations on file-urls.</td>
</tr>
</tbody>
</table>

The system accepts either forward slash (“/”) or backslash (“\”) characters to delimit directory and/ or filenames in URLs. Similarly, the 7210 SAS OS SCP client application can use either slash or backslash characters, but not all SCP clients treat backslash characters as equivalent to slash characters. In particular, UNIX systems will often times interpret the backslash character as an “escape” character. This can cause problems when using an external SCP client application to send files to the SCP server. If the external system treats the backslash like an escape character, the backslash delimiter will get stripped by the parser and will not be transmitted to the SCP server.

For example, a destination directory specified as “cf1:\dir1\file1” will be transmitted to the SCP server as “cf1:dir1file1” where the backslash escape characters are stripped by the SCP client system before transmission. On systems where the client treats the backslash like an “escape” character, a double backslash “\\” or the forward slash “/” can typically be used to properly delimit directories and the filename.
Wildcards

7210 SAS OS supports the standard DOS wildcard characters. The asterisk (*) can represent zero or more characters in a string of characters, and the question mark (?) can represent any one character.

**Example:**
```
A:ALA-1>file cf1:\ # copy test*.cfg siliconvalley
 cf1:\testfile.cfg
 1 file(s) copied.
A:ALA-1>file cf1:\ # cd siliconvalley
A:ALA-1>file cf1:\siliconvalley\ # dir
 Volume in drive cf1 on slot A has no label.
 Directory of cf1:\siliconvalley\
 05/10/2006 11:32p <DIR> .
 05/10/2006 11:14p <DIR> ..
 05/10/2006 11:32p 7597 testfile.cfg
 1 File(s) 7597 bytes.
 2 Dir(s) 1082368 bytes free.
A:ALA-1>file cf1:\siliconvalley\ #
```

All the commands can operate on the local file system. Table 13 indicates which commands also support remote file operations.

**Table 13: File Command Local and Remote File System Support**

<table>
<thead>
<tr>
<th>Command</th>
<th>local-url</th>
<th>ftp-url</th>
<th>tftp-url</th>
</tr>
</thead>
<tbody>
<tr>
<td>attrib</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cd</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>copy</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>delete</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>dir</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>md</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>move</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>rd</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>scp</td>
<td>source only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>type</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>version</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
The following sections are basic system tasks that can be performed.

Note that when a file system operation is performed with the copy, delete, move, rd, or scp commands that can potentially delete or overwrite a file system entry, a prompt appears to confirm the action. The force keyword performs the copy, delete, move, rd, and scp actions without displaying the confirmation prompt.

- Modifying File Attributes on page 84
- Creating Directories on page 85
- Copying Files on page 86
- Moving Files on page 87
- Removing Files and Deleting Directories on page 87
- Displaying Directory and File Information on page 88

The following displays the file configuration:

```
A:ALA-1>file cf1:
attrib
cf1:\bootlog.txt
cf1:\bof.cfg
cf1:\boot.ldr
cf1:\bootlog_prev.txt
cf1:\BOF.SAV
A:ALA-1>file cf1:\ # attrib +r BOF.SAV
A:ALA-1>file cf1:\ # attrib
cf1:\bootlog.txt
cf1:\bof.cfg
cf1:\boot.ldr
cf1:\bootlog_prev.txt
R cf1:\BOF.SAV
```
Creating Directories

Use the `md` command to create a new directory in the local file system, one level at a time.

Enter the `cd` command to navigate to different directories.

Use the CLI syntax displayed below to modify file attributes:

**CLI Syntax:**
```
file>
 md file-url
```

The following displays an example of the command syntax:

**Example:**
```
file cf1:\ # md test1
file cf1:\ # cd test1
file cf1:\test1\ # md test2
file cf1:\test1\ # cd test2
file cf1:\test1\test2\ # md test3
file cf1:\test1\test2\ # cd test3
file cf1:\test1\test2\test3 #
```
Copying Files

Use the `copy` command to upload or download an image file, configuration file, or other file types to or from a flash card or a TFTP server.

The `scp` command copies files between hosts on a network. It uses SSH for data transfer, and uses the same authentication and provides the same security as SSH.

The source file for the `scp` command must be local. The file must reside on the router. The destination file has to be of the format: `user@host:file-name`. The destination does not need to be local.

Use the CLI syntax displayed below to copy files:

CLI Syntax:    file>
               copy source-file-url dest-file-url [force]
               scp local-file-url destination-file-url [router router name | service-id] [force]

The following displays an example of the copy command syntax:

Example:    A:ALA-1>file cf1:\ # copy 104.cfg cf1:\test1\test2\test3\test.cfg
            A:ALA-1>file cf1:\ # scp file1 admin@192.168.x.x:cf1:\file1
            A:ALA-1>file cf1:\ # scp file2 user2@192.168.x.x:/user2/file2
            A:ALA-1>file cf1:\ # scp cf1:/file3 admin@192.168.x.x:cf1:\file3
Moving Files

Use the move command to move a file or directory from one location to another.

Use the CLI syntax displayed below to move files:

CLI Syntax:  
```bash
file>
moves old-file-url new-file-url [force]
```

The following displays an example of the command syntax:

Example:
```
A:ALA-1>file cf1:\test1\test2\test3\ # move test.cfg cf1:\test1\test2\test3\test.cfg
A:ALA-1>file cf1:\test1\test2\test3\ # cd ..
A:ALA-1>file cf1:\test1\test2\ # cd ..
A:ALA-1>file cf1:\test1\ # dir
```

Removing Files and Deleting Directories

Use the delete and rd commands to delete files and remove directories. Directories must be empty in order to delete them. When file or directories are deleted they cannot be recovered.

Use the CLI syntax displayed below to delete files and remove directories:

CLI Syntax:  
```bash
file>
delete file-url [force]
rd file-url [force]
```

The following displays an example of the command syntax:

```
A:ALA-1>file cf1:\test1\ # delete test.cfg
A:ALA-1>file cf1:\test1\ # delete abc.cfg
A:ALA-1>file cf1:\test1\test2\ # cd test3
A:ALA-1>file cf1:\test1\test2\test3\ # cd ..
A:ALA-1>file cf1:\test1\test2\ # rd test3
A:ALA-1>file cf1:\test1\test2\ # cd..
A:ALA-1>file cf1:\test1\ # rd test2
A:ALA-1>file cf1:\test1\ # cd..
A:ALA-1>file cf1:\ # rd test1
A:ALA-1>file cf1:\ #
```
Displaying Directory and File Information

Use the `dir` command to display a list of files on a file system. The `type` command displays the contents of a file. The `version` command displays the version of a cpm.tim or iom.tim file.

Use the CLI syntax displayed below to display directory and file information:

```
CLI Syntax: file>
dir [file-url]
type file-url
version file-url
```

The following displays an example of the command syntax:

```
*A:card-1>file cf1:\ # dir
 Volume in drive cf1 on slot A is /flash.
 Volume in drive cf1 on slot A is formatted as FAT32.
 Directory of cf1:\
 10/22/2008 10:30a 8849 bootlog.txt
 10/22/2008 10:30a 733 bof.cfg
 10/22/2008 10:29a 5531 bootlog_prev.txt
 02/01/2001 09:25a 3528373 boot.tim
 02/01/2001 09:21a 4860 config.cfg
 10/22/2008 11:07a <DIR> test1
 10/17/2008 07:32p 724 env.cfg
 10/15/2008 03:38p 9499 snake.cfg
 7 File(s) 3558569 bytes.
 1 Dir(s) 53135360 bytes free.
```
File Command Reference

Command Hierarchy

Configuration Commands

```plaintext
file
 — attrib [+r | -r] file-url
 — attrib
 — cd [file-url]
 — copy source-url dest-url [force]
 — delete file-url [force]
 — dir [file-url]
 — md file-url
 — move old-url new-url [force]
 — rd file-url [force]
 — repair [cflash-id]
 — scp local-url destination-url [router router-instance] [force]
 — [no] shutdown [active] [standby]
 — [no] shutdown cflash-id
 — type file-url
 — version file-url [check]
 — vi local-url
```
**Configuration Commands**

**File System Commands**

**shutdown**

**Syntax**

```
[no] shutdown [cflash-id]
```

**Context**

file

**Description**

This command is available for use only with USB storage drives or sticks and cannot be used with the internal compact flash cf1:. Use the no shutdown [cflash-id] command to enable a USB drive (uf1:) for use as a storage device on the node. **NOTE:** Do not remove the USB drive during a read/write operation.

**Default**

no shutdown — compact flash device administratively enabled.

**Parameters**

- **cflash-id** — **Default**: Enter the USB ID (only uf1:) is allowed) to be shut down or enabled. When a specific cflash-id is specified, then that drive is shutdown. None

**Values**

uf1:

---

**File Commands**

**attrib**

**Syntax**

```
attrib [+r | -r] file-url
attrib
```

**Context**

file

**Description**

This command sets or clears/resets the read-only attribute for a file in the local file system. To list all files and their current attributes enter `attrib` or `attrib x` where `x` is either the filename or a wildcard (*).

When an `attrib` command is entered to list a specific file or all files in a directory, the file’s attributes are displayed with or without an “R” preceding the filename. The “R” implies that the +r is set and that the file is read-only. Files without the “R” designation implies that the -r is set and that the file is read-write-all. For example:

```
ALA-1>file cf1:\ # attrib
 cf1:\bootlog.txt
 cf1:\bof.cfg
 cf1:\boot.ldr
 cf1:\sr1.cfg
```
File Commands

cf1:\test
cf1:\bootlog_prev.txt
R cf1:\BOF.SAV

Parameters  

**file-url** — The URL for the local file.

**Values**

- **local-url** - [255 chars max]
  - `<cflash-id>/` | `<usb-flash-id>/` | `<file-path>`
- **remote-url** - `[ftp://|tftp://]<login>:<pswd>@<remote-locn>/` | `<file-path>`
- **remote-locn** - `[<hostname> | <ipv4-address> | "[<ipv6-address>]" ]`
- **ipv4-address** - a.b.c.d
- **ipv6-address** - x:x:x:x:x:x:x[-interface]
  - x - [0..FFFF]H
  - d - [0..255]D
- **interface** - 32 chars max, for link local addresses
- **cflash-id** - cf1:
- **usb-flash-id** - uf1:

Note: USB flash is supported only on 7210 SAS-E.

+r — Sets the read-only attribute on the specified file.

-r — Clears/resets the read-only attribute on the specified file.

cd

**Syntax**
cd [file-url]

**Context** file

**Description** This command displays or changes the current working directory in the local file system.

**Parameters**

- **file-url** — Syntax: [255 chars max]
  - `<local-url>` | `<remote-url>`
  - `<cflash-id>/` | `<usb-flash-id>/` | `<file-path>`
  - `[ftp://|tftp://]<login>:<pswd>@<remote-locn>/` | `<file-path>`
  - `[<hostname> | <ipv4-address> | "[<ipv6-address>]" ]`
  - `[0..FFFF]H`
  - `[0..255]D`
  - interface - 32 chars max, for link local addresses
  - cf1:
  - uf1:

Note: USB flash is supported only on 7210 SAS-E.
Configuration Commands


<none> — Displays the current working directory.

.. — Signifies the parent directory. This can be used in place of an actual directory name in a
directory-url.

directory-url — The destination directory.

copy

Syntax  copy source-file-url dest-file-url [force]

Context  file

Description  This command copies a file or all files in a directory from a source URL to a destination URL. At least one of the specified URLs should be a local URL. The optional wildcard (*) can be used to copy multiple files that share a common (partial) prefix and/or (partial) suffix.

When a file is copied to a destination with the same file name, the original file is overwritten by the new file specified in the operation. The following prompt appears if the destination file already exists:

“Overwrite destination file (y/n)?”

For example:

To copy a file named srcfile in a directory called test on cf1 to a file called
destfile in a directory called production on cf1, the syntax is:
sr1>file cf1: # copy cf2=/test/srcfile/production/destfile

To FTP a file named 121201.cfg in directory mydir stored on cf1 to a network FTP server with IP address 131.12.31.79 in a directory called backup with a destination file name of 121201.cfg, the FTP syntax is:
copy /mydir/121201.cfg 131.12.31.79/backup/121201.cfg

Parameters  source-file-url — The location of the source file or directory to be copied.
dest-file-url — The destination of the copied file or directory.

Values  <file-url>  : <local-url>|<remote-url> - [255 chars max]
  local-url - [<cflash-id>/]<usb-flash-id>/<file-path>
  remote-url - [ftp://|tftp://]<login>:<pswd>@<remote-locn>/<file-path>
  remote-locn - [ <hostname> | <ipv4-address> | "[<ipv6-address>]
  ipv4-address - a.b.c.d
  ipv6-address - x:x:x:x:x:x:x[-interface]
  x:x:x:x:x:x:d.d.d.d[-interface]
  x - [0..FFFF]H
  d - [0..255]D
  interface - 32 chars max, for link local addresses
  cflash-id - cf1:
  usb-flash-id - uf1:

Note: USB flash is supported only on 7210 SAS-E.
File Commands

**force** — Forces an immediate copy of the specified file(s).

**Values**

- `<file-url>`
  - `<local-url>`|`<remote-url>` - [255 chars max]
  - `local-url` - [`<cflash-id>`|`<usb-flash-id>`|`<file-path>`]
  - `remote-url` - [`ftp://`|`tftp://`|`<login>:<pswd>@`|`<remote-locn>`|`<file-path>`]
  - `remote-locn` - [`<hostname>`|`<ipv4-address>`|`"<ipv6-address>"`]
  - `ipv4-address` - a.b.c.d
  - `ipv6-address` - x:x:x:x:x:x:x[-interface]
    - x:x:x:x:x:d.d.d.d[-interface]
    - x - [0..FFFF]H
    - d - [0..255]D
    - interface - 32 chars max, for link
  - `cflash-id` - cf1:
  - `usb-flash-id` - uf1:

**Note:** USB flash is supported only on 7210 SAS-E.

`file copy force` executes the command without displaying a user prompt message.

---

**delete**

**Syntax**

`delete file-url [force]`

**Context**

file

**Description**

This command deletes the specified file.

The optional wildcard “*” can be used to delete multiple files that share a common (partial) prefix and/or (partial) suffix. When the wildcard is entered, the following prompt displays for each file that matches the wildcard:

“Delete file <filename> (y/n)?”

`file-url` — The file name to delete.

**Values**

- `<local-url>`|`<remote-url>` - [255 chars max]
  - `local-url` - [`<cflash-id>`|`<usb-flash-id>`|`<file-path>`]
  - `remote-url` - [`ftp://`|`<login>:<pswd>@`|`<remote-locn>`|`<file-path>`]
  - `remote-locn` - [`<hostname>`|`<ipv4-address>`|`"<ipv6-address>"`]
  - `ipv4-address` - a.b.c.d
  - `ipv6-address` - x:x:x:x:x:x:x[-interface]
    - x:x:x:x:x:d.d.d.d[-interface]
    - x - [0..FFFF]H
    - d - [0..255]D
    - interface - 32 chars max, for link
Configuration Commands

local addresses

cflash-id - cf1:

usb-flash-id - uf1:

Note: USB flash is supported only on 7210 SAS-E.

force — Forces an immediate deletion of the specified file(s).

file delete * force deletes all the wildcard matching files without displaying a user prompt message.

dir

Syntax dir [file-url]

Context file

Description This command displays a list of files and subdirectories in a directory.

Parameters file-url — The path or directory name.

Values <local-url>|<remote-url> - [255 chars max]
local-url - [<cflash-id>/ |<usb-flash-id>/][<file-path>]
remote-url - [ftp://<login>:<pswd>@<remote-locn>/]
remote-locn - [ <hostname> | <ipv4-address> | "[<ipv6-address>]
ipv4-address - a.b.c.d
ipv6-address - x:x:x:x:x:x:x[-interface]
x:x:x:x:x:d.d.d.d[-interface]
x - [0..FFFF]H
d - [0..255]D
interface - 32 chars max, for link
local addresses
cflash-id - cf1:

usb-flash-id - uf1:

Note: USB flash is supported only on 7210 SAS-E.

Use the file-url with the optional wildcard (*) to reduce the number of files to list.

Default Lists all files in the present working directory
File Commands

file

Syntax  file
Context  root
Description  The context to enter and perform file system operations. When entering the file context, the prompt changes to reflect the present working directory. Navigating the file system with the cd .. command results in a changed prompt.

The exit all command leaves the file system/file operation context and returns to the <ROOT> CLI context. The state of the present working directory is maintained for the CLI session. Entering the file command returns the cursor to the working directory where the exit command was issued.

md

Syntax  md file-url
Context  file
Description  This command creates a new directory in a file system.
Directories can only be created one level at a time.

Parameters  file-url — The directory name to be created.

Values  <local-url>|<remote-url> - [255 chars max]
    local-url   - [<cflash-id>/|<usb-flash-id>/][<file-path>]
    remote-url  - [ftp://<login>:<pswd>@<remote-locn>/]
    [file-path]  
    remote-locn - [ <hostname> | <ipv4-address> | "("ipv6-address")"]
    ipv4-address - a.b.c.d
    ipv6-address - x:x:x:x:x:x:x:[interface]
    x:x:x:x:x:x:d.d.d.d:[interface]
    x - [0..FFFF]H
    d - [0..255]D
    interface - 32 chars max, for link
    local addresses
cflash-id   - cf1:
    usb-flash-id - uf1:

Note: USB flash is supported only on 7210 SAS-E.
Configuration Commands

move

**Syntax**

```
move old-file-url new-file-url [force]
```

**Context**

file

**Description**

This command moves a local file, system file, or a directory. If the target already exists, the command fails and an error message displays.

The following prompt appears if the destination file already exists:

“Overwrite destination file (y/n)?”

**Parameters**

- **old-file-url** — The file or directory to be moved.
  
  **Values**
  
  `<local-url>|<remote-url>` - [255 chars max]
  
  - `<local-url>`
    
    `<cflash-id>/ |<usb-flash-id>/`[<file-path>]
  
  - `<remote-url>`
    
    `[ftp://<login>:<pswd>@<remote-locn>/]`
    
    `<file-path>`
  
  `<remote-locn>`
  
  - `<hostname>`
  
  - `<ipv4-address>`
    
    - `a.b.c.d`
    
    - `x:x:x:x:x:x:x[-interface]`
    
    - `x:x:x:x:x:d.d.d.d[-interface]`
    
    - `x - [0..FFFF]H`
    
    - `d - [0..255]D`
    
  `<ipv6-address>`
  
  - `x:x:x:x:x:x:x:x[-interface]`
  
  - `x:x:x:x:x:d.d.d.d[-interface]`
  
  - `x - [0..FFFF]H`
  
  - `d - [0..255]D`
  
  - `interface - 32 chars max, for link`
  
  - `local addresses`
  
  - `cflash-id`
    
    - `cf1:`
  
  - `usb-flash-id`
    
    - `uf1:`
  
  **Note:** USB flash is supported only on 7210 SAS-E.

- **new-file-url** — The new destination to place the **old-file-url**.
  
  **Values**
  
  `<local-url>|<remote-url>` - [255 chars max]
  
  - `<local-url>`
    
    `<cflash-id>/ |<usb-flash-id>/`
    
    `[<file-path>]`
  
  - `<remote-url>`
    
    `[ftp://<login>:<pswd>@<remote-locn>/]`
    
    `[<file-path>]`
  
  `<remote-locn>`
  
  - `<hostname>`
  
  - `<ipv4-address>`
    
    - `a.b.c.d`
    
    - `x:x:x:x:x:x:x[-interface]`
    
    - `x:x:x:x:x:d.d.d.d[-interface]`
    
    - `x - [0..FFFF]H`
    
    - `d - [0..255]D`
    
  `<ipv6-address>`
  
  - `x:x:x:x:x:x:x:x[-interface]`
  
  - `x:x:x:x:x:d.d.d.d[-interface]`
  
  - `x - [0..FFFF]H`
  
  - `d - [0..255]D`
  
  - `interface - 32 chars max, for link`
  
  - `local addresses`
  
  - `cflash-id`
    
    - `cf1:`
  
  - `usb-flash-id`
    
    - `uf1:`
  
  **force** — Forces an immediate move of the specified file(s).
File Commands

**file move force** executes the command without displaying a user prompt message.

### rd

**Syntax**

`rd file-url [force]`

**Context** file

**Description**
The `rd` command is used to delete a directory.

If a directory has files and no sub-directories, the `force` option must be used to force delete the directory and files it contains.

**Parameters**

`file-url` — The directory to be removed.

**Values**

- `local-url` - [255 chars max]
  - `local-url` - `<cflash-id>/` | `<usb-flash-id>/` | `<file-path>`
- `remote-url` - `ftp://login:pswd@remote-locn` | `<file-path>`
- `remote-locn` - `hostname` | `ipv4-address` | `ipv6-address`
- `ipv4-address` - `a.b.c.d`
- `ipv6-address` - `x:x:x:x:x:x:x[-interface]`
- `x` - `[0..FFFF]H`
- `d` - `[0..255]D`
- `interface` - 32 chars max, for link local addresses
- `cflash-id` - `cf1:`
- `usb-flash-id` - `uf1:`

Note: USB flash is supported only on 7210 SAS-E.

`force` — Forces an immediate deletion of the specified directory.

For example, `rd file-url force` executes the command without displaying a user prompt message.

### repair

**Syntax**

`repair [cflash-id]`

**Context** file

**Description**
This command checks a compact flash device for errors and repairs any errors found.

**Parameters**

`cflash-id` — **Default** Specify the compact flash slot ID to be shut down or enabled. When a specific cflash-id is specified, then that drive is shutdown. If no cflash-id is specified, the drive referred to by the current working directory is assumed. The current compact flash device.

**Values**

- `cfl1:`, `uf1:`
Configuration Commands

scp

Syntax: scp local-file-url destination-file-url [router router-instance] [force]

Context: file

Description: This command copies a local file to a remote host file system. It uses ssh for data transfer, and uses the same authentication and provides the same security as ssh. The following prompt appears: “Are you sure (y/n)?” The destination must specify a user and a host.

Parameters:
- local-file-url — The local source file or directory.
  Values: [cflash-id][file-path]: Up to 256 characters.
- destination-file-url — The destination file.
  Values: user@hostname:destination-file
  user — The SSH user.
  host — The remote host IP address of DNS name.
  file-path — The destination path.
- router-instance — Specify the router name or service ID.
  Values: router-name: Base, management
  service-id: 1 — 2147483647
  Default: Base
- force — Forces an immediate copy of the specified file.

file scp local-file-url destination-file-url [router] force executes the command without displaying a user prompt message.

type

Syntax: type file-url

Context: file

Description: Displays the contents of a text file.

version

Syntax: version file-url [check]

Context: file

Description: This command displays the version of a TiMOS file.
File Commands

**Parameters**  
`file-url` — The file name of the target file.

**Values**  
- `<local-url>`|<remote-url>` - [255 chars max]
  - `<local-url>` - [<cflash-id>/ |<usb-flash-id>/][<file-path>]
  - `<remote-url>` - [ftp://<login>:<pswd>@<remote-locn>/]
    [<file-path>]
  - `<remote-locn>` - [ <hostname> | <ipv4-address> | 
    "["<ipv6-address>"]"] 
  - `ipv4-address` - a.b.c.d
  - `ipv6-address` - x:x:x:x:x:x[-interface]
    x:x:x:x:d.d.d.d[-interface]
  - `x` - [0..FFFF]H
  - `d` - [0..255]D
  - `interface` - 32 chars max, for link local addresses
  - `cflash-id` - cf1:
  - `usb-flash-id` - uf1:

Note: USB flash is supported only on 7210 SAS-E.

**check** — Validates the `.tim` file.

**vi**

**Syntax**  
`vi local-url`

**Context**  
`file`

**Description**  
Edit files using the vi editor.

**Parameters**  
`local-url` — Specifies the local source file or directory.

**Values**  
- `[cflash-id/]file-path`
  - `cflash-id`: cf1:, uf1:
In This Chapter

This chapter provides information about configuring boot option parameters.

Topics in this chapter include:

- System Initialization on page 102
  - Manual Mode on page 105
  - Auto Init on page 106
  - Ping Check on page 112
    - Persistence on page 113
- Initial System Startup Process Flow on page 120
- Configuration Notes on page 121
**System Initialization**

When the system is powered ON it executes the bootstrap image, for example, the boot.tim file, from the file system which is located on a non-removable flash device (cf1:) that is built in to the 7210 SAS-Series router. The boot.tim file is the image that reads and executes the system initialization commands configured in the Boot Option File (BOF). The default behavior is to initially search for the boot.tim file on cf1:. This behavior cannot be modified. If the boot.tim file is not present, or is not a valid loadable file, the Golden bootstrap image is loaded by the bootrom. This image is equivalent to a boot.tim file except that it is present outside the file system and can be updated and checked by means of special CLI commands.

When the system executes boot.tim, provision is given to the user to modify the BOF manually and save it or to boot using existing BOF. The bootstrap image then processes the BOF file present in the flash as explained in [Configuration and Image Loading on page 109](#). The system is shipped to the customer site with a boot.tim file and a Golden bootstrap image, but without a BOF file. When the system is powered ON for the first time, there will be no BOF in the system. Hence, provisions are given to create a new BOF file or alternatively get the BOF file from the network. There are two options:

- Boot by manually creating a BOF file (manual boot).
- Boot by retrieving the BOF file from the network, using DHCP to get the network location of the BOF file (auto init). Auto-init is the default boot procedure if there is no manual-intervention during the first-time boot of the node.

Note: When the operator executes the `reset` command in the boot loader prompt or `admin reboot auto-init` in the TiMos CLI, 7210 SAS resets the current BOF and reboots.

**Note:** The operator can manage a 7210 SAS E node through an external physical network. Managing a node through an external physical network secures the management network by restricting access to service customers and service data. The 7210 SAS E node can be managed through the Out-of-band (OOB) Ethernet management port. The 7210 SAS-D devices do not support Out-of-band Ethernet management port.

The following is an example of console display output when the boot.tim file is located on `cf1` and the system boots successfully.

```text
All rights reserved. All use is subject to applicable license agreements.
Running POST tests from ROM
Testing ROM load area...done

Relocating code...Jumping to RAM

Performing second stage RAM test....passed

Board Serial Number is 'SN123456789'
Bootlog started for Version V-0.0.I317
Build V-0.0.I317 bootrom/mpc 7xxx
```
Figure 3 displays the bootstrap load process.

Figure 4 displays the flash directory structure and file names.
Files on the compact flash are:

- `bof.cfg` — Boot option file
- `boot.tim` — Bootstrap image
- `config.cfg` — Default configuration file
- `TIMOS-m.n.Yz`:
  - `m` — Major release number
  - `n` — Minor release number
  - `Y`: A — Alpha release
  - B — Beta release
  - M — Maintenance release
  - R — Released software
  - `z` — Version number
- `both.tim` — CPM and IOM image file
Manual Mode

Note: Out-of-Band Ethernet management port is not supported on 7210 SAS-D devices.

If the user opts for the manual-mode boot procedure for the first time boot, the required parameters must be specified for a successful system boot. Manual mode configurations require authentication. The default password is `password`. BOF parameters that should be configured include:

- Image path
- Configuration file path
- UplinkA parameters (port number, vlan ID, IP/mask, static route)
- UplinkB parameters (port number, vlan ID, IP/mask, static route)
- `eth-mgmt-disable` (supported only on 7210 SAS-E)

Provisions to configure two uplinks is given in the BOF for port redundancy. If the image path and configuration file path are local, then the IP address and routing information for uplinkA and uplinkB are not required. The user can optionally obtain IP parameters through DHCP by configuring 0 (zero) for the uplink port’s IP address. In this case, the DHCP server should be configured to grant the IP address and the default gateway information used to reach the server where the image and configuration files are present. After the BOF configuration is completed, a BOF with configured parameters is created in the flash that can be used for subsequent reboots. The bootstrap image then processes the BOF parameters in order to boot the system. BOF processing is explained in Configuration and Image Loading on page 109.

For 7210 SAS-E devices, `eth-mgmt-disable` parameter indicates if the out-of-band Ethernet management port is enabled during the boot-up procedure. The 7210 SAS-D devices do not support Out-of-band Ethernet management port. For a 7210 node which has a previous BOF, the boot process uses the existing parameters for uplink A and uplink B ports to boot the TIMOS image. The OOB port is disabled, by default.
Auto Init

During the first boot or a reboot after the execution of CLI command `admin reboot auto-init`, if the user does not intervene to create the BOF file in the manual mode, the system, by default, goes to auto-init procedure after a “wait” time. The default wait time is 3 seconds. There are two designated ports used for auto init. These are the front panel ports, port 1 and port 2. Auto init requires a DHCP server to be configured in the network which should be reachable by the system. DHCP requests are directed out of one uplink port at a time. All other ports of the system would be down.

If a DHCP server is present in the network, the system expects to receive an IP address, the default gateway information, and BOF file path in the response returned by the DHCP server. Upon receiving these parameters from DHCP server, the system will apply the IP configuration and then download the BOF file from the path given by the DHCP server. The BOF file is then saved into the flash and is used for subsequent reboots. The bootstrap image then processes the BOF parameters in order to boot the system. BOF processing is explained in Configuration and Image Loading on page 109.

The system first attempts to use uplinkA and then uplinkB parameters to receive a successful response from the DHCP server. If there is no response from the DHCP server on both the uplink ports, the boot procedure is restarted, during which the user can opt to enter the manual mode or allow the system to default to auto-init again.

Configuration Guidelines for use of Auto-init and Manual mode

- Ethernet management port does not support AutoInit mode. The use of DHCP to obtain the BOF file from the network and other system parameters is currently not supported on Ethernet management port.
- In autoinit mode, DHCP requests sent out by the node are in two formats. The system attempts to communicate with the DHCP server in these two formats, one after another(if necessary).
  - Initially, the DHCP requests are sent out with a priority VLAN tag (VLAN ID = 0, Dot1p PCP bits set to 7).
  - If no response is received from the DHCP server during the above request period, DHCP requests are sent without VLAN tags (that is, null-tagged packets).
- In autoinit mode, DHCP client expects the following options to contain the BOF file name and the server IP address. BOF file can be downloaded through FTP or TFTP based on the
information a client receives from DHCP server. Listed below are the ways in which DHCP client will try to obtain the file:

- **1. Using the vendor specific option**: The client searches for the option “43” in the DHCP reply. This provides the URL which has to be accessed through FTP. For example: `ftp://abcd:xyz@10.0.0.2/test/bof.cfg`. If this file is found the client retrieves this file.

- **2. Collating server-name and file-name**: If the option “43” is not found in the DHCP reply, then a URL has to be formed by using the tftp-server name and the boot-file retrieved via TFTP. IP address of TFTP server is obtained from DHCP Option “66” or the "sname" field of a DHCP message and filename on the TFTP server is obtained from DHCP Option “67” or the "file" field of a DHCP message.

  - In the manual mode, if the OOB port is enabled (that is the “eth-mgmtdisable” is set to “no”), the OOB port is used to download the TIMOS image file and configuration file specified in the BOF file, and the system boot is successfully completed. If a system boot fails, the uplink A and uplink B parameters are used to retrieve the TIMOS image and configuration files.
Configuration and Image Loading

The bootstrap image processes the initialization parameters from the BOF. The bootstrap image attempts to locate the configuration file as configured in the BOF. Up to three locations can be configured for the system to search for the configuration file. The locations can be local or remote. The first location searched is the primary configuration location. If not found, the secondary configuration location is searched, and lastly, the tertiary configuration location is searched. If the configuration file is in a remote location, the bootstrap process saves it on the flash as cf1:/default.cfg. Users must not delete this file or create a file with this name. The configuration file includes chassis, MDA, and port configurations, as well as system, routing, and service configurations. Like the configuration file, three locations can be configured for the system to search for the files that contain the runtime image. The locations can be local or remote. The first location searched is the primary image location. If not found, the secondary image location is searched, and lastly, the tertiary image location is searched. Figure 5, Figure 6, and Figure 7 describe the bootstrap process.

![Bootstrap Process - System Initialization - Part II-A](image-url)

**Figure 5: Bootstrap Process - System Initialization - Part II-A**
Provision The BOF Parameters (Few Are Mentioned Below) (Secondary/Tertiary Parameters Are Optional)
Image And Config Path (Primary/Secondary/Tertiary), Safe-boot IP, UplinkA (Port, Vlan, IP/Mask, Static-route), UplinkB (Port, Vlan, IP/Mask, Static-route), Persist.

If the IP information needs to be obtained from DHCP server, IP Address shall be configured as 0 instead of specifying any IP Address. DHCP server should grant IP address/mask and the GW.

Figure 6: Bootstrap Process - System Initialization - Part II-B
When the runtime image is successfully downloaded, control is passed from the bootstrap image. The runtime image attempts to load the configurations from the downloaded configuration file. If no configuration file location is present in the BOF file, then the system is loaded with default configuration. Also during the auto-init, if the configuration file or image file download fails from the network, then the system is the auto-init procedure.
Ping Check

If the system is booted up using the auto-init procedure, the runtime image performs a ping check to make sure that the system has IP connectivity. The runtime image, after loading the configurations from the configuration file, tries three times to ping the IP address specified as the ping-address parameter in the BOF file, at a 2, 8 and 16 minutes interval minute interval. If the ping does not succeed, the system is rebooted with BOF reset after 1 minute and the whole boot process is repeated. If address in the BOF is zero or the ping address is not given, the ping check is not done. Figure 8 describes the TiMos Boot — System Initialization Part III.

Figure 8: Timos Boot - System Initialization - Part III
Persistence

The following displays an example of BOF output for 7210 SAS-E devices.

*A:7210>show# bof
===============================================================================
BOF (Memory)
===============================================================================
primary-image ftp://*:8135.254.170.22//import/panos_builds/nightly/0.0
/I783/STU-sultan
primary-config ftp://*:810.135.25.100/tftpboot/STU/2597-ver2.cfg
secondary-config tftp://10.135.25.250/STU/2597-ver2.cfg
#eth-mgmt Port Settings:
  no  eth-mgmt-disabled
  eth-mgmt-address 10.135.25.91/24
  eth-mgmt-route 10.135.0.0/16 next-hop 10.135.25.1
  eth-mgmt-route 135.250.0.0/16 next-hop 10.135.25.1
  eth-mgmt-route 135.254.0.0/16 next-hop 10.135.25.1
  eth-mgmt-autoneg
  eth-mgmt-duplex full
  eth-mgmt-speed 100
#uplinkA Port Settings:
  uplinkA-port 1/1/2
  uplinkA-address 10.135.25.91/24
  uplinkA-vlan 0
  uplinkA-route 10.135.0.0/16 next-hop 10.135.25.1
  uplinkA-route 135.254.0.0/16 next-hop 10.135.25.1
#uplinkB Port Settings:
  uplinkB-port 1/1/2
  uplinkB-address 0
  uplinkB-vlan 0
#System Settings:
  wait 3
  persist off
  console-speed 115200
  no console-disabled
===============================================================================
*A:7210>show#

The following displays an example of BOF output for 7210 SAS D device:

*A:SAS-D>show# bof
===============================================================================
BOF (Memory)
===============================================================================
primary-image ftp://*:8135.254.170.22//home///images/SASD-both.tim
primary-config cf1:\****.cfg
#uplinkA Port Settings:
  uplinkA-port 1/1/2
  uplinkA-address 10.135.25.91/24
  uplinkA-vlan 0
  uplinkA-route 10.135.0.0/16 next-hop 10.135.25.1
  uplinkA-route 135.250.0.0/16 next-hop 10.135.25.1
  uplinkA-route 135.254.0.0/16 next-hop 10.135.25.1
#System Settings:
wait               3
persist            off
console-speed      115200
no console-disabled

*A:SAS-D>show##

Optionally, the BOF persist parameter can specify whether the system should preserve system indexes when a save command is executed. During a subsequent boot, the index file is read along with the configuration file. As a result, a number of system indexes are preserved between reboots, including the interface index. If persistence is not required and the configuration file is successfully processed, then the system becomes operational. If persist is required, then a matching x.ndx file must be located and successfully processed before the system can become operational. Matching files (configuration and index files) must have the same filename prefix such as test123.cfg and test123.ndx and are created at the same time when a save command is executed. Note that the persistence option must be enabled to deploy the Network Management System (NMS). The default is off.

Traps, logs, and console messages are generated if problems occur and SNMP shuts down for all SNMP gets and sets, however, traps are issued.
Configuration guidelines for use of software images with the 128MB 7210 SAS-D platform

The new 7210 SAS-D platforms with 128MB flash can boot entirely new software releases. The older images cannot be used with the new devices. The older 7210 SAS-D platforms with 64MB flash can use any image. All new devices are shipped with the latest bootrom. The system bootrom, bootloader and Timos image introduces the following checks to prevent use of older releases with the new hardware:

- If a user issues an admin reboot upgrade with an older boot.tim, then bootrom detects and fails to load the bootloader, instead the bootrom uses the golden bootloader, loads it for booting with the bootrom and finally loads both.tim.
- If a user issues an admin reboot upgrade with an older boot.tim, and an older both.tim, then bootrom detects and fails to load the bootloader, instead the bootrom uses the golden bootloader and stops booting as the user specifies an older version of the both.tim, which the system cannot use. This process results in loss of management connectivity.
- If a user issues an admin reboot upgrade with an older boot.tim, an older both.tim as primary, and a newer both.tim as secondary, then the bootrom detects and fails to load the bootloader, instead the bootrom use the golden bootloader. The bootloader checks the primary location for a compatible both.tim image and as the image is an older version the boot fails. The bootloader then checks the secondary location for a compatible both.tim image and as the image is a newer version image the bootloader successfully boots the system.
- The `admin>update-golden-bootstrap` CLI command does not update the golden-bootstrap image with the boot.tim specified in the parameter value, if the boot.tim is not a new image.

Out-of-band (OOB) Ethernet Management Port

Note: Out-of-band Ethernet port is not supported on 7210 SAS-D devices. The 7210 platforms support out-of-band ethernet management port for management of the node. An Out-of-band Ethernet port can be used to download the TIMOS image file and the configuration file by creating a BOF file manually. The out-of-band management port allows for use of both IPv4 and IPv6.

Please check the release notes to know the software release where support for out-of-band management port is available and for software release availability of IPv6 support.

Configuration Guidelines for use of IPv6 for out-of-band management of the node
• The management port on the management router instance only supports host functionality.
• It is necessary to have an IPv4 address configured in the bof file. A bof file that contains only IPv6 addresses is not supported.
• IPv6 duplicate address detection is not supported.
• IPv6 auto-configuration is not supported.
• IPv6 over IPv4 tunneling is not supported.
• IPv6 path MTU discovery is not supported.
• Router discovery option is not supported on the management port.

Security for Console Port and Ethernet Management Port

The 7210 OS supports disabling the console port and out-of-band Ethernet management port. In remote deployments, operators can choose to disable user access to the node through the console and through the ethernet management port to prevent unauthorised and malicious access. Operators can use the command `bof> console-disabled` to disable the console and the command `bof> eth-mgmt-disabled` to disable the use of Ethernet management port.

**Note:** Access to console is only disabled when the Timos image is loaded. Console access remains unchanged during boot loader stage of the boot up process.

Reset the node to factory default setting

From release 4.0 and onwards, the default BOF password can be modified by the user. To edit the BOF parameters, user needs to provide the correct password. If the user forgets the password and fails to provide a correct password after three attempts, the system prompts the user to reset the BOF password to factory default. As a security measure, to prevent a malicious user from using it to gain access to the configuration files, when the password is reset to default, the system also resets the flash to factory defaults (that is, it removes all the files from the flash except for the boot image file (cf1\boot.tim) and Timos image file (cf1\both.tim)) and reboots the node with the factory default settings. The node is rebooted after the password is reset, to boot up with the factory default settings. After boot up, the user needs to setup the box using the same steps as used to boot the box the first time when it was received from the factory. User can use the factory default password ‘password’ to edit the BOF parameters after the boot up subsequent to reboot and choose to change the password again. The bof password can be changed only in the Timos CLI.

**Note 1:** The BOF password can be changed from default value to any other user defined value only at the Timos level.
Note 2: It is highly recommended that user does not rename cf1:\boot.tim and cf1:\both.tim, if the system needs to retain them during the password recovery procedure. Additionally, it is highly recommended that the user takes a backup of all the image files, configuration files and other data.

The following logs show the system prompts displayed on the console when user forgets the password and chooses to reset the password to factory default setting. Also, shown are the BOF contents after and before the reset. Note that the BOF parameters are set to default after password reset.

TIMOS BOOT LOADER

CPLD Version: 2.1
Time from clock is FRI AUG 19 09:22:46 2011 UTC
USB: USB EHCI 1.00
scanning bus for devices...
1 USB Device(s) found
Number of blocks in device 0 is 0
Number of bytes per block in device 0 is 0
Switching serial output to sync mode... done

Looking for cf1:/bof.cfg ... OK, reading

Contents of Boot Options File on cf1:
  primary-image ftp://*::*@135.250.27.40/xxx/xx/xxx/xx/xxx/both.tim
  primary-config cf1:sasm.cfg
#eth-mgmt Port Settings:
  no  eth-mgmt-disabled
  eth-mgmt-address 10.135.20.115/24 active
  eth-mgmt-route 0.0.0.0/0 next-hop 10.135.20.1
  eth-mgmt-autoneg
  eth-mgmt-duplex full
  eth-mgmt-speed 100
#uplinkA Port Settings:
  uplinkA-port 1/1/1
  uplinkA-address 0
  uplinkA-vlan 0
#uplinkB Port Settings:
  uplinkB-port 1/1/2
  uplinkB-address 0
  uplinkB-vlan 0
#System Settings:
  wait 3
  persist off
  console-speed 115200
  uplink-mode network
  acl-mode IPv6-None
  use-expansion-card-type m4-ds1-ces
  no console-disabled

Hit a key within 3 seconds to change boot parameters...

Enter password to edit the Boot Options File
Or CTRL-D to exit the prompt

Password:
Incorrect password
Password:
Incorrect password

Password:
Incorrect password

Authentication failed, Do you want to reset password? (yes/no)

*******************************************************************
On reset, the node's flash contents will be set to factory defaults.
All files on the flash will be removed. If present, files cf1:/boot.tim and cf1:/both.tim are not removed.
Please ensure that you have a backup of the required files before you proceed.
*******************************************************************

'yes' or 'no'?
'yes' or 'no' ? yes

*******************************************************************
*** Chassis must not be powered off nor ***
*** cards removed while password reset ***
*** is in progress ***
*******************************************************************
Password reset complete. Restarting...

At this point the password has been reset and the node is rebooted to boot up with factory default settings.

Resetting...OK
Ø

All rights reserved. All use is subject to applicable license agreements.
Running POST tests from ROM
Testing ROM load area...done

Relocating code...Jumping to RAM

Performing second stage RAM test...passed

Board Serial Number is 'NS1023C1436'
Bootlog started for Version 9-V-0.0.I1111
Build V=0.0.11111 bootrom/mpc 7xxx
Built on Wed Jun 29 21:55:30 IST 2011 by builder in /builder/0.0/panos/main

?Attempting to load from file cf1:/boot.tim
Version L-4.0.beta-private, Sat Aug 20 12:59:26 IST 2011 by abc /abc/ws-40b/panos/main
text: (3706043--->13139264) + data: (528557--->2068192)
Starting at 0xb0000000...

Total Memory: 1GB Chassis Type: sas Card Type: badami_7210
TiMOS-L-4.0.beta-private boot/mpc ALCATEL SAS 7210 Copyright (c) 2000-2011 Alcatel-Lucent.
All rights reserved. All use subject to applicable license agreements.
Built on Sat Aug 20 12:59:26 IST 2011 by abc in /abc/ws-40b/panos/main
TIMOS BOOT LOADER

CPLD Version: 2.1
Time from clock is FRI AUG 19 09:24:05 2011 UTC
USB: USB EHCI 1.00
scanning bus for devices...
1 USB Device(s) found
Number of blocks in device 0 is 0
Number of bytes per block in device 0 is 0
Switching serial output to sync mode... done

Looking for cf1:/bof.cfg ... not found
Could not find bof.cfg on any of the local drives.

Default Settings
-------------
#eth-mgmt Port Settings:
  eth-mgmt-disabled
#uplinkA Port Settings:
  uplinkA-port    1/1/1
  uplinkA-address 0
  uplinkA-vlan    0
#uplinkB Port Settings:
  uplinkB-port    1/1/2
  uplinkB-address 0
  uplinkB-vlan    0
#System Settings:
  wait    3
  persist off
  console-speed 115200
  uplink-mode network
  acl-mode IPv6-None
  use-expansion-card-type m4-ds1-ces
  no console-disabled

Hit a key within 1 second to change boot parameters...
Enter password to edit the Boot Options File
Or CTRL-D to exit the prompt
Password:

Note: At this prompt, the default password “password” must be used.
Initial System Startup Process Flow

Figure 9 displays the process start your system. Note that this example assumes that the boot loader and BOF image and configuration files are successfully located.
Configuration Notes

This section describes BOF configuration caveats.

- The loading sequence is based on the order in which it is placed in the configuration file. It is loaded as it is read in at boot time.
Configuring Boot File Options with CLI

This section provides information to configure BOF parameters with CLI.

Topics in this section include:

- Configuring Boot File Options with CLI on page 123
- BOF Configuration Overview on page 124
- Basic BOF Configuration on page 125
- Common Configuration Tasks on page 127
- Configuring BOF Parameters on page 133
- Service Management Tasks on page 134
  - Viewing the Current Configuration on page 134
  - Modifying and Saving a Configuration on page 136
  - Saving a Configuration to a Different Filename on page 139
  - Rebooting on page 139
Alcatel-Lucent routers do not contain a boot EEPROM. The bootstrap image is loaded from the boot.tim file. The BOF file performs the following tasks:

1. Sets up the uplink ports (speed, duplex, auto).
2. Assign the IP address (either statically or using DHCP) for the uplink port.
3. Assign the VLAN to the uplink port.
4. Create static routes for the uplink routes.
5. Sets the console port speed.
6. Configures the Domain Name System (DNS) name and DNS servers.
7. Configures the primary, secondary, tertiary configuration source.
8. Configures the primary, secondary, and tertiary image source.
9. Configures operational parameters.
Basic BOF Configuration

The parameters which specify location of the image filename that the router will try to boot from and the configuration file are in the BOF.

The most basic BOF configuration should have the following:

- Uplink port parameters
- Primary image location
- Primary configuration location

Following is a sample of a basic BOF configuration for 7210 SAS-E devices.

*A:7210>show# bof
===============================================================================
BOF (Memory)
===============================================================================
primary-image ftp://*:0@135.254.170.22//import/panos_builds/nightly/0.0
primary-config ftp://*:0@10.135.25.100/tftpboot/STU/2597-ver2.cfg
secondary-config tftp://10.135.25.100/STU/2597-ver2.cfg
#eth-mgmt Port Settings:
   no  eth-mgmt-disabled
   eth-mgmt-address 10.135.25.91/24
   eth-mgmt-route 10.135.0.0/16 next-hop 10.135.25.1
   eth-mgmt-route 135.250.0.0/16 next-hop 10.135.25.1
   eth-mgmt-route 135.254.0.0/16 next-hop 10.135.25.1
   eth-mgmt-autoneg
   eth-mgmt-duplex full
   eth-mgmt-speed 100
#uplinkA Port Settings:
   uplinkA-port 1/1/24
   uplinkA-address 10.135.25.91/24
   uplinkA-vlan 0
   uplinkA-route 10.135.0.0/16 next-hop 10.135.25.1
   uplinkA-route 135.254.0.0/16 next-hop 10.135.25.1
#uplinkB Port Settings:
   uplinkB-port 1/1/2
   uplinkB-address 0
   uplinkB-vlan 0
#System Settings:
   wait 3
   persist off
   console-speed 115200
   no console-disabled
===============================================================================
*A:7210>show#

The following displays an example of BOF output for 7210 SAS D device:

*A:SAS-D>show# bof
===============================================================================
BOF (Memory)
primary-image   ftp://*:@135.254.170.22//home/****/images/SASD-both.tim
primary-config   cfl:****.cfg

#uplinkA Port Settings:
uplinkA-port      1/1/10
uplinkA-address    10.135.20.152/24
uplinkA-vlan       0
uplinkA-route      10.135.0.0/16 next-hop 10.135.20.1
uplinkA-route      135.250.0.0/16 next-hop 10.135.20.1
uplinkA-route      135.254.0.0/16 next-hop 10.135.20.1

#System Settings:
wait               3
persist            off
console-speed      115200
no console-disabled

*A:SAS-D>show#
Common Configuration Tasks

The following sections are basic system tasks that must be performed.

- Searching for the BOF on page 128
  → Accessing the CLI on page 131
    – Console Connection on page 131
- Configuring BOF Parameters on page 133

For details about hardware installation and initial router connections, refer to the specific hardware installation guide.
Searching for the BOF

The BOF should be on the same drive as the bootstrap image file. If the system cannot load or cannot find the BOF, then the system checks whether the boot sequence was manually interrupted else continues with the auto-init mode. The system prompts for a different image and configuration location.

The following example displays an example of the output when the boot sequence is interrupted for 7210 SAS-E devices.

Hit a key within 3 seconds to change boot parameters...

Enter password to edit the Boot Options File
Or CTRL-D to exit the prompt

You must supply some required Boot Options. At any prompt, you can type:

"restart" - restart the query mode.
"reboot" - reboot.
"exit" - boot with with existing values.
"reset" - reset the bof and reboot.

Press ENTER to begin, or 'flash' to enter firmware update, or the shell password...

Software Location
-----------------
You must enter the URL of the TiMOS software.
The location can be on a Compact Flash device, or on the network.

Here are some examples
  cf1:/timos1.0R1
  ftp://user:passwd@192.168.1.150/./timos1.0R1
  ftp://user:passwd@[3FFE::1]/./timos1.0R1
  tftp://192.168.1.150/./timos1.0R1
  tftp://3FFE::1/./timos1.0R1

The existing Image URL is 'ftp://**@10.10.170.22//home/***/images/both.tim'
Press ENTER to keep it.
Software Image URL:
Using: 'ftp://**@10.10.170.22//home/***/images/both.tim'

Configuration File Location
----------------------------
You must enter the location of configuration file to be used by TiMOS. The file can be on a Compact Flash device, or on the network.

Here are some examples
  cf1:/config.cfg
  ftp://user:passwd@192.168.1.150/./config.cfg
  ftp://user:passwd@[3FFE::1]/./config.cfg
  tftp://192.168.1.150/./config.cfg
  tftp://3FFE::1/./config.cfg
The existing Config URL is 'ftp://**@10.135.25.100/tftpboot/STU/config.cfg
Press ENTER to keep it, or the word 'none' for no Config URL.
Config File URL: none

Network Configuration
----------------------

Boot Interface Management
-------------------------
You specified a network location for either the software or the configuration file. You need to configure either eth-mgmt or uplinkA or uplinkB ports.
You will be asked to configure the port number, IP address, static routes, and VLAN Id in case of uplink ports.

eth-mgmt Port Setting
----------------------
Existing eth-mgmt port settings are:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>eth-mgmt-port</td>
<td>10.135.25.97/24</td>
</tr>
<tr>
<td>eth-mgmt-address</td>
<td>10.135.0.0/16 next-hop 10.135.25.1</td>
</tr>
<tr>
<td>eth-mgmt-route</td>
<td>135.254.0.0/16 next-hop 10.135.25.1</td>
</tr>
</tbody>
</table>

eth-mgmt port is configured for Boot Interface Management, Press ENTER to proceed with existing port settings
Or "disable" to disable the port for Boot Interface Management
Or "edit" to change the port settings:

uplinkA Port Setting
---------------------
Existing uplinkA port settings are:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>uplinkA-port</td>
<td>1/1/24</td>
</tr>
<tr>
<td>uplinkA-address</td>
<td>0</td>
</tr>
<tr>
<td>uplinkA-vlan</td>
<td>0</td>
</tr>
</tbody>
</table>

uplinkA port is configured for Boot Interface Management, Press ENTER to proceed with existing port settings
Or "disable" to disable the port for Boot Interface Management
Or "edit" to change the port settings:

uplinkB Port Setting
---------------------
Existing uplinkB port settings are:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>uplinkB-port</td>
<td>1/1/2</td>
</tr>
<tr>
<td>uplinkB-address</td>
<td>0</td>
</tr>
<tr>
<td>uplinkB-vlan</td>
<td>0</td>
</tr>
</tbody>
</table>

uplinkB port is configured for Boot Interface Management, Press ENTER to proceed with existing port settings
Or "disable" to disable the port for Boot Interface Management
Or "edit" to change the port settings:

New Settings
primary-image     ftp://*:135.254.170.22//home/****/images/both.tim
secondary-config  tftp://10.135.25.100/STU/config.cfg

#eth-mgmt Port Settings:
   no  eth-mgmt-disabled
   eth-mgmt-address  10.135.25.97/24
   eth-mgmt-route    10.135.0.0/16  next-hop 10.135.25.1
   eth-mgmt-route    135.254.0.0/16 next-hop 10.135.25.1
   eth-mgmt-autoneg
   eth-mgmt-duplex   full
   eth-mgmt-speed    100

#uplinkA Port Settings:
   uplinkA-port     1/1/24
   uplinkA-address  0
   uplinkA-vlan     0

#uplinkB Port Settings:
   uplinkB-port     1/1/2
   uplinkB-address  0
   uplinkB-vlan     0

#System Settings:
   wait             3
   persist          off
   console-speed    115200
   no console-disabled
Accessing the CLI

To access the CLI to configure the software for the first time, follow these steps:

- When the power to the chassis is turned on, the 7210 SAS software automatically begins the boot sequence.
- When the boot loader and BOF image and configuration files are successfully located, establish a router connection (console session).

Console Connection

To establish a console connection, you will need the following:

- An ASCII terminal or a PC running terminal emulation software set to the parameters shown in the table below.
- A standard serial cable connector for connecting to a RS232 port (provides a RJ45 connector).

Table 14: Console Configuration Parameter Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baud Rate</td>
<td>115,200</td>
</tr>
<tr>
<td>Data Bits</td>
<td>8</td>
</tr>
<tr>
<td>Parity</td>
<td>None</td>
</tr>
<tr>
<td>Stop Bits</td>
<td>1</td>
</tr>
<tr>
<td>Flow Control</td>
<td>None</td>
</tr>
</tbody>
</table>

Figure 10 displays an example of the Console port on a 7210 SAS E front panel.
To establish a console connection:

**Step 1**  Connect the terminal to the Console port on the front panel using the serial cable.

**Step 2**  Power on the terminal.

**Step 3**  Establish the connection by pressing the <Enter> key a few times on your terminal keyboard.

**Step 4**  At the router prompt, enter the login and password.
   The default login is *admin*.
   The default password is *admin*.
Configuring BOF Parameters

The following output displays a BOF configuration for 7210 SAS-E:

*A:7210>show# bof
===============================================================================
BOF (Memory)
===============================================================================
primary-image ftp://*:8135.254.170.22//import/panos_builds/nightly/0.0/I783/STU-sultan
primary-config ftp://*:10.135.25.100/tftpboot/STU/2597-ver2.cfg
secondary-config tftp://10.135.25.100/STU/2597-ver2.cfg
#eth-mgmt Port Settings:
  no eth-mgmt-disabled
  eth-mgmt-address 10.135.25.91/24
  eth-mgmt-route 10.135.0.0/16 next-hop 10.135.25.1
  eth-mgmt-route 135.250.0.0/16 next-hop 10.135.25.1
  eth-mgmt-route 135.254.0.0/16 next-hop 10.135.25.1
  eth-mgmt-autoneg
  eth-mgmt-duplex full
  eth-mgmt-speed 100
#uplinkA Port Settings:
  uplinkA-port 1/1/24
  uplinkA-address 10.135.25.91/24
  uplinkA-vlan 0
  uplinkA-route 10.135.0.0/16 next-hop 10.135.25.1
  uplinkA-route 135.254.0.0/16 next-hop 10.135.25.1
#uplinkB Port Settings:
  uplinkB-port 1/1/2
  uplinkB-address 0
  uplinkB-vlan 0
#System Settings:
  wait 3
  persist off
  console-speed 115200
  console-disabled
===============================================================================
*A:7210>show#
Service Management Tasks

This section discusses the following service management tasks:

- System Administration Commands on page 134
  - Viewing the Current Configuration on page 134
  - Modifying and Saving a Configuration on page 136
  - Deleting BOF Parameters on page 137
  - Saving a Configuration to a Different Filename on page 139

System Administration Commands

Use the following administrative commands to perform management tasks.

**CLI Syntax:**

```
A:ALA-1# admin
 check-golden-bootstrap
 debug-save [file-url]
 disconnect [address <ip-address> | username <user-name> | {console|telnet|ftp|ssh}]
 display-config
 [no]enable-tech
 reboot [auto-init][now]
 save [file-url] [detail] [index]
 set-time <date> <time>
 tech-support <file-url>
 update-golden-bootstrap [file-url]
```

Viewing the Current Configuration

Use one of the following CLI commands to display the current configuration. The `detail` option displays all default values. The `index` option displays only the persistent indices. The `info` command displays context-level information.

**CLI Syntax:**

```
admin# display-config [detail|index]
 info detail
```

The following displays an example of a configuration file:

```
*A:sm169# admin display-config
* TiMOS-B-0.0.1218 both/i386 ALCATEL SAS-E 7210 Copyright (c) 2000-2008 Alcatel-
Lucent.
* All rights reserved. All use subject to applicable license agreements.
```
exit all
configure
#--------------------------------------------------
echo "System Configuration"
#--------------------------------------------------
system
    name "7210-3"
    contact "Fred Information Technology"
    location "Bldg.1-floor 2-Room 201"
    clli-code "abcdefg1234"
    coordinates "N 45 58 23, W 34 56 12"
    ccm 1
    exit
    snmp
    exit
login-control
    idle-timeout 1440
    motd text "7210-3"
    exit
time
    snntp
    shutdown
    exit
    zone UTC
    exit
thresholds
    rmon
    exit
    exit...  
...
Modifying and Saving a Configuration

If you modify a configuration file, the changes remain in effect only during the current power cycle unless a `save` command is executed. Changes are lost if the system is powered down or the router is rebooted without saving.

- Specify the file URL location to save the running configuration. If a destination is not specified, the files are saved to the location where the files were found for that boot sequence. The same configuration can be saved with different file names to the same location or to different locations.
- The `detail` option adds the default parameters to the saved configuration.
- The `index` option forces a save of the index file.
- Changing the active and standby addresses without reboot standby CPM may cause a boot-env sync to fail.

The following command saves a configuration:

**CLI Syntax:** `bof# save [cflash-id]`

**Example:**

```
A:ALA-1# bof
A:ALA-1>bof# save cf1:
A:ALA-1>bof#
```

The following command saves the system configuration:

**CLI Syntax:** `admin# save [file-url] [detail] [index]`

**Example:**

```
A:ALA-1# admin save cf1:\test123.cfg
Saving config.# Saved to cf1:\test123.cfg
... complete
A:ALA-1#
```

**NOTE:** If the `persist` option is enabled and the `admin save file-url` command is executed with an FTP path used as the `file-url` parameter, two FTP sessions simultaneously open to the FTP server. The FTP server must be configured to allow multiple sessions from the same login, otherwise, the configuration and index files will not be saved correctly.
Deleting BOF Parameters

You can delete specific BOF parameters. The `no` form of these commands removes the parameter from configuration. The changes remain in effect only during the current power cycle unless a `save` command is executed. Changes are lost if the system is powered down or the router is rebooted without saving.

Deleting the BOF file and then rebooting, causes the system to enter auto mode.

Use the following CLI syntax to save and remove BOF configuration parameters:

**CLI Syntax:**

```
bof# save [cflash-id]
```

**Example:**

```
A:ALA-1# bof
A:ALA-1>bof# save cf1:
A:ALA-1>bof#
```

The following is the CLI Syntax for 7210 SAS-E:

**CLI Syntax:**

```
*A:7210>bof#
 no console-speed
 no dns-domain
 no eth-mgmt-address
 no eth-mgmt-autoneg
 no eth-mgmt-disable
 eth-mgmt-duplex
 no eth-mgmt-route
 eth-mgmt-speed
 persist
 no ping-address
 no primary-config
 no primary-dns
 no primary-image
 save
 no secondary-config
 no secondary-dns
 no secondary-image
 no tertiary-config
 no tertiary-dns
 no tertiary-image
 no uplinkA-address
 no uplinkA-port
 no uplinkA-route
 no uplinkA-vlan
 no uplinkB-address
 no uplinkB-port
```
The following is the CLI Syntax for 7210 SAS-D:

**CLI Syntax:**  
*A:7210>bof#*

no console-speed  
no dns-domain  
persist  
no ping-address  
no primary-config  
no primary-dns  
no primary-image  
save  
no secondary-config  
no secondary-dns  
no secondary-image  
no tertiary-config  
no tertiary-dns  
no tertiary-image  
no uplinkA-address  
no uplinkA-port  
no uplinkA-route  
no uplinkA-vlan  
no uplinkB-address  
no uplinkB-port  
no uplinkB-route  
no uplinkB-vlan  
wait
Saving a Configuration to a Different Filename

Save the current configuration with a unique filename to have additional backup copies and to edit parameters with a text editor. You can save your current configuration to an ASCII file.

Use either of the following CLI syntax to save a configuration to a different location:

**CLI Syntax:**

```plaintext
bof# save [cflash-id]
```

**Example:**

```
A:ALA-1# bof
A:ALA-1>bof# save cfl:
A:ALA-1>bof#
```

or

**CLI Syntax:**

```plaintext
admin# save [file-url] [detail] [index]
```

**Example:**

```
A:ALA-1>admin# save cfl:\testABC.cfg
Saving config.# Saved to cfl:\testABC.cfg
... complete
A:ALA-1#
```

Rebooting

When an `admin>reboot` command is issued, the system reboots. Changes are lost unless the configuration is saved. Use the `admin>save file-url` command to save the current configuration. The user is prompted to confirm the reboot operation. If the `now` option is not specified, the user is prompted to confirm the reboot operation.

Use the following CLI syntax to reboot:

**CLI Syntax:**

```plaintext
admin# reboot [auto-init][now]
```

**Example:**

```
A:ALA-1>admin# reboot
A:DutA>admin# reboot

Are you sure you want to reboot (y/n)? y
```

Resetting...OK

Alcatel-Lucent 7210 Boot ROM. Copyright 2000-2009 Alcatel-Lucent. All rights reserved. All use is subject to applicable license agreements. Running POST tests from ROM Testing ROM load area...done Relocating code...Jumping to RAM
When an **admin reboot auto-init** command is issued, the system resets the existing BOF file and reboots. The system startup process after the **admin reboot auto-init** command is executed is the same as the first time system boot as described in **System Initialization on page 102**.

**NOTE:** Since the BOF is reset, the system may not boot up with the last saved system configuration unless the new BOF file also uses the same configuration file. If it is required that the system boot up with the last saved system configuration, it is recommended to use the **admin>save file-url** command to save the current system configuration and modify the BOF to use this.

Use the following CLI to reset the BOF and reboot:

**CLI Syntax:**
```
admin# reboot auto-init [now]
```

Example: `*A:ALA-1# admin reboot auto-init

WARNING: Configuration and/or Boot options may have changed since the last save.
Are you sure you want to reset the bof and reboot (y/n)? Y
Resetting...OK
```

Alcatel-Lucent 7210 Boot ROM. Copyright 2000-2008 Alcatel-Lucent.
All rights reserved. All use is subject to applicable license agreements.
BOF Command Reference

Command Hierarchies

Configuration Commands

bof
 — bof-password
 — [no] console-disabled
 — console-speed baud-rate
 — no console-speed
 — dns-domain dns-name
 — no dns-domain
 — [no] eth-mgmt-address ip-prefix/ip-prefix-length (Not supported on 7210 SAS-D)
 — [no] eth-mgmt-autoneg (Not supported on 7210 SAS-D)
 — [no] eth-mgmt-address (Not supported on 7210 SAS-D)
 — [no] eth-mgmt-disabled (Not supported on 7210 SAS-D)
 — eth-mgmt-duplex {full | half} (Not supported on 7210 SAS-D)
 — [no] eth-mgmt-route ip-prefix/ip-prefix-length next-hop ip-address (Not supported on 7210 SAS-D)
 — eth-mgmt-speed speed (Not supported on 7210 SAS-D)
 — persist {on | off}
 — ping-address ip-address
 — no ping-address
 — primary-config file-url
 — no primary-config
 — primary-dns ip-address
 — no primary-dns
 — primary-image file-url
 — no primary-image
 — save [{flash-id}]
 — secondary-config file-url
 — no secondary-config
 — [no] secondary-dns ip-address
 — secondary-image file-url
 — no secondary-image
 — tertiary-config file-url
 — no tertiary-config
 — tertiary-dns ip-address
 — no tertiary-dns
 — tertiary-image file-url
 — no tertiary-image
 — wait seconds
 — uplinkA-address ip-address/mask
 — no uplinkA-address
 — uplinkA-port port-id
 — no uplinkA-port
 — [no] uplinkA-route ip-address/mask next-hop ip-address
 — uplinkA-vlan 0..4094
 — no uplinkA-vlan
 — uplinkB-address ip-address/mask
 — no uplinkB-address
BOF Command Reference

— uplinkB-port port-id
— no uplinkB-port
— [no] uplinkB-route ip-address/mask next-hop ip-address
— uplinkB-vlan 0..4094
— no uplinkB-vlan
— wait seconds

Show Commands

show
 — bof [cflash-id | booted]
 — boot-messages
Configuration Commands

File Management Commands

bof

Syntax

```plaintext
bof
```

Context

```plaintext
<ROOT>
```

Description

This command creates or edits the boot option file (BOF) for the specified local storage device.

A BOF file specifies where the system searches for runtime images, configuration files, and other operational parameters during system initialization.

BOF parameters can be modified. Changes can be saved to a specified compact flash. The BOF must be located in the root directory of either an internal or external compact flash local to the system and have the mandatory filename of `bof.cfg`.

When modifications are made to in-memory parameters that are currently in use or operating, the changes are effective immediately. For example, if the console-speed is changed, the change takes place immediately.

Only one entry of the BOF configuration command statement can be saved once the statement has been found to be syntactically correct.

No default boot option file exists.

Default

```plaintext
none
```

save

Syntax

```plaintext
save [cflash-id]
```

Context

```plaintext
bof
```

Description

This command uses the boot option parameters currently in memory and writes them from the boot option file to the compact flash.

The BOF is located in the root directory of the internal compact flash drive local to the system and have the mandatory filename of `bof.cfg`.

Command usage:

- `bof save` — Saves the BOF to the flash drive CF1:
- `bof save cf1:` — Saves the BOF to cf1:

Default

Saves must be explicitly executed. The BOF is saved to cf1: if a location is not specified.
Parameters

\textit{flash-id} — The compact flash ID where the \textit{bof.cfg} is to be saved.

\textbf{Values} \hspace{1cm} \textit{cf1}

\textbf{Default} \hspace{1cm} \textit{cf1}
BOF Processing Control

wait

Syntax
wait seconds

Context
bof

Description
This command configures a pause, in seconds, at the start of the boot process which allows system initialization to be interrupted at the console.

When system initialization is interrupted the operator is allowed to manually override the parameters defined in the boot option file (BOF).

Only one wait command can be defined in the BOF.

Default
3

Parameters
seconds — The time to pause at the start of the boot process, in seconds.

Values
1 — 10
Console Port Configuration

bof-password

Syntax
```
bof-password password
```

Context
bof

Description
This command allows the user to configure a BOF password. The user will have to provide this password to edit the BOF parameters in the boot loader.

It also implements a mechanism for password recovery, if the user forgets the password. If the user forgets the password, it can be reset to factory default. As a security measure, to prevent a malicious user for using it gain access to the configuration files, when the password is reset to default, the system also resets the flash to factory defaults (that is, it removes all the files from the flash except for the boot image file (`cf1:\boot.tim`) and Timos image file (`cf1:\both.tim`)) and reboots the node with the factory default settings. After boot up, the user needs to setup the box using the same steps as used to boot the box the first time when it was received from the factory. User can use the factory default password ‘password’ to edit the BOF parameters after the boot up subsequent to reboot and choose to change the password again.

NOTE: It is highly recommended that user does not rename `cf1:\boot.tim` and `cf1:\both.tim`, if the system needs to retain them during the password recovery procedure. Additionally, it is highly recommended that the user takes a backup of all the image files, configuration files and other data.

Default
The factory default password is ‘password’

Parameters

```
password — Specifies the bof password.
```

Values
Maximum of 20 characters.

console-disabled

Syntax
```
[no] console-disabled
```

Context
bof

Description
This command allows the user to enable or disable the serial port console for use.

In remote deployments this command provides additional security mechanism for the user. The console can be disabled to prevent unauthorized access to the system.

Note: Console is always available for use when the device is booting up. This command is applicable only after the Timos image [SROS] (that is the both.tim) is up and running successfully. If the user executes this command in the BOF CLI context, the command takes effect only during the next boot. A BOF Save operation must be performed after executing the console-disabled command.

The **no** form of the command enables the console. This is the default value.

Default
no console-disabled
console-speed

Syntax
```
console-speed baud-rate
no console-speed
```

Context
bof

Description
This command configures the console port baud rate.

When this command is issued while editing the BOF file used for the most recent boot, both the BOF file and the active configuration are changed immediately.

The *no* form of the command reverts to the default value.

Default
115200 — console configured for 115,200 bps operation

Parameters
`baud-rate` — The console port baud rate, expressed as a decimal integer.

Values
9600, 19200, 38400, 57600, 115200
Image and Configuration Management

persist

Syntax persist {on | off}
Context bof
Description This command specifies whether the system will preserve system indexes when a save command is executed. During a subsequent boot, the index file is read along with the configuration file. As a result, a number of system indexes are preserved between reboots, including the interface index, etc. This reduces resynchronizations of the Network Management System (NMS) with the affected network element.

In the event that persist is on and the reboot with the appropriate index file fails, SNMP is operationally shut down to prevent the management system from accessing and possibly synchronizing with a partially booted or incomplete network element. To enable SNMP access, enter the config>system>snmp>no shutdown command.

If persist is enabled and the admin save <url> command is executed with an FTP path used as the <url> parameter, two FTP sessions simultaneously open to the FTP server. The FTP server must be configured to allow multiple sessions from the same login, otherwise, the configuration and index files will not be saved correctly.

Notes:

• Persistency files (.ndx) are saved on the same disk as the configuration files and the image files.

• When an operator sets the location for the persistency file, the system will check to ensure that the disk has enough free space. If this there is not enough free space, the persistency will not become active and a trap will be generated. Then, it is up to the operator to free adequate disk space. In the meantime, the system will perform a space availability check every 30 seconds. As soon as the space is available the persistency will become active on the next (30 second) check.

Default off
Parameters on — Create when saving the configuration.

off — Disables the system index saves between reboots.
primary-config

Syntax
primary-config file-url
no primary-config

Context bof

Description This command specifies the name and location of the primary configuration file.

The system attempts to use the configuration specified in primary-config. If the specified file cannot be located, the system automatically attempts to obtain the configuration from the location specified in secondary-config and then the tertiary-config.

Note that if an error in the configuration file is encountered, the boot process aborts.

The no form of the command removes the primary-config configuration.

Default none

Parameters file-url — The primary configuration file location, expressed as a file URL.

Values
file-url [local-url | remote-url] (up to 180 characters)
local-url [<cflash-id> | <usb-flash-id>][file-path]
remote-url [{ftp:// | tftp://} login:pswd@remote-locn][file-path]
cflash-id cf1:
usb-flash-id uf1:

primary-image

Syntax
primary-image file-url
no primary-image

Context bof

Description This command specifies the primary directory location for runtime image file loading.

The system attempts to load all runtime image files configured in the primary-image first. If this fails, the system attempts to load the runtime images from the location configured in the secondary-image. If the secondary image load fails, the tertiary image specified in tertiary-image is used.

The no form of the command removes the primary-image configuration.

Default none

Parameters file-url — The location-url can be either local (this flash) or a remote FTP server.

Values
file-url [local-url | remote-url] (up to 180 characters)
local-url [<cflash-id> | <usb-flash-id>][file-path]
remote-url [{ftp:// | tftp://} login:pswd@remote-locn][file-path]
cflash-id cf1:
usb-flash-id uf1:
secondary-config

Syntax
```plaintext
secondary-config file-url
no secondary-config
```

Context bof

Description
This command specifies the name and location of the secondary configuration file.

The system attempts to use the configuration as specified in `secondary-config` if the primary config cannot be located. If the `secondary-config` file cannot be located, the system attempts to obtain the configuration from the location specified in the `tertiary-config`.

Note that if an error in the configuration file is encountered, the boot process aborts.

The no form of the command removes the `secondary-config` configuration.

Default none

Parameters
- **file-url** — The secondary configuration file location, expressed as a file URL.

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>file-url</td>
</tr>
<tr>
<td>local-url [local-url</td>
</tr>
<tr>
<td>remote-url</td>
</tr>
<tr>
<td>login:pswd@remote-locn/</td>
</tr>
<tr>
<td>cflash-id cf1:</td>
</tr>
<tr>
<td>usb-flash-id uf1:</td>
</tr>
</tbody>
</table>

secondary-image

Syntax
```plaintext
secondary-image file-url
no secondary-image
```

Context bof

Description
This command specifies the secondary directory location for runtime image file loading.

The system attempts to load all runtime image files configured in the `primary-image` first. If this fails, the system attempts to load the runtime images from the location configured in the `secondary-image`. If the secondary image load fails, the tertiary image specified in `tertiary-image` is used.

The no form of the command removes the `secondary-image` configuration.

Default none

Parameters
- **file-url** — The file-url can be either local (this local flash) or a remote FTP server.

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>file-url</td>
</tr>
<tr>
<td>local-url [<cflash-id/></td>
</tr>
<tr>
<td>remote-url</td>
</tr>
<tr>
<td>login:pswd@remote-locn/</td>
</tr>
<tr>
<td>cflash-id cf1:</td>
</tr>
<tr>
<td>usb-flash-id uf1:</td>
</tr>
</tbody>
</table>
tertiary-config

Syntax
```plaintext
tertiary-config file-url
no tertiary-config
```

Context
bof

Description
This command specifies the name and location of the tertiary configuration file.

The system attempts to use the configuration specified in `tertiary-config` if both the primary and secondary config files cannot be located. If this file cannot be located, the system boots with the factory default configuration.

Note that if an error in the configuration file is encountered, the boot process aborts.

The `no` form of the command removes the `tertiary-config` configuration.

Default
none

Parameters
`file-url` — The tertiary configuration file location, expressed as a file URL.

Values
- `local-url`
  ```plaintext
  [<cflash-id/> | <usb-flash-id>][file-path]
  ```
- `cflash-id`
  ```plaintext
  cf1:
  ```
- `usb-flash-id`
  ```plaintext
  uf1:
  ```
- `remote-url`
  ```plaintext
  [{ftp://|tftp://} login:pswd@remote-locn]/[file-path][file-url]
  ```

tertiary-image

Syntax
```plaintext
tertiary-image file-url
no tertiary-image
```

Context
bof

Description
This command specifies the tertiary directory location for runtime image file loading.

The system attempts to load all runtime image files configured in the `primary-image` first. If this fails, the system attempts to load the runtime images from the location configured in the `secondary-image`. If the secondary image load fails, the tertiary image specified in `tertiary-image` is used.

The `no` form of the command removes the `tertiary-image` configuration.

Default
none

Parameters
`file-url` — The location-url can be either local (this flash) or a remote FTP server.

Values
- `file-url`
  ```plaintext
  [local-url | remote-url] (up to 180 characters)
  ```
- `local-url`
  ```plaintext
  [<cflash-id/> | <usb-flash-id>][file-path]
  ```
- `remote-url`
  ```plaintext
  [{ftp://|tftp://} login:pswd@remote-locn]/[file-path]
  ```
- `cflash-id`
  ```plaintext
  cf1:
  ```
- `usb-flash-id`
  ```plaintext
  uf1:
  ```
ping-address

Syntax

```
ping-address ip-address
no ping-address
```

Context bof

Description This command specifies the IP address which would be used for ping-test after the system boots.

The no form of the command removes the ping-address configuration. Setting a value of 0 also removes the ping-address configuration.

Default none

Parameters

```
ip-address — Specifies an IPv4 ip-address in the form a.b.c.d, for example, 10.1.2.10.
```

uplinkA-address

Syntax

```
uplinkA-address ip-address/mask
no uplinkA-address
```

Context bof

Description This command configures the uplink-A address.

The no form of the command sets the uplinkA to use DHCP to get the IP and the show bof value reflects 0 for this parameter.

Parameters

```
ip-address — The IP address of the Boot Option File (BOF). This address must be unique within the subnet and specified in dotted decimal notation.

mask — The subnet mask length when the IP prefix is specified in CIDR notation. When the IP prefix is specified in CIDR notation, a forward slash (/) separates the ip-addr from the mask-length parameter. The mask length parameter indicates the number of bits used for the network portion of the IP address; the remainder of the IP address is used to determine the host portion of the IP address.
```

Values

```
1 — 30
```

uplinkB-address

Syntax

```
uplinkB-address ip-address/mask
no uplinkB-address
```

Context bof

Description This command configures the uplink-B address.

The no form of the command sets the uplinkB to use DHCP to get the IP and the show bof value reflects 0 for this parameter.
Parameters

- **ip-address** — The IP address of the Boot Option File (BOF). This address must be unique within the subnet and specified in dotted decimal notation.

- **mask** — The subnet mask length when the IP prefix is specified in CIDR notation. When the IP prefix is specified in CIDR notation, a forward slash (/) separates the `ip-addr` from the `mask-length` parameter. The mask length parameter indicates the number of bits used for the network portion of the IP address; the remainder of the IP address is used to determine the host portion of the IP address.

Values

1 — 30

uplinkA-port

Syntax

```text
uplinkA-port port-id
no uplinkA-port
```

Context

`bof`

Description

This command configures the primary port to be used for boot up. The `no` form of the command removes all the uplinkA parameters from the BOF.

Parameters

- **port-id** — Specifies the primary port to be used for boot up in the `slot/mda/port` format.

uplinkB-port

Syntax

```text
uplinkB-port port-id
no uplinkB-port
```

Context

`bof`

Description

This command configures the secondary port to be used for boot up. The `no` form of the command removes all the uplinkB parameters from the BOF.

Parameters

- **port-id** — Specifies the secondary port to be used for boot up in the `slot/mda/port` format.

uplinkA-route

Syntax

```text
[no] uplinkA-route ip-address/mask next-hop ip-address
```

Context

`bof`

Description

This command configures an uplink-A static route.

Parameters

- **ip-address** — The IP address of the Boot Option File (BOF). This address must be unique within the subnet and specified in dotted decimal notation.
mask — The subnet mask length when the IP prefix is specified in CIDR notation. When the IP prefix is specified in CIDR notation, a forward slash (/) separates the ip-addr from the mask-length parameter. The mask length parameter indicates the number of bits used for the network portion of the IP address; the remainder of the IP address is used to determine the host portion of the IP address.

Values 0 — 32

next-hop ip-address — The next hop IP address used to reach the destination.

uplinkB-route

Syntax [no] uplinkB-route ip-address/mask next-hop ip-address

Context bof

Description This command configures an uplink-B static route.

Parameters ip-address — The IP address of the Boot Option File (BOF). This address must be unique within the subnet and specified in dotted decimal notation.

mask — The subnet mask length when the IP prefix is specified in CIDR notation. When the IP prefix is specified in CIDR notation, a forward slash (/) separates the ip-addr from the mask-length parameter. The mask length parameter indicates the number of bits used for the network portion of the IP address; the remainder of the IP address is used to determine the host portion of the IP address.

Values 0 — 32

next-hop ip-address — The next hop IP address used to reach the destination.

uplinkA-vlan

Syntax uplinkA-vlan 0..4094

no uplinkA-vlan

Context bof

Description This command specifies a VLAN ID to be used on uplink-A.

The no form of the command is used to send untagged packets on uplink-A.

uplinkB-vlan

Syntax uplinkB-vlan 0..4094

no uplinkA-vlan

Context bof

Description This command specifies a VLAN ID to be used on uplink-B.
The no form of the command is used to send untagged packets on uplink-B.

eth-mgmt-address

Note: This command is not supported on 7210 SAS-D devices.

Syntax

```
[no] eth-mgmt-address ip-prefix\ip-prefix-length
```

Context

bof

Description

This command assigns an IP address to the management Ethernet port in the running configuration and the Boot Option File (BOF). Deleting a BOF address entry is not allowed from a telnet session. The no form of the command deletes the IP address assigned to the Ethernet port.

Default

no eth-mgmt-address — There are no IP addresses assigned to the out-of-band Ethernet management ports.

Parameters

`ip-prefix\ip-prefix-length` — The IP address in dotted decimal notation.

Values

ipv4-prefix a.b.c.d (host bits must be 0)
ipv6-prefix - x:x:x:x:x:x:x (eight 16-bit pieces)
 x:x:x:x:x:x:x:x
 x - [0..FFFF]H
 d - [0..255]D

Values

ipv4-prefix-length 0 — 32
ipv6-prefix-length 0 — 128

eth-mgmt-autoneg

Note: This command is not supported on 7210 SAS-D devices.

Syntax

```
[no] eth-mgmt-autoneg
```

Context

bof

Description

This command enables speed and duplex Auto-negotiation on the management Ethernet port in the running configuration and the Boot Option File (BOF).

The no form of the command disables the Auto-negotiate feature on this port.

Default

eth-mgmt-autoneg — Auto-negotiation is enabled on the management Ethernet port.

eth-mgmt-disabled

Note: This command is not supported on 7210 SAS-D devices.
File Management Commands

Syntax

```
[no] eth-mgmt-disabled
```

Context

bof

Description

This command allows the user to enable or disable the out-of-band management Ethernet port for use during boot up.

The **no** form of the command enables the port.

Default

`eth-mgmt-disabled`

eth-mgmt-duplex

Note: This command is not supported on 7210 SAS-D devices.

Syntax

```
eth-mgmt-duplex {full | half}
```

Context

bof

Description

This command configures the duplex mode of the management Ethernet port when Auto-negotiation is disabled in the running configuration and the Boot Option File (BOF).

This configuration command allows for the configuration of the duplex mode of the Ethernet port. If the port is configured to Auto-negotiate, this parameter will be ignored.

Default

`eth-mgmt-duplex full` — Full duplex operation.

Parameters

- `full` — Sets the link to full duplex mode.
- `half` — Sets the link to half duplex mode.

eth-mgmt-route

Note: This command is not supported on 7210 SAS-D devices.

Syntax

```
[no] eth-mgmt-route ip-prefix/ip-prefix-length next-hop ip-address
```

Context

bof

Description

This command creates a static route entry for the management Ethernet port in the running configuration and the Boot Option File (BOF).

This command allows manual configuration of static routing table entries. These static routes are only used by traffic generated by the Ethernet port. To reduce configuration, manual address aggregation should be applied where possible.

A static default (0.0.0.0 or 0) route cannot be configured on the management Ethernet port. A maximum of ten static routes can be configured on the management Ethernet port.

The **no** form of the command deletes the static route.

Default

No default routes are configured.

Parameters

- `ip-prefix/ip-prefix-length` — The destination address of the static route in dotted decimal notation.
100 — The destination address of the static route in dotted decimal notation.

Values
- ip-prefix|ip-prefix-length: ipv4-prefix a.b.c.d (host bits must be zero) ipv4-prefix-length 0 — 32
- ipv6-prefix - x:x:x:x:x:x:x (eight 16-bit pieces)
 - x - [0..FFFF]H
 - d - [0..255]D

Values
- Values mask — The subnet mask, expressed as an integer or in dotted decimal notation. 0 — 32 (mask length), 128.0.0.0 — 255.255.255.255 (dotted decimal)
- ipv6-prefix-length - 0 — 128

next-hop ip-address — The next hop IP address used to reach the destination.

Values
- ipv4-address - a.b.c.d
- ipv6-address - x:x:x:x:x:x:x (eight 16-bit pieces)
 - x - [0..FFFF]H
 - d - [0..255]D

The destination address of the static route in dotted decimal notation.

eth-mgmt-speed

Note: This command is not supported on 7210 SAS-D devices.

Syntax

```
speed speed
```

Context

bof

Description

This command configures the speed for the management Ethernet port when Auto-negotiation is disabled in the running configuration and the Boot Option File (BOF).

If the port is configured to Auto-negotiate, this parameter is ignored.

Default

```
speed 100 — 100 M/bps operation.
```

Parameters

- 10 — Sets the link to 10 M/bps speed.
- 100 — Sets the link to 100 M/bps speed.
DNS Configuration Commands

dns-domain

Syntax

```
dns-domain dns-name
no dns-domain
```

Context bof

Description

This command configures the domain name used when performing DNS address resolution. This is a required parameter if DNS address resolution is required. Only a single domain name can be configured. If multiple domain statements are configured, the last one encountered is used. The no form of the command removes the domain name from the configuration.

Default no dns-domain — No DNS domain name is configured.

Parameters

```
dns-name — Specifies the DNS domain name up to 32 characters in length.
```

primary-dns

Syntax

```
primary-dns ip-address
no primary-dns
```

Context bof

Description

This command configures the primary DNS server used for DNS name resolution. DNS name resolution can be used when executing ping, traceroute, and service-ping, and also when defining file URLs. DNS name resolution is not supported when DNS names are embedded in configuration files. The no form of the command removes the primary DNS server from the configuration.

Default no primary-dns — No primary DNS server is configured.

Parameters

```
ip-address — The IP address of the primary DNS server.
```

Values

```
ipv4-address - a.b.c.d
ipv6-address - x:x:x:x:x (eight 16-bit pieces)
             - x:x:x:x:d.d.d
             - x - [0..FFFF]H
             - d - [0..255]D
```
secondary-dns

[no] secondary-dns ip-address

Context bof

Description This command configures the secondary DNS server for DNS name resolution. The secondary DNS server is used only if the primary DNS server does not respond.

DNS name resolution can be used when executing ping, traceroute, and service-ping, and also when defining file URLs. DNS name resolution is not supported when DNS names are embedded in configuration files.

The no form of the command removes the secondary DNS server from the configuration.

Default no secondary-dns — No secondary DNS server is configured.

Parameters ip-address — The IP address of the secondary DNS server.

Values ipv4-address - a.b.c.d
 ipv6-address - x:x:x:x:x:x:x:x (eight 16-bit pieces)
 x:x:x:x:d.d.d.d
 x - [0..FFFF]H
 d - [0..255]D

tertiary-dns

Syntax tertiary-dns ip-address
 no tertiary-dns

Context bof

Description This command configures the tertiary DNS server for DNS name resolution. The tertiary DNS server is used only if the primary DNS server and the secondary DNS server do not respond.

DNS name resolution can be used when executing ping, traceroute, and service-ping, and also when defining file URLs. DNS name resolution is not supported when DNS names are embedded in configuration files.

The no form of the command removes the tertiary DNS server from the configuration.

Default no tertiary-dns — No tertiary DNS server is configured.

Parameters ip-address — The IP address of the tertiary DNS server.

Values ipv4-address - a.b.c.d
 ipv6-address - x:x:x:x:x:x:x:x (eight 16-bit pieces)
 x:x:x:x:d.d.d.d
 x - [0..FFFF]H
 d - [0..255]D
Show Commands

bof

Syntax bof [cflash-id | booted]
Context show
Description This command displays the Boot Option File (BOF) executed on last system boot or on the specified device.

If no device is specified, the BOF used in the last system boot displays. If the BOF has been modified since the system boot, a message displays.

Parameters cflash-id. The cflash directory name.

Values cf1:

booted — Displays the boot option file used to boot the system.

Output Show BOF Fields — The following table describes BOF output fields.

Table 15: Show BOF Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>primary-image</td>
<td>The primary location of the directory that contains the runtime images of both CPM and IOM.</td>
</tr>
<tr>
<td>primary-config</td>
<td>The primary location of the file that contains the configuration.</td>
</tr>
<tr>
<td>primary-dns</td>
<td>The primary DNS server for resolution of host names to IP addresses.</td>
</tr>
<tr>
<td>secondary-image</td>
<td>The secondary location of the directory that contains the runtime images of both CPM and IOM.</td>
</tr>
<tr>
<td>secondary-config</td>
<td>The secondary location of the file that contains the configuration.</td>
</tr>
<tr>
<td>secondary-dns</td>
<td>The secondary DNS server for resolution of host names to IP addresses.</td>
</tr>
<tr>
<td>tertiary-image</td>
<td>The tertiary location of the directory that contains the runtime images of both CPM and IOM.</td>
</tr>
<tr>
<td>tertiary-config</td>
<td>The tertiary location of the file that contains the configuration.</td>
</tr>
<tr>
<td>tertiary-dns</td>
<td>The tertiary DNS server for resolution of host names to IP addresses.</td>
</tr>
<tr>
<td>persist</td>
<td>on — Persistent indexes between system reboots is enabled.</td>
</tr>
<tr>
<td></td>
<td>off — Persistent indexes between system reboots is disabled.</td>
</tr>
<tr>
<td>wait</td>
<td>The time configured for the boot to pause while waiting for console input.</td>
</tr>
</tbody>
</table>
Table 15: Show BOF Output Fields (Continued)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>autonegotiate</td>
<td>No autonegotiate — Autonegotiate not enabled.</td>
</tr>
<tr>
<td></td>
<td>autonegotiate — Autonegotiate is enabled.</td>
</tr>
<tr>
<td>console speed</td>
<td>The console port baud rate.</td>
</tr>
<tr>
<td>ping-address</td>
<td>The IPv4 IP address to be used for ping-test after auto-init.</td>
</tr>
<tr>
<td>dns domain</td>
<td>The domain name used when performing DNS address resolution.</td>
</tr>
<tr>
<td>uplinkA-address</td>
<td>Displays the Uplink-A IP address.</td>
</tr>
<tr>
<td>uplinkA-port</td>
<td>Displays the primary port to be used for auto-boot.</td>
</tr>
<tr>
<td>uplinkA-route</td>
<td>Displays the static route associated with Uplink-A.</td>
</tr>
<tr>
<td>uplinkA-vlan</td>
<td>Displays the VLAN ID to be used on Uplink-A.</td>
</tr>
<tr>
<td>uplinkB-address</td>
<td>Displays the Uplink-B IP address.</td>
</tr>
<tr>
<td>uplinkB-port</td>
<td>Displays the secondary port to be used for auto-boot.</td>
</tr>
<tr>
<td>uplinkB-route</td>
<td>Displays the static route associated with Uplink-B.</td>
</tr>
<tr>
<td>uplinkB-vlan</td>
<td>Displays the VLAN ID to be used on Uplink-B.</td>
</tr>
<tr>
<td>console-disabled</td>
<td>Displays the status of serial port console.</td>
</tr>
</tbody>
</table>

Table 16: Show BOF Output Fields (supported only on 7210 SAS-E)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eth-mgmt-disabled</td>
<td>Displays if Ethernet management is disabled.</td>
</tr>
<tr>
<td>eth-mgmt-address</td>
<td>Displays the Ethernet management address.</td>
</tr>
<tr>
<td>eth-mgmt-route</td>
<td>Displays the Ethernet Management route.</td>
</tr>
<tr>
<td>eth-mgmt-autoneg</td>
<td>Displays if the auto-negotiate is enabled.</td>
</tr>
<tr>
<td>eth-mgmt-duplex</td>
<td>Displays the mode of the Ethernet management port.</td>
</tr>
<tr>
<td>eth-mgmt-speed</td>
<td>Displays the Ethernet management speed.</td>
</tr>
</tbody>
</table>

Sample Output

*A:ALA# show bof cf1:

BOF on cf1:
primary-image ftp://*:010.135.16.90/./images/auto-boot/solution/bothx.tim
secondary-image ftp://*:010.135.16.90/./images/auto-boot/solution/bothx.tim
tertiary-image ftp://*:010.135.16.90/./images/auto-boot/solution/both.tim
primary-dns 135.254.244.204
dns-domain in.lucent.com

ping 10.135.16.90

#uplinkA Port Settings:
 uplinkA-port 1/1/1
 uplinkA-address 192.168.1.11/24
 uplinkA-vlan 0
 uplinkA-route 10.135.0.0/16 next-hop 192.168.1.1

#uplinkB Port Settings:
 uplinkB-port 1/1/2
 uplinkB-address 0
 uplinkB-vlan 0

#System Settings:
 wait 3
 persist on
 console-speed 115200

*A:ALA# show bof booted
*A:ALA# show bof booted

System booted with BOF

primary-image ftp://*:010.135.16.90/./images/auto-boot/solution/bothx.tim
secondary-image ftp://*:010.135.16.90/./images/auto-boot/solution/bothx.tim
tertiary-image ftp://*:010.135.16.90/./images/auto-boot/solution/both.tim
primary-dns 135.254.244.204
dns-domain in.lucent.com

*A:ALA#
Show Commands

boot-messages

Syntax
```boot-messages```

**Context**  
```show```

Description
This command displays boot messages generated during the last system boot.

Output
Show Boot Messages Fields — The following output shows boot message output fields.

Sample Output

```
===============================================================================
cf1:/bootlog.txt
===============================================================================
Bootlog started for Version V-0.0.I317
Build V-0.0.I317 bootrom/mpc 7xxx
Built on Tue Jan 6 02:23:14 IST 2009 by panosbld in /panosbld/ws/panos/main

?Attempting to load from file cf1:/boot.tim
Version L-0.0.I312, Fri Jan 2 04:26:32 IST 2009 by panosbld in /panosbld/ws/panos/main
text:(3002475-->12623392) + data:(550940-->2414128)
Starting at 0xb000000...

Total Memory: 512MB  Chassis Type: sas  Card Type: badami_7210
TiMOS-L-0.0.I312 boot/mpc ALCATEL SAS-E 7210 Copyright (c) 2000-2009 Alcatel-Lucent.
All rights reserved. All use subject to applicable license agreements.
Built on Fri Jan 2 04:26:32 IST 2009 by panosbld in /panosbld/ws/panos/main

TiMOS BOOT LOADER
Extended checks enabled with overhead of 36B
Time from clock is THU JAN 08 16:04:05 2009 UTC
Switching serial output to sync mode... done

Looking for cf1:/bof.cfg ... OK, reading

Contents of Boot Options File on cf1:
    primary-image ftp://*:0@192.168.170.22/import/panos_nightly_builds/1.0/B1-12/STU-sultan/both.tim
    primary-config cf1:\config.cfg
#uplinkA Port Settings:
    uplinkA-port   1/1/13
    uplinkA-address 10.135.17.246/24
    uplinkA-vlan   null
    uplinkA-route  10.135.0.0/16 next-hop 10.135.17.1
    uplinkA-route  192.168.0.0/16 next-hop 10.135.17.1
#uplinkB Port Settings:
    uplinkB-port   1/1/2
    uplinkB-address 0
    uplinkB-vlan   0
#System Settings:
    wait   3
    persist off
    console-speed 115200

Hit a key within 1 second to change boot parms...
```
Configuring Network with uplinkA Port Setting.....
Primary config file present at: cf1:\config.cfg

Primary image location: ftp://*:*@192.168.170.22/import/panos_nightly Builds/1.0/B1-12/STU-sultan/both.tim
Initializing uplinkA port using IP addr 10.135.17.246.
Loading image ftp://*:*@192.168.170.22/import/panos_nightly Builds/1.0/B1-12/STU-sultan/both.tim
Version B-1.0.B1-12, Wed Jan 7 00:58:35 IST 2009 by builder in /builder/ws/panos/main
text:(27022791-->84574868) + data:(1921023-->10720420)
Executing TiMOS image at 0x100000

Total Memory: 512MB Chassis Type: sas Card Type: badami_7210
TiMOS-B-1.0.B1-12 both/mpc ALCATEL 7210 Copyright (c) 2000-2009 Alcatel-Lucent.
All rights reserved. All use subject to applicable license agreements.
Built on Wed Jan 7 00:58:35 IST 2009 by builder in /builder/ws/panos/main

Time from clock is THU JAN 08 16:05:20 2009 UTC

Attempting to exec primary configuration file:
 'cf1:\config.cfg' ...
System Configuration
System Security Configuration
Log Configuration
System Security Cpm Hw Filters Configuration
QoS Slope and Queue Policies Configuration
Port Scheduler Policies Configuration
Card Configuration
Port Configuration
Management Router Configuration
Router (Network Side) Configuration
Static Route Configuration
Service Configuration
Router (Service Side) Configuration
Executed 234 lines in 0.1 seconds from file cf1:\config.cfg

INFO: CLI #1008 The SNMP daemon is disabled. To enable SNMP, execute the command 'config>system>snmp no shutdown'.
TiMOS-B-1.0.B1-12 both/mpc ALCATEL SAS-E 7210 Copyright (c) 2000-2008 Alcatel-Lucent.
All rights reserved. All use subject to applicable license agreements.
Built on Wed Jan 7 00:58:35 IST 2009 by builder in /builder/ws/panos/main

Login:
Show Commands
In This Chapter

This chapter provides information about configuring basic system management parameters.

Topics in this chapter include:

- **System Management Parameters on page 168**
 - System Information on page 168
 - System Name on page 168
 - System Contact on page 168
 - System Location on page 169
 - System Coordinates on page 169
 - Naming Objects on page 169
 - Naming Objects on page 169
 - System Time on page 171
 - Time Zones on page 171
 - Network Time Protocol (NTP) on page 173
 - SNTP Time Synchronization on page 174
 - CRON on page 175
- **High Availability on page 176**
 - HA Features on page 176
 - HA Features on page 176
 - Redundancy on page 176
System Management Parameters

System management commands allow you to configure basic system management functions such as the system name, the router’s location and coordinates, and CLLI code as well as time zones, Network Time Protocol (NTP), Simple Network Time Protocol (SNTP) properties, CRON and synchronization properties.

System Information

System information components include:

- System Name on page 168
- System Contact on page 168
- System Location on page 169
- System Coordinates on page 169
- Naming Objects on page 169

System Name

The system name is the MIB II (RFC 1907, Management Information Base for Version 2 of the Simple Network Management Protocol (SNMPv2)) sysName object. By convention, this text string is the node’s fully-qualified domain name. The system name can be any ASCII printable text string of up to 32 characters.

System Contact

The system contact is the MIB II sysContact object. By convention, this text string is a textual identification of the contact person for this managed node, together with information on how to contact this person. The system contact can be any ASCII printable text string of up to 80 characters.
System Location

The system location is the MIB II sysLocation object which is a text string conventionally used to describe the node’s physical location, for example, “Bldg MV-11, 1st Floor, Room 101”. The system location can be any ASCII printable text string of up to 80 characters.

System Coordinates

The system coordinates is the Alcatel-Lucent Chassis MIB tmnxChassisCoordinates object. This text string indicates the Global Positioning System (GPS) coordinates of the location of the chassis.

Two-dimensional GPS positioning offers latitude and longitude information as a four dimensional vector:

\[
\langle \text{direction, hours, minutes, seconds} \rangle
\]

where direction is one of the four basic values: N, S, W, E, hours ranges from 0 to 180 (for latitude) and 0 to 90 for longitude, and minutes and seconds range from 0 to 60.

<W, 122, 56, 89> is an example of longitude and <N, 85, 66, 43> is an example of latitude.

System coordinates can be expressed in different notations, examples include:

- N 45 58 23, W 34 56 12
- N37 37' 00 latitude, W122 22' 00 longitude
- N36*39.246' W121*40.121

The system coordinates can be any ASCII printable text string up to 80 characters.

Naming Objects

It is discouraged to configure named objects with a name that starts with “_tmnx_” and with “_” in general.
Common Language Location Identifier

A Common Language Location Identifier (CLLI) code string for the device is an 11-character standardized geographic identifier that uniquely identifies the geographic location of places and certain functional categories of equipment unique to the telecommunications industry. The CLLI code is stored in the Alcatel-Lucent Chassis MIB tmnxChassisCLLICode object.

The CLLI code can be any ASCII printable text string of up to 11 characters.
System Time

Routers are equipped with a real-time system clock for time keeping purposes. When set, the system clock always operates on Coordinated Universal Time (UTC), but the software has options for local time translation as well as system clock synchronization.

System time parameters include:

- Time Zones on page 171
- Network Time Protocol (NTP) on page 173
- SNTP Time Synchronization on page 174
- CRON on page 175

Time Zones

Setting a time zone in allows for times to be displayed in the local time rather than in UTC. The has both user-defined and system defined time zones.

A user-defined time zone has a user assigned name of up to four printable ASCII characters in length and unique from the system-defined time zones. For user-defined time zones, the offset from UTC is configured as well as any summer time adjustment for the time zone.

The system-defined time zones are listed in Table 17 which includes both time zones with and without summer time correction.

Table 17: System-defined Time Zones

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Time Zone Name</th>
<th>UTC Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GMT</td>
<td>Greenwich Mean Time</td>
<td>UTC</td>
</tr>
<tr>
<td>BST</td>
<td>British Summer Time</td>
<td>UTC +1</td>
</tr>
<tr>
<td>IST</td>
<td>Irish Summer Time</td>
<td>UTC +1*</td>
</tr>
<tr>
<td>WET</td>
<td>Western Europe Time</td>
<td>UTC</td>
</tr>
<tr>
<td>WEST</td>
<td>Western Europe Summer Time</td>
<td>UTC +1</td>
</tr>
<tr>
<td>CET</td>
<td>Central Europe Time</td>
<td>UTC +1</td>
</tr>
<tr>
<td>CEST</td>
<td>Central Europe Summer Time</td>
<td>UTC +2</td>
</tr>
<tr>
<td>EET</td>
<td>Eastern Europe Time</td>
<td>UTC +2</td>
</tr>
<tr>
<td>EEST</td>
<td>Eastern Europe Summer Time</td>
<td>UTC +3</td>
</tr>
</tbody>
</table>
Table 17: System-defined Time Zones (Continued)

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Time Zone Name</th>
<th>UTC Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSK</td>
<td>Moscow Time</td>
<td>UTC +3</td>
</tr>
<tr>
<td>MSD</td>
<td>Moscow Summer Time</td>
<td>UTC +4</td>
</tr>
<tr>
<td>US and Canada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AST</td>
<td>Atlantic Standard Time</td>
<td>UTC -4</td>
</tr>
<tr>
<td>ADT</td>
<td>Atlantic Daylight Time</td>
<td>UTC -3</td>
</tr>
<tr>
<td>EST</td>
<td>Eastern Standard Time</td>
<td>UTC -5</td>
</tr>
<tr>
<td>EDT</td>
<td>Eastern Daylight Saving Time</td>
<td>UTC -4</td>
</tr>
<tr>
<td>ET</td>
<td>Eastern Time</td>
<td>Either as EST or EDT, depending on place and time of year</td>
</tr>
<tr>
<td>CST</td>
<td>Central Standard Time</td>
<td>UTC -6</td>
</tr>
<tr>
<td>CDT</td>
<td>Central Daylight Saving Time</td>
<td>UTC -5</td>
</tr>
<tr>
<td>CT</td>
<td>Central Time</td>
<td>Either as CST or CDT, depending on place and time of year</td>
</tr>
<tr>
<td>MST</td>
<td>Mountain Standard Time</td>
<td>UTC -7</td>
</tr>
<tr>
<td>MDT</td>
<td>Mountain Daylight Saving Time</td>
<td>UTC -6</td>
</tr>
<tr>
<td>MT</td>
<td>Mountain Time</td>
<td>Either as MST or MDT, depending on place and time of year</td>
</tr>
<tr>
<td>PST</td>
<td>Pacific Standard Time</td>
<td>UTC -8</td>
</tr>
<tr>
<td>PDT</td>
<td>Pacific Daylight Saving Time</td>
<td>UTC -7</td>
</tr>
<tr>
<td>PT</td>
<td>Pacific Time</td>
<td>Either as PST or PDT, depending on place and time of year</td>
</tr>
<tr>
<td>HST</td>
<td>Hawaiian Standard Time</td>
<td>UTC -10</td>
</tr>
<tr>
<td>AKST</td>
<td>Alaska Standard Time</td>
<td>UTC -9</td>
</tr>
<tr>
<td>AKDT</td>
<td>Alaska Standard Daylight Saving Time</td>
<td>UTC -8</td>
</tr>
<tr>
<td>Australia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AWST</td>
<td>Western Standard Time (e.g., Perth)</td>
<td>UTC +8</td>
</tr>
<tr>
<td>ACST</td>
<td>Central Standard Time (e.g., Darwin)</td>
<td>UTC +9.5</td>
</tr>
<tr>
<td>AEST</td>
<td>Eastern Standard/Summer Time (e.g., Canberra)</td>
<td>UTC +10</td>
</tr>
</tbody>
</table>
Network Time Protocol (NTP)

NTP is the Network Time Protocol defined in RFC 1305, *Network Time Protocol (Version 3)* Specification, Implementation and Analysis. It allows for the participating network nodes to keep time more accurately and more importantly they can maintain time in a more synchronized fashion between all participating network nodes.

NTP uses stratum levels to define the number of hops from a reference clock. The reference clock is considered to be a stratum-0 device that is assumed to be accurate with little or no delay. Stratum-0 servers cannot be used in a network. However, they can be directly connected to devices that operate as stratum-1 servers. A stratum-1 server is an NTP server with a directly-connected device that provides Coordinated Universal Time (UTC), such as a GPS or atomic clock. The 7210 SAS E device cannot act as stratum-1 servers but can act as stratum-2 devices as a network connection to an NTP server is required.

The higher stratum levels are separated from the stratum-1 server over a network path, thus, a stratum-2 server receives its time over a network link from a stratum-1 server. A stratum-3 server receives its time over a network link from a stratum-2 server.

The following NTP elements are supported:

- **Server mode** — In this mode, the node advertises the ability to act as a clock source for other network elements. In this mode, the node will, by default, transmit NTP packets in NTP version 4 mode.
- **Authentication keys** — Increased security support in carrier and other network has been implemented. Both DES and MD5 authentication are supported as well as multiple keys.
- **Operation in symmetric active mode** — This capability requires that NTP be synchronized with a specific node that is considered more trustworthy or accurate than other nodes carrying NTP in the system. This mode requires that a specific peer is set.
- **Broadcast modes** — When operating in this mode, the node will receive or send using a broadcast address.
- **Alert when NTP server is not available** — When none of the configured servers are reachable on the node, the system reverts to manual timekeeping and issues a critical alarm. When a server becomes available, a trap is issued indicating that standard operation has resumed.
- **NTP and SNTP** — If both NTP and SNTP are enabled on the node, then SNTP transitions to an operationally down state. If NTP is removed from the configuration or shut down, then SNTP resumes an operationally up state.
- **Gradual clock adjustment** — As several applications (such as Service Assurance Agent (SAA)) can use the clock, and if determined that a major (128 ms or more) adjustment needs to be performed, the adjustment is performed by programmatically stepping the clock. If a minor (less than 128 ms) adjustment must be performed, then the adjustment is performed by either speeding up or slowing down the clock.
• In order to avoid the generation of too many events/trap the NTP module will rate limit the generation of events/traps to three per second. At that point a single trap will be generated that indicates that event/trap squashing is taking place.

SNTP Time Synchronization

For synchronizing the system clock with outside time sources, the 7210 SAS OS software includes a Simple Network Time Protocol (SNTP) client. As defined in RFC 2030, SNTP Version 4 is an adaptation of the Network Time Protocol (NTP). SNTP typically provides time accuracy within 100 milliseconds of the time source. SNTP can only receive the time from NTP servers; it cannot be used to provide time services to other systems. SNTP is a compact, client-only version of NTP. SNTP does not authenticate traffic.

SNTP can be configured in both unicast client modes (point-to-point) and broadcast client modes (point-to-multipoint). SNTP should be used only at the extremities of the synchronization subnet. SNTP clients should operate only at the highest stratum (leaves) of the subnet and in configurations where no NTP or SNTP client is dependent on another SNTP client for synchronization. SNTP time servers should operate only at the root (stratum 1) of the subnet and then only in configurations where no other source of synchronization other than a reliable radio clock is available.

In the 7210 SAS OS software, the SNTP client can be configured for either broadcast or unicast client mode.
CRON

The CRON feature supports the Service Assurance Agent (SAA) functions as well as the ability to schedule turning on and off policies to meet “Time of Day” requirements. CRON functionality includes the ability to specify the commands that need to be run, when they will be scheduled, including one-time only functionality (oneshot), interval and calendar functions, as well as where to store the output of the results. In addition, CRON can specify the relationship between input, output and schedule. Scheduled reboots, peer turn ups, service assurance agent tests and more can all be scheduled with Cron, as well as OAM events, such as connectivity checks, or troubleshooting runs.

CRON features are saved to the configuration file.

CRON features run serially with at least 255 separate schedules and scripts. Each instance can support a schedule where the event is executed any number of times.

The following CRON elements are supported:

- **Action** — Parameters for a script including the maximum amount of time to keep the results from a script run, the maximum amount of time a script may run, the maximum number of script runs to store and the location to store the results.
- **Schedule** — The schedule function configures the type of schedule to run, including one-time only (oneshot), periodic or calendar-based runs. All runs are determined by month, day of month or weekday, hour, minute and interval (seconds).
- **Script** — The script command opens a new nodal context which contains information on a script.
- **Time Range** — ACLs and QoS policy configurations may be enhanced to support time based matching. CRON configuration includes time matching with the 'schedule' sub-command. Schedules are based on events; time-range defines an end-time used as a match criteria.
- **Time of Day** — Time of Day (TOD) suites are useful when configuring many types of time-based policies or when a large number of SAPs require the same type of TOD changes. The TOD suite may be configured while using specific ingress or egress ACLs or QoS policies, and is an enhancement of the ingress and egress CLI trees.
High Availability

This section discusses the high availability (HA) routing options and features available to service providers that help diminish vulnerability at the network or service provider edge and alleviate the effect of a lengthy outage on IP networks.

High availability is an important feature in service provider routing systems. High availability is gaining momentum due to the unprecedented growth of IP services and applications in service provider networks driven by the demand from the enterprise and residential communities. Downtime can be very costly, and, in addition to lost revenue, customer information and business-critical communications can be lost. High availability is the combination of continuous uptime over long periods (Mean Time Between Failures (MTBF)) and the speed at which failover or recovery occurs (Mean Time To Repair (MTTR)).

The popularity of high availability routing is evident at the network or service provider edge where thousands of connections are hosted and rerouting options around a failed piece of equipment can often be limiting. Or, a single access link exists to a customer because of additional costs for redundant links. As service providers converge business-critical services such as real-time voice (VoIP), video, and VPN applications over their IP networks, high availability becomes much more stringent compared to the requirements for best-effort data. Network and service availability become critical aspects when offering advanced IP services which dictates that IP routers that are used to construct the foundations of these networks be resilient to component and software outages.

HA Features

As more and more critical commercial applications move onto the IP networks, providing high availability services becomes increasingly important. This section describes high availability features for devices.

- **Redundancy on page 176**
 - Component Redundancy on page 177

Redundancy

The redundancy features enable the duplication of data elements to maintain service continuation in case of outages or component failure.
Component Redundancy

7210 SAS-Series component redundancy is critical to reduce MTTR for the system and primarily consists of the following features for 7210 SAS-E devices:

- Redundant power supply — A power module can be removed without impact on traffic.
- Fan module — The fan module contains three fans. Failure of one or more fans does not impact traffic.
- Hot swap — The power supply and fan module supports hot swapping.

For 7210 SAS-D devices:

- 7210 SAS-D has an integrated AC or DC power supply. Redundant external backup power supply is available only on 7210 SAS-D ETR variant. Use of redundant external backup power supply is optional.
- Fan module — 7210 SAS-D 128 MB devices support passive cooling. It has a fan to allow air circulation (and not cooling). By default the fan mode is set to 'auto'. In "auto" mode, by default, the software determines when to turn the fan 'on' and when to switch it 'off'. This can be changed by the operator using the CLI command "configure> system> fan". Operators have an option to switch off the fan permanently or turn it on permanently.
- Hot swap — Power supply integrated into chassis. Hot swapping is not supported. The external power supply backup connection can be added or removed anytime on 7210 SAS-D ETR.
Temperature Threshold Alarm and Fan Speed

In the 7210 SAS E device, if the chassis temperature crosses a threshold of 58 degrees centigrade, the system raises a software alarm for over-temperature. When the temperature reduces below 58°C, the over-temperature alarm is cleared by the system.

The fan operates at two speeds—half speed and full speed. When the temperature of the chassis raises above 42 degrees centigrade, the fan speed changes to full speed, and when the temperature reduces to 37 degrees centigrade, the fan speed changes to half speed.

The 7210 SAS-D devices do not support any alarm contact outputs, hence when the system raises an alarm it is only logged. The system status LED is used to indicate an alarm in applicable cases. Listed below in table X are the temperature thresholds for 7210 SAS-D devices:
The temperature threshold is measured by the sensors inside the chassis and is typically more than the aisle ambient temperature. The threshold temperature is not user configurable.

Over-temperature is alarm raised when the temperature of the device exceeds 45 in degree centigrade in 7210 SAS-D 6T4F and 60 in degree centigrade in 7210 SAS-D 6T4F ETR variant.

Note: 7210 SAS-D devices do not use fans for cooling. The device uses natural air flows for cooling. 7210 SAS-D 128MB devices has a fan to provide air circulation.

Table 18: Temperature Thresholds for 7210 SAS-D Devices

<table>
<thead>
<tr>
<th>Device Variants</th>
<th>Min. Temperature (in degree centigrade)</th>
<th>Max. Temperature (in degree centigrade)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7210 SAS-D</td>
<td>0</td>
<td>45</td>
</tr>
<tr>
<td>7210 SAS-D ETR</td>
<td>-30</td>
<td>60</td>
</tr>
</tbody>
</table>
Synchronization

The 7210 SAS-D implements distribution of timing information through line timing mode.

Note: 7210 SAS-E does not implement any synchronization mechanisms.

Line Timing Mode

Line timing from Synchronous Ethernet port provides the best synchronization performance through a synchronization distribution network. Line timing mode derives the timing information from the Ethernet ports. This mode is immune to any Packet Delay Variation (PDV) occurring on Layer 2 or Layer 3 links. Line timing is supported on the Ethernet SFP ports with SFPs that support Synchronous Ethernet (supported only with 1Gbps speed). The fixed copper ports support synchronous ethernet. It is recommended for use to distribute timing using synchronous Ethernet to connected devices and not for use as a reference. When syncE is enabled for copper ports, it is recommended to drive 7210 SAS-D to be the master. Please see the CLI command config> port> ethernet> port-clock in the 7210 SAS Interfaces User Guide.

Synchronous Ethernet

Synchronous Ethernet is a variant of line timing supported on the on Ethernet SFP ports with SFPs that support Synchronous Ethernet. When synchronous Ethernet is enabled, the operator can select an Ethernet port as a candidate for timing reference. The timing recovered from this port is used to time the system. This ensures all the system outputs are locked to a stable and traceable frequency source.

Synchronous Ethernet is active at Layer 1 and monitors the precision of the following:

- Timing of signal transitions to be relayed.
- Recovery of accurate frequencies.

Synchronous Ethernet is not impacted by traffic load and therefore not affected by packet loss or PDV that occurs with timing methods that use higher layers of the networking technology.

Synchronous Ethernet can be used only for end-to-end network synchronization when all intermediate switching nodes in the network have hardware and software support for Synchronous Ethernet.
Network Synchronization

This section describes network synchronization capabilities available on 7210 SAS-D platform. In 7210 SAS-D devices network synchronization is achieved through line timing from synchronous Ethernet ports.

Network synchronization is commonly distributed in a hierarchical master-slave topology at the physical layer as shown in Figure 12.

The architecture shown in Figure 12 provides the following benefits:

- Limits the need for high quality clocks at each network element and only requires that they reliably replicate input to remain traceable to its reference.
- Uses reliable physical media to provide transport of the timing signal. It does not consume any bandwidth and requires limited additional processing.

The synchronization network is designed so a clock always receives timing from a clock of equal or higher stratum or quality level. This ensures that if an upstream clock has a fault condition (for example, loses its reference and enters a holdover or free-run state) and begins to drift in frequency, the downstream clock will be able to follow it. For greater reliability and robustness, most offices and nodes have at least two synchronization references that can be selected in priority order (such as primary and secondary).
Further levels of resiliency can be provided by designing a capability in the node clock that will operate within prescribed network performance specifications without any reference for a specified timeframe. A clock operating in this mode is said to hold the last known state over (or holdover) until the reference lock is once again achieved. Each level in the timing hierarchy is associated with minimum levels of network performance.

Each synchronization capable port can be independently configured to transmit data using the node reference timing or loop timing.

Transmission of a reference clock through a chain of Ethernet equipment requires that all equipment supports Synchronous Ethernet. A single piece of equipment that is not capable of performing Synchronous Ethernet breaks the chain. Ethernet frames will still get through but downstream devices should not use the recovered line timing as it will not be traceable to an acceptable stratum source.

Central Synchronization Sub-System

The timing subsystem for the 7210 SAS platforms has a central clock located on the CPM (motherboard). The timing subsystem performs many of the duties of the network element clock as defined by Telcordia (GR-1244-CORE) and ITU-T G.781.

To train the local oscillator, the system has the option to select from two timing inputs. The priority order of these references must be specified. This is a simple ordered list of inputs: \{ref1, ref2\}. The CPM clock output shall have the ability to drive the clocking for all line cards in the system. The 7210 SAS supports selection of the node reference using Quality Level (QL) indications. See Figure 13 for a description of synchronization reference selection.

The recovered clock derives its timing from synchronous Ethernet ports. If QL selection mode is disabled, the reversion setting specifies as to when the central clock can re-select a previously failed reference.

Figure 13: Synchronization Reference Selection
The Table 19 shows the selection followed for two references in both revertive and non-revertive modes:

Table 19: Revertive, non-Revertive Timing Reference Switching Operation

<table>
<thead>
<tr>
<th>Status of Reference A</th>
<th>Status of Reference B</th>
<th>Active Reference Non-revertive Case</th>
<th>Active Reference Revertive Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>OK</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Failed</td>
<td>OK</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>OK</td>
<td>OK</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>OK</td>
<td>Failed</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>OK</td>
<td>OK</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Failed</td>
<td>Failed</td>
<td>holdover</td>
<td>holdover</td>
</tr>
<tr>
<td>OK</td>
<td>Failed</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Failed</td>
<td>Failed</td>
<td>holdover</td>
<td>holdover</td>
</tr>
<tr>
<td>Failed</td>
<td>OK</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Failed</td>
<td>Failed</td>
<td>holdover</td>
<td>holdover</td>
</tr>
<tr>
<td>OK</td>
<td>OK</td>
<td>A or B</td>
<td>A</td>
</tr>
</tbody>
</table>
Synchronization Status Messages (SSM)

Note: Synchronous status messages are supported only on 7210 SAS-D devices.

SSM provides a mechanism to allow the synchronization distribution network to determine both the quality level of the clock sourcing a given synchronisation trail and to allow a network element to select the best of multiple input synchronization trails. Synchronization Status messages have been defined for various transport protocols including SONET/SDH, T1/E1, and Synchronous Ethernet, for interaction with office clocks, such as BITS or SSUs and embedded network element clocks.

SSM allows equipment to autonomously provision and reconfigure (by reference switching) their synchronization references, while helping to avoid the creation of timing loops. These messages are particularly useful to allow synchronization reconfigurations when timing is distributed in both directions around a ring.
IEEE 1588v2 PTP

Note: This feature is applicable only to the 7210 SAS-D ETR device.

Precision Time Protocol (PTP) is a timing-over-packet protocol defined in the IEEE 1588v2 standard 1588 PTP 2008.

PTP may be deployed as an alternative timing-over-packet option to ACR. PTP provides the capability to synchronize network elements to a Stratum-1 clock or primary reference clock (PRC) traceable source over a network that may or may not be PTP-aware. PTP has several advantages over ACR. It is a standards-based protocol, has lower bandwidth requirements, can transport both frequency and time, and can potentially provide better performance.

There are five basic types of PTP devices, as listed below:

- Ordinary clock
- Boundary clock
- End-to-end transparent clock
- Peer-to-peer transparent clock
- Management node

The 7210 SAS supports the ordinary clock in slave mode or the boundary clock. The boundary clock and ordinary clock slave can be used for both frequency and time distribution. 7210 SAS does not support ordinary clock in master mode.

The 7210 SAS communicates with peer IEEE 1588v2 clocks; see Figure 14. These peers can be ordinary clock slaves or boundary clocks. Each peer is identified by the IPv4 address to be used for communications between the two clocks. There are two types of peers: configured and discovered. The 7210 SAS operating as an ordinary clock slave or as a boundary clock should have configured peers for each PTP neighbor clock from which it might accept synchronization information. The 7210 SAS initiates unicast sessions with all configured peers. A 7210 SAS operating as an boundary clock will accept unicast session requests from external peers. If the peer is not a configured peer, then it is considered a discovered peer. The 7210 SAS can deliver synchronization information toward discovered peers (that is, slaves).
The IEEE 1588v2 standard includes the concept of PTP profiles. These profiles are defined by industry groups or standards bodies that define how IEEE 1588v2 is to be used for a particular application.

7210 SAS currently supports two profiles:

- IEEE 1588v2 default profile
- ITU-T Telecom profile (G.8265.1)

In both cases, communications between clocks utilize the Unicast communication procedures of the IEEE standard. The transport layer uses UDP/IPv4 encapsulation.

When a 7210 SAS receives Announce messages from one or more configured peers, it executes a Best Master Clock Algorithm (BMCA) to determine the state of communication between itself and the peers. The system uses the BMCA to create a hierarchical topology allowing the flow of synchronization information from the best source (the Grandmaster clock) out through the network to all boundary and slave clocks. Each profile has a dedicated BMCA.
If the profile setting for the clock is ieee1588-2008, the precedence order for the best master selection algorithm is as follows:

- priority1
- clock class
- clock accuracy
- PTP variance (offsetScaledLogVariance)
- priority2
- clock identity
- steps removed from the grandmaster

The 7210 SAS sets its local parameters as follows:

Table 20: Local Clock Parameters When Profile is set to ieee1588-2008

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>clockIdentity</td>
<td>Chassis MAC address following the guidelines of 7.5.2.2.2 of IEEE 1588</td>
</tr>
<tr>
<td>clockClass</td>
<td>13 – router configured as ordinary clock master and is locked to an external reference</td>
</tr>
<tr>
<td></td>
<td>14 – router configured as ordinary clock master and in holdover after having been locked to an external source</td>
</tr>
<tr>
<td></td>
<td>248 – router configured as ordinary clock master and is in free run or the router is configured as a boundary clock</td>
</tr>
<tr>
<td></td>
<td>255 – router configured as ordinary clock slave</td>
</tr>
<tr>
<td>clockAccuracy</td>
<td>FE - Unknown</td>
</tr>
<tr>
<td>offsetScaledLogVariance</td>
<td>FFFF – not computed</td>
</tr>
</tbody>
</table>

If the profile setting for the clock is itu-telecom-freq (ITU G.8265.1 profile), the precedence order for the best master selection algorithm is:

- clock class
- priority
The 7210 SAS sets its local parameters as follows:

| Table 21: Local Clock Parameters When Profile is set to: itu-telecom-freq |
|-----------------------------|-----------------------------|
| Parameter | Value |
| clockClass | 80-110 – value corresponding to the QL out of the central clock of the 7210 SR as per Table 1/G.8265.1 |
| | 255 – the 7210 SAS is configured as ordinary clock slave |

The ITU-T profile is for use in an environment with only ordinary clock masters and slaves for frequency distribution. The default profile should be used for all other cases.

The 7210 SAS can support a limited amount of configured peers (possible Master or neighbor boundary clocks) and a limited amount of discovered peers (slaves). These peers use the Unicast Negotiation procedures to request service from the 7210 SAS clock. A neighbor boundary clock counts for two peers (both a configured and a discovered peer) toward the maximum limit.

Figure 15 shows the unicast negotiation procedure performed between a slave and a peer clock that is selected to be the master clock. The slave clock will request Announce messages from all peer clocks but only request Sync and Delay_Resp messages from the clock selected to be the master clock.
PTP Clock Synchronization

The IEEE 1588v2 standard synchronizes the frequency and time from a master clock to one or more slave clocks over a packet stream. This packet-based synchronization can be over UDP/IP or Ethernet and can be multicast or unicast. Only IPv4 unicast mode with unicast negotiation is supported.

As part of the basic synchronization timing computation, a number of event messages are defined for synchronization messaging between the PTP slave clock and PTP master clock. A one-step or
two-step synchronization operation can be used, with the two-step operation requiring a follow-up message after each synchronization message. Only two-step operation is supported on the 7210 SAS devices.

During startup, the PTP slave clock receives the synchronization messages from the PTP master clock before a network delay calculation is made. Prior to any delay calculation, the delay is assumed to be zero. A drift compensation is activated after a number of synchronization message intervals occur. The expected interval between the reception of synchronization messages is user-configurable.

The basic synchronization timing computation between the PTP slave clock and PTP best master is illustrated in Figure 16. This figure illustrates the offset of the slave clock referenced to the best master signal during startup.

![Figure 16: PTP Slave Clock and Master Clock Synchronization Timing Computation](image-url)
When using IEEE 1588v2 for distribution of a frequency reference, the slave calculates a message delay from the master to the slave based on the timestamps exchanged. A sequence of these calculated delays will contain information of the relative frequencies of the master clock and slave clock but will have noise component related to the packet delay variation (PDV) experienced across the network. The slave must filter the PDV effects so as to extract the relative frequency data and then adjust the slave frequency to align with the master frequency.

When using IEEE 1588v2 for distribution of time, the 7210 SAS uses the four timestamps exchanged using the IEEE 1588v2 messages to determine the offset between the 7210 SAS time base and the external master clock time base. The 7210 SAS determines the offset adjustment and then in between these adjustments, it maintains the progression of time using the frequency from the central clock of the node. This allows time to be maintained using a Synchronous Ethernet input source even if the IEEE 1588v2 communications fail. When using IEEE 1588v2 for time distribution, the central clock should at a minimum have the PTP input reference enabled.

![Figure 17: Using IEEE 1588v2 For Time Distribution](image)
Performance Considerations

Although IEEE 1588v2 can be used on a network that is not PTP-aware, the use of PTP-aware network elements (boundary clocks) within the packet switched network improves synchronization performance by reducing the impact of PDV between the grand master clock and the slave clock. In particular, when IEEE 1588v2 is used to distribute high accuracy time, such as for mobile base station phase requirements, then the network architecture requires the deployment of PTP awareness in every device between the Grandmaster and the mobile base station slave. In addition, performance is also improved by the removal of any PDV caused by internal queuing within the boundary clock or slave clock. This is accomplished with hardware that is capable of detecting and time stamping the IEEE 1588v2 packets at the Ethernet interface. This capability is referred to as port-based time stamping. 7210 SAS that are 1588v2 capable supports port-based time stamping.

PTP Capabilities

PTP messages are supported via IPv4 unicast with a fixed IP header size. Table 22 describes the support message rates for slave and master states. The ordinary clock can be used in only slave mode. The boundary clock can be in both of these states.

<table>
<thead>
<tr>
<th>Support Message</th>
<th>Slave Clock</th>
<th>Master Clock</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Request Rate</td>
<td>Grant Rate</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>Announce</td>
<td>1 packet every 2 seconds</td>
<td>1 packet every 2 seconds</td>
</tr>
<tr>
<td>Sync</td>
<td>Default is 64 packets/second. Provides an option to configure lesser rates.</td>
<td>8 packets/seconds</td>
</tr>
<tr>
<td>Delay_Resp</td>
<td>Default is 64 packets/second. Provides an option to configure lesser rates.</td>
<td>8 packets/seconds</td>
</tr>
<tr>
<td>(Duration)</td>
<td>300 seconds</td>
<td>1 second</td>
</tr>
</tbody>
</table>

State and statistics data for each master clock are available to assist in the detection of failures or unusual situations.
PTP Ordinary Slave Clock For Frequency

Traditionally, only clock frequency is required to ensure smooth transmission in a synchronous network. The PTP ordinary clock with slave capability on the 7210 SAS provides another option to reference a Stratum-1 traceable clock across a packet switched network. The recovered clock can be referenced by the internal SSU and distributed to all slots and ports.

Figure 18 shows a PTP ordinary slave clock network configuration.

Figure 18: Slave Clock

The PTP slave capability is implemented on all the Ethernet port available on the 7210 SAS-M

Figure 18 shows the operation of an ordinary PTP clock in slave mode.

PTP Boundary Clock for Frequency and Time

IEEE 1588v2 can function across a packet network that is not PTP-aware; however, the performance may be unsatisfactory and unpredictable. PDV across the packet network varies with
the number of hops, link speeds, utilization rates, and the inherent behavior of the routers. By using routers with boundary clock functionality in the path between the grand master clock and the slave clock, one long path over many hops is split into multiple shorter segments, allowing better PDV control and improved slave performance; see Figure. This allows PTP to function as a valid timing option in more network deployments and allows for better scalability and increased robustness in certain topologies, such as rings. Boundary clocks can simultaneously function as a PTP slave of an upstream grand master (ordinary clock) or boundary clock, and as a PTP master of downstream slaves (ordinary clock) and/or boundary clocks. The time scale recovered in the slave side of the boundary clock is used by the master side of the boundary clock. This allows time to be distributed across the boundary clock.

Figure 19: Boundary Clock

Configuration guidelines for PTP on 7210 SAS-D ETR

- Use of PTP and syncE as a reference simultaneously is not allowed. User can configure either syncE as a reference or PTP as a reference, but not both together.
- 7210 SAS-D ETR node uses CPU processing cycles for frequency and time recovery. It is highly recommended to use PTP only in hybrid mode (that is, SyncE for frequency recovery and PTP for time recovery). Hybrid mode allows the node to recover very stable frequency using SyncE and recovers time using reduced PTP packet rate. It reduces the CPU processing cycles needed, helping customers to scale better.
Configuration to change reference from syncE to PTP

The following are the configuration steps to change reference from SyncE to PTP.

1. Initially for Standalone PTP:

```plaintext
configure >system >ptp >no shutdown
config> system> sync-if-timing> begin
  ptp
  no shutdown
  exit
  ref-order ptp [Must be configured]
config> system> sync-if-timing> commit
```

Note: Now the Frequency and Time is provide by PTP only.

2. To changeover to use syncE the following must be executed:

```plaintext
config> system> sync-if-timing> begin
  ptp
  shutdown
  exit
config> system> sync-if-timing> commit
config> system> sync-if-timing> begin
  ref1
  source-port 1/1/10
  no shutdown
  exit
  ref2
  source-port 1/1/11
  no shutdown
  exit
  ref-order ref1 ref2 --------> Or, the ref-order you want [But Must be configured]
revert ------------------------> If you want ref-order you have setup to take effect
ql-selection ------------------> Optional , if we need Quality to be consisdered.
config> system> sync-if-timing> commit
```
Note: Now the frequency is provided by SyncE and TOD is provided by PTP [configure >system >ptp >no shutdown]. This is called Hybrid mode.

3. To change back to Stand alone PTP from SyncE, the following must be executed:

```bash
config> system> sync-if-timing> begin
ref1
  source-port 1/1/10 --------------------> Not Required if port is already configured, but in admin down state
  shutdown
  exit
ref2
  source-port 1/1/11 --------------------> Not Required if port is already configured, but in admin down state
  shutdown
  exit
config> system> sync-if-timing> commit

config> system> sync-if-timing> begin
ptp
  no shutdown
  exit
  ref-order ptp [Must be configured]
config> system> sync-if-timing> commit
```

Note: Now the Frequency and Time is provide by PTP [configure >system >ptp >no shutdown] only. This is a standalone PTP mode.
Link Layer Discovery Protocol (LLDP)

The IEEE 802.1ab Link Layer Discovery Protocol (LLDP) is a uni-directional protocol that uses the MAC layer to transmit specific information related to the capabilities and status of the local device. The LLDP can send as well as receive information from a remote device stored in the related MIB(s).

The LLDP does not contain a mechanism to solicit information received from other LLDP agents. The protocol also does not provide means to confirm the receipt of information. LLDP provides the flexibility of enabling a transmitter and receiver separately, therefore the following LLDP configurations are allowed:

- An LLDP agent can only transmit information.
- An LLDP agent can only receive information.
- An LLDP agent can transmit and receive information.

The information fields in each LLDP frame are contained in an LLDP Data Unit (LLDPDU) as a sequence of variable length information elements. Each information element includes Type, Length, and Value fields (TLVs).

- Type indicates the nature of information being transmitted.
- Length indicates the length of the information string in octets.
- Value is the actual information that is transmitted. (For example, a binary bit map or an alphanumerical string that can contain one or more fields).

Each LLDPDU contains four mandatory TLVs and optional TLVs selected by the Network Management. Below is the format of a LLDPDU:

- Chassis ID TLV
- Port ID TLV
- Time To Live TLV
- Zero or more optional TLVs, depending on the maximum size of the LLDPDU allowed.
- End Of LLDPDU TLV

An LLDP agent or port is identified by a concatenated string formed by the Chassis ID TLV and the Port ID TLV. This string is used by a recipient to identify an LLDP port or agent. The combination of the Port ID and Chassis ID TLVs remains unchanged until the port or agent is operational.

The TTL (Time To Live) field of an Time-To-Live TLV can be either zero or a non-zero value. A zero value in the TTL field notifies the receiving LLDP agent to immediately discard all information related to the sending LLDP agent. A non-zero value in the TTL field indicates the time duration for which the receiving LLDP agent should retain the sending LLDP agent’s
information. The receiving LLDP agent discards all information related to the sending LLDP agent after the time interval indicated in the TTL field is complete.

Note: A TTL value of zero can be used to signal that the sending LLDP port has initiated a port shutdown procedure.

The End Of LLDPDU TLV indicates the end of the LLDPDU.

Listed below is the information included in the protocol defined by the IEEE 802.1ab standard:

- Connectivity and management information about the local station to adjacent stations on the same IEEE 802 LAN is advertised.
- Network management information from adjacent stations on the same IEEE 802 LAN is received.
- Operates with all IEEE 802 access protocols and network media.
- Network management information schema and object definitions that suitable for storing connection information about adjacent stations is established.
- Provides compatibility with a number of MIBs.

![Figure 20: LLDP Internal Architecture for a Network Node](image-url)
In order to detect and address network problems and inconsistencies in the configuration, the network operators can discover the topology information using LLDP. The Standard-based tools address the complex network scenarios where multiple devices from different vendors are interconnected using Ethernet interfaces.

The example displayed in Figure 21 depicts a MPLS network that uses Ethernet interfaces in the core or as an access/handoff interfaces to connect to different kind of Ethernet enabled devices such as service gateway/routers, QinQ switches DSLAMs or customer equipment.

The topology information of the network in Figure 21 can be discovered if, IEEE 802.1ab LLDP is running on each of the Ethernet interfaces in network.

Figure 21: Customer Use Example For LLDP
System Configuration Process Overview

Figure 22 displays the process to provision basic system parameters.

Figure 22: System Configuration and Implementation Flow
Configuration Notes

This section describes system configuration caveats.

General

- The 7210 SAS device must be properly initialized and the boot loader and BOF files successfully executed in order to access the CLI.
Configuring System Management with CLI

This section provides information about configuring system management features with CLI.

Topics in this chapter include:

- Basic System Configuration on page 205
- Common Configuration Tasks on page 206
- System Information on page 207
 - System Information Parameters
 - Name on page 208
 - Contact on page 208
 - Location on page 209
 - CLLI Code on page 209
 - Coordinates on page 210
 - System Time Elements on page 211
 - Zone on page 211
 - Summer Time Conditions on page 213
 - NTP on page 214
 - SNTP on page 219
 - CRON on page 221
- System Administration Parameters on page 233
 - Validating the Golden Bootstrap Image on page 233
 - Updating the Golden Bootstrap Image on page 234
 - Disconnect on page 234
 - Set-time on page 235
 - Display-config on page 235
 - Tech-support on page 237
 - Save on page 237
 - Reboot on page 238
 - Post-Boot Configuration Extension Files on page 239
- Configuring System Monitoring Thresholds on page 245
Saving Configurations

Whenever configuration changes are made, the modified configuration must be saved so the changes will not be lost when the system is rebooted. The system uses the configuration and image files, as well as other operational parameters necessary for system initialization, according to the locations specified in the boot option file (BOF) parameters. For more information about boot option files, refer to the Boot Option Files section of this manual.

Configuration files are saved by executing implicit or explicit command syntax.

- An **explicit** save writes the configuration to the location specified in the `save` command syntax (the `file-url` option).
- An **implicit** save writes the configuration to the file specified in the primary configuration location.

 If the `file-url` option is not specified in the `save` command syntax, the system attempts to save the current configuration to the current BOF primary configuration source. If the primary configuration source (path and/or filename) changed since the last boot, the new configuration source is used.

The `save` command includes an option to save both default and non-default configuration parameters (the `detail` option).

The `index` option specifies that the system preserves system indexes when a save command is executed, regardless of the persistent status in the BOF file. During a subsequent boot, the index file is read along with the configuration file. As a result, a number of system indexes are preserved between reboots, including the interface index, LSP IDs, path IDs, etc. This reduces resynchronizations of the Network Management System (NMS) with the affected network element.

If the save attempt fails at the destination, an error occurs and is logged. The system does not try to save the file to the secondary or tertiary configuration sources unless the path and filename are explicitly named with the `save` command.
Basic System Configuration

This section provides information to configure system parameters and provides configuration examples of common configuration tasks. The minimal system parameters that should be configured are:

- System Information Parameters on page 208
- System Time Elements on page 211

The following example displays a basic system configuration:

```
A:ALA-12>config>system# info
#echo "System Configuration 
name "ALA-12"
coordinates "Unknown"
exit
security
snmp
  community "private" rwa version both
exit
exit
time
ntp
  server 192.168.15.221
  no shutdown
exit
sntp
  shutdown
exit
zone GMT
exit
A:ALA-12>config>system#
```
Common Configuration Tasks

This section provides a brief overview of the tasks that must be performed to configure system parameters and provides the CLI commands.

- **System Information on page 207**
 - Name on page 208
 - Contact on page 208
 - Location on page 209
 - CLLI Code on page 209
 - Coordinates on page 210

- **System Time Elements on page 211**
 - Zone on page 211
 - Summer Time Conditions on page 213
 - NTP on page 214
 - SNTP on page 219
 - CRON on page 221
 - Time Range on page 224
 - Time of Day on page 228

- **System Administration Parameters on page 233**
 - Disconnect on page 234
 - Set-time on page 235
 - Display-config on page 235
 - Reboot on page 238
 - Save on page 237
System Information

This section covers the basic system information parameters to configure the physical location of the router, contact information, location information such as the place the router is located such as an address, floor, room number, etc., global positioning system (GPS) coordinates, and system name.

Use the CLI syntax displayed below to configure the following system components:

- System Information Parameters on page 208
- System Time Elements on page 211

General system parameters include:

- Name on page 208
- Contact on page 208
- Location on page 209
- CLLI Code on page 209
- Coordinates on page 210
System Information Parameters

Name

Use the `system` command to configure a name for the device. The name is used in the prompt string. Only one system name can be configured, if multiple system names are configured the last one encountered overwrites the previous entry. Use the following CLI syntax to configure the system name:

CLI Syntax:
```
config>system
    name system-name
```

Example:
```
alcatel>config>system# name ALA-12
```

The following example displays the system name:
```
sysName@domain>config>system# info
#------------------------------------------
    echo "System Configuration 
    #------------------------------------------
        name "ALA-12"
    . . .
    exit
#------------------------------------------
sysName@domain>config>system#
```

Contact

Use the `contact` command to specify the name of a system administrator, IT staff member, or other administrative entity.

CLI Syntax:
```
config>system
    contact contact-name
```

Example:
```
config>system# contact “Fred Information Technology”
```
Location

Use the `location` command to specify the system location of the device. For example, enter the city, building address, floor, room number, etc., where the router is located.

Use the following CLI syntax to configure the location:

CLI Syntax:
```
config>system
    location location
```

Example:
```
config>system# location "Bldg.1-floor 2-Room 201"
```

CLLI Code

The Common Language Location Code (CLLI code) is an 11-character standardized geographic identifier that is used to uniquely identify the geographic location of a router.

Use the following CLI command syntax to define the CLLI code:

CLI Syntax:
```
config>system
    clli-code clli-code
```

Example:
```
config>system# clli-code abcdefg1234
```
Coordinates

Use the optional coordinates command to specify the GPS location of the device. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

Use the following CLI syntax to configure the location:

CLI Syntax:

```
config>system
coordinates coordinates
```

Example:

```
config>system# coordinates "N 45 58 23, W 34 56 12"
```

The following example displays the configuration output of the general system commands:

```
sysName@domain>config>system# info
#------------------------------------------
echo "System Configuration "
#------------------------------------------
  name "ALA-12"
  contact "Fred Information Technology"
  location "Bldg.1-floor 2-Room 201"
  clli-code "abcdefg1234"
  coordinates "N 45 58 23, W 34 56 12"

. . .
exit
----------------------------------------------
A:ALA-12>config>system#
```
System Time Elements

The system clock maintains time according to Coordinated Universal Time (UTC). Configure information time zone and summer time (daylight savings time) parameters to correctly display time according to the local time zone.

Time elements include:

- Zone on page 211
- Summer Time Conditions on page 213
- NTP on page 214
- SNTP on page 219
- CRON on page 221
 → Time Range on page 224
 → Time of Day on page 228

Zone

The zone command sets the time zone and/or time zone offset for the device. The 7210-SAS OS supports system-defined and user-defined time zones. The system-defined time zones are listed in Table 23.

CLI Syntax:

```
config>system>time
zone std-zone-name|non-std-zone-name [hh [:mm]]
```

Example:

```
config>system>time#
config>system>time# zone GMT
```

The following example displays the zone output:

```
A:ALA-12>config>system>time# info
==============================================================================
ntp
  server 192.168.15.221
  no shutdown
exit
snntp
  shutdown
exit
zone UTC
==============================================================================
A:ALA-12>config>system>time#
```
Table 23: System-defined Time Zones

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Time Zone Name</th>
<th>UTC Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GMT</td>
<td>Greenwich Mean Time</td>
<td>UTC</td>
</tr>
<tr>
<td>WET</td>
<td>Western Europe Time</td>
<td>UTC</td>
</tr>
<tr>
<td>WEST</td>
<td>Western Europe Summer Time</td>
<td>UTC +1 hour</td>
</tr>
<tr>
<td>CET</td>
<td>Central Europe Time</td>
<td>UTC +1 hour</td>
</tr>
<tr>
<td>CEST</td>
<td>Central Europe Summer Time</td>
<td>UTC +2 hours</td>
</tr>
<tr>
<td>EET</td>
<td>Eastern Europe Time</td>
<td>UTC +2 hours</td>
</tr>
<tr>
<td>EEST</td>
<td>Eastern Europe Summer Time</td>
<td>UTC +3 hours</td>
</tr>
<tr>
<td>MSK</td>
<td>Moscow Time</td>
<td>UTC +3 hours</td>
</tr>
<tr>
<td>MSD</td>
<td>Moscow Summer Time</td>
<td>UTC +4 hours</td>
</tr>
<tr>
<td>US and Canada:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AST</td>
<td>Atlantic Standard Time</td>
<td>UTC -4 hours</td>
</tr>
<tr>
<td>ADT</td>
<td>Atlantic Daylight Time</td>
<td>UTC -3 hours</td>
</tr>
<tr>
<td>EST</td>
<td>Eastern Standard Time</td>
<td>UTC -5 hours</td>
</tr>
<tr>
<td>EDT</td>
<td>Eastern Daylight Saving Time</td>
<td>UTC -4 hours</td>
</tr>
<tr>
<td>CST</td>
<td>Central Standard Time</td>
<td>UTC -6 hours</td>
</tr>
<tr>
<td>CDT</td>
<td>Central Daylight Saving Time</td>
<td>UTC -5 hours</td>
</tr>
<tr>
<td>MST</td>
<td>Mountain Standard Time</td>
<td>UTC -7 hours</td>
</tr>
<tr>
<td>MDT</td>
<td>Mountain Daylight Saving Time</td>
<td>UTC -6 hours</td>
</tr>
<tr>
<td>PST</td>
<td>Pacific Standard Time</td>
<td>UTC -8 hours</td>
</tr>
<tr>
<td>PDT</td>
<td>Pacific Daylight Saving Time</td>
<td>UTC -7 hours</td>
</tr>
<tr>
<td>HST</td>
<td>Hawaiian Standard Time</td>
<td>UTC -10 hours</td>
</tr>
<tr>
<td>AKST</td>
<td>Alaska Standard Time</td>
<td>UTC -9 hours</td>
</tr>
<tr>
<td>AKDT</td>
<td>Alaska Standard Daylight Saving Time</td>
<td>UTC -8 hours</td>
</tr>
<tr>
<td>Australia and New Zealand:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AWST</td>
<td>Western Standard Time (e.g., Perth)</td>
<td>UTC +8 hours</td>
</tr>
<tr>
<td>ACST</td>
<td>Central Standard Time (e.g., Darwin)</td>
<td>UTC +9.5 hours</td>
</tr>
<tr>
<td>AEST</td>
<td>Eastern Standard/Summer Time (e.g., Canberra)</td>
<td>UTC +10 hours</td>
</tr>
<tr>
<td>NZT</td>
<td>New Zealand Standard Time</td>
<td>UTC +12 hours</td>
</tr>
<tr>
<td>NZDT</td>
<td>New Zealand Daylight Saving Time</td>
<td>UTC +13 hours</td>
</tr>
</tbody>
</table>
Summer Time Conditions

The \texttt{config>system>time>dst-zone} context configures the start and end dates and offset for summer time or daylight savings time to override system defaults or for user defined time zones.

When configured, the time will be adjusted by adding the configured offset when summer time starts and subtracting the configured offset when summer time ends.

\textbf{CLI Syntax:} \texttt{config>system>time dst-zone zone-name end \{end-week\} \{end-day\} \{end-month\} \{hours-minutes\} offset offset start \{start-week\} \{start-day\} \{start-month\} \{hours-minutes\}}

\textbf{Example:} \texttt{config>system# time \n config>system>time# dst-zone pt \n config>system>time>dst-zone# start second sunday april 02:00 \n end first sunday october 02:00 \n config>system>time>dst-zone# offset 0}

If the time zone configured is listed in Table 23, then the starting and ending parameters and offset do not need to be configured with this command unless there is a need to override the system defaults. The command will return an error if the start and ending dates and times are not available either in Table 23 or entered as optional parameters in this command.

The following example displays the configured parameters.

\texttt{A:ALA-48>config>system>time>dst-zone# info \n-- \n start second sunday april 02:00 \n end first sunday october 02:00 \n offset 0 \n-- \nA:ALA-48>config>system>time>dst-zone# offset 0}
NTP

Network Time Protocol (NTP) is defined in RFC 1305, *Network Time Protocol (Version 3) Specification, Implementation and Analysis*. It allows for participating network nodes to keep time more accurately and maintain time in a synchronized manner between all participating network nodes.

NTP time elements include:

- Authentication-check on page 214
- Authentication-key on page 215
- Broadcast on page 215
- Broadcastclient on page 216
- NTP-Server on page 217
- Server on page 218

Authentication-check

The authentication-check command provides for the option to skip the rejection of NTP PDUs that do not match the authentication key or authentication type requirements. The default behavior when authentication is configured is to reject all NTP protocol PDUs that have a mismatch in either the authentication key-id, type, or key.

When authentication-check is configured, NTP PDUs are authenticated on receipt. However, mismatches cause a counter to be increased, one counter for key-id, one for type, and one for key value mismatches.

CLI Syntax:
```
config>system>time>ntp
    authentication-check
```

Example:
```
config>system>time>ntp#
    config>system>time>ntp# authentication-check
    config>system>time>ntp# no shutdown
```
Authentication-key

This command configures an authentication key-id, key type, and key used to authenticate NTP PDUs sent to and received from other network elements participating in the NTP protocol. For authentication to work, the authentication key-id, authentication type and authentication key value must match.

CLI Syntax:
```
config>system>time>ntp
    authentication-key key-id {key key} [hash | hash2] type
        {des|message-digest}
```

Example:
```
config>system>time>ntp#
    config>system>time>ntp# authentication-key 1 key A type des
    config>system>time>ntp# no shutdown
```

The following example shows NTP disabled with the `authentication-key` parameter enabled.
```
A:sim1>config>system>time>ntp# info
----------------------------------------------
 shutdown
 authentication-key 1 key "OAwgNULbhzI" hash2 type des
----------------------------------------------
A:sim1>config>system>time>ntp#
```

Broadcast

The broadcast command is used to transmit broadcast packets on a given subnet.

CLI Syntax:
```
config>system>time>ntp
    broadcast [router router-name] {interface
        ip-int-name> [key-id key-id] [version version]
        [ttl ttl]
```

Example:
```
config>system>time>ntp#
    config>system>time>ntp# broadcast interface int11 version 4
    ttl 127
    config>system>time>ntp# no shutdown
```

The following example in the `system>time` context shows NTP enabled with the `broadcast` command configured.
```
A:sim1>config>system>time# info detail
----------------------------------------------
 ntp
    no shutdown
    authentication-check
    ntp-server
    broadcast interface int11 version 4 ttl 127
```
exit
A:sim1>config>system>time#

The following example in the config context shows NTP enabled with the broadcast command configured. At this level, the NTP broadcast commands are displayed at the end of the output after the router interfaces are shown.

A:sim1>config info
....

#--
| echo "System Time NTP Configuration"
#--
| system
| time
| ntp
| broadcast interface toboth
| exit
| exit
| exit
A:sim1>config

Broadcastclient

The broadcastclient command enables listening to NTP broadcast messages on the specified interface.

CLI Syntax:
config>system>time>ntp
broadcastclient [router router-name] {interface ip-int-name} [authenticate]

Example:
config>system>time>ntp#
config>system>time>ntp# broadcastclient interface int11
config>system>time>ntp# no shutdown

The following example shows NTP enabled with the broadcastclient parameter enabled.

A:ALA-12>config>system>time# info

| ntp
| broadcastclient interface int11
| no shutdown
| exit
| dst-zone PT
| start second sunday april 02:00
| end first sunday october 02:00
| offset 0
| exit
zone UTC
A:ALA-12>config>system>time#
NTP-Server

This command configures the node to assume the role of an NTP server. Unless the server command is used this node will function as an NTP client only and will not distribute the time to downstream network elements. If an authentication key-id is specified in this command, the NTP server requires client packets to be authenticated.

CLI Syntax:
```
config>system>time>ntp
    ntp-server [transmit key-id]
```

Example:
```
config>system>time>ntp#
    config>system>time>ntp# ntp-server transmit 1
    config>system>time>ntp# no shutdown
```

The following example shows NTP enabled with the *ntp-server* command configured.

```
A:sim1>config>system>time>ntp# info
----------------------------------------------
    no shutdown
    ntp-server
----------------------------------------------
A:sim1>config>system>time>ntp#
```

Peer

Configuration of an NTP peer configures symmetric active mode for the configured peer. Although any system can be configured to peer with any other NTP node, it is recommended to configure authentication and to configure known time servers as their peers. Use the *no* form of the command to remove the configured peer.

CLI Syntax:
```
config>system>time>ntp
    peer ip-address [version version] [key-id key-id] [prefer]
```

Example:
```
config>system>time>ntp#
    config>system>time>ntp# peer 192.168.1.1 key-id 1
    config>system>time>ntp# no shutdown
```

The following example shows NTP enabled with the *peer* command configured.

```
A:sim1>config>system>time>ntp# info
----------------------------------------------
    no shutdown
    peer 192.168.1.1 key-id 1
----------------------------------------------
A:sim1>config>system>time>ntp#
```
Server

The Server command is used when the node should operate in client mode with the NTP server specified in the address field. Use the no form of this command to remove the server with the specified address from the configuration.

Up to five NTP servers can be configured.

CLI Syntax:
```
config>system>time>ntp
    server ip-address [key-id key-id] [version version]
    [prefer]
```

Example:
```
config>system>time>ntp#
    config>system>time>ntp# server 192.168.1.1 key-id 1
    config>system>time>ntp# no shutdown
```

The following example shows NTP enabled with the server command configured.

```
A:sim1>config>system>time>ntp# info
----------------------------------------------
no shutdown
    server 192.168.1.1 key 1
----------------------------------------------
A:sim1>config>system>time>ntp#
```
SNTP

SNTP is a compact, client-only version of the NTP. SNTP can only receive the time from SNTP/NTP servers; it cannot be used to provide time services to other systems. SNTP can be configured in either broadcast or unicast client mode.

SNTP time elements include:

- **Broadcast-client on page 219**
- **Server-address on page 220**

CLI Syntax:

```
config>system
    time
    sntp
    broadcast-client
    server-address ip-address [version version-number]
    [normal|preferred] [interval seconds]
    no shutdown
```

Broadcast-client

The **broadcast-client** command enables listening at the global device level to SNTP broadcast messages on interfaces with broadcast client enabled.

CLI Syntax:

```
config>system>time>sntp
    broadcast-client
```

Example:

```
config>system>time>sntp#
config>system>time>sntp# broadcast-client
config>system>time>sntp# no shutdown
```

The following example shows SNTP enabled with the **broadcast-client** command enabled.

```
A:ALA-12>config>system>time# info
----------------------------------------------
sntp
    broadcast-client
    no shutdown
    exit
    dst-zone PT
    start second sunday april 02:00
    end first sunday october 02:00
    offset 0
    exit
    zone GMT
----------------------------------------------
A:ALA-12>config>system>time#
```
Server-address

The server-address command configures an SNTP server for SNTP unicast client mode.

CLI Syntax:
```
config>system>time>sntp#
    config>system>time>sntp# server-address ip-address version version-number [normal|preferred] [interval seconds]
```

Example:
```
config>system>time>sntp#
    config>system>time# server-address 10.10.0.94 version 1 preferred interval 100
```

The following example shows SNTP enabled with the server-address command configured.

```
A:ALA-12>config>system>time# info
---------------------------------------------
   sntp
       server-address 10.10.0.94 version 1 preferred interval 100
       no shutdown
       exit
       dst-zone PT start-date 2006/04/04 12:00 end-date 2006/10/25 12:00
       zone GMT
---------------------------------------------
A:ALA-12>config>system>time#
```
CRON

The CRON command supports the Service Assurance Agent (SAA) functions as well as the ability to schedule turning on and off policies to meet “Time of Day” requirements. CRON functionality includes the ability to specify the commands that need to be run, when they will be scheduled, including one-time only functionality (oneshot), interval and calendar functions, as well as where to store the output of the results. In addition, CRON can specify the relationship between input, output and schedule. Scheduled reboots, peer turn ups, service assurance agent tests and more can all be scheduled with Cron, as well as OAM events, such as connectivity checks, or troubleshooting runs.

CRON elements include:

- **Action**
- **Schedule**
- **Script**
- **Time Range**
- **Time of Day**

Action

Parameters for a script including the maximum amount of time to keep the results from a script run, the maximum amount of time a script may run, the maximum number of script runs to store and the location to store the results.

CLI Syntax:

```
config>cron
  action action-name [owner action-owner]
    expire-time {seconds|forever}
    lifetime {seconds|forever}
    max-completed unsigned
    results file-url
    script script-name [owner script-owner]
    shutdown
```

Example:

```
config>cron# action test
  config>cron>action# results ftp://172.22.184.249././sim1/test-results
  config>cron>action# no shut
```

The following example shows a script named “test” receiving an action to store its results in a file called “test-results”:

```
A:sim1>config>cron# info
--------------------------------------------
script "test"
  location "ftp://172.22.184.249././sim1/test.cfg"
```
Schedule

The schedule function configures the type of schedule to run, including one-time only (oneshot), periodic or calendar-based runs. All runs are determined by month, day of month or weekday, hour, minute and interval (seconds). If end-time and interval are both configured, whichever condition is reached first is applied.

CLI Syntax: config>cr on

```
schedule schedule-name [owner schedule-owner]
  action action-name [owner owner-name]
  count number
  day-of-month {day-number [..day-number]|all}
  description description-string
  end-time [date|day-name] time
  hour {hour-number [..hour-number] | all}
  interval seconds
  minute {minute-number [..minute-number]|all}
  month {month-number [..month-number]|month-name
       [..month-name]|all}
  no shutdown
  type {periodic|calendar|oneshot}
  weekday {weekday-number [..weekday-number]|all}
  shutdown
```

Example:

```
config>cron# schedule test2
config>cron>sch ed# day-of-month 17
config>cron>sch ed# end-time 2007/07/17 12:00
config>cron>sch ed# minute 0 15 30 45
config>cron>sch ed# weekday friday
config>cron>sch ed# shut
```

The following example schedules a script named “test2” to run every 15 minutes on the 17th of each month and every Friday until noon on July 17, 2007:

```
*A:SR>3>config>cron# info
```

```
schedule "test2"
  shutdown
  day-of-month 17
  minute 0 15 30 45
  weekday friday
```
Script

The script command opens a new nodal context which contains information on a script.

CLI Syntax:
```
config>cron
  script script-name [owner script-owner]
  description description-string
  location file-url
  shutdown
```

Example:
```
config>cron# script test
config>cron>script#
```

The following example names a script “test”:

```
A:sim1>config>cron# info
----------------------------------------------
  script "test"
  location "ftp://172.22.184.249/./sim1/test.cfg"
  no shutdown
  exit
----------------------------------------------
A:sim1>config>cron#
```
Time Range

ACLs and QoS policy configurations may be enhanced to support time based matching. CRON configuration includes time matching with the 'schedule' sub-command. Schedules are based on events; time-range defines an end-time and will be used as a match criteria.

Time range elements include:

- Create on page 224
- Absolute on page 224
- Daily on page 225
- Weekdays on page 226
- Weekend on page 226
- Weekly on page 227

Create

Use this command to enable the time-range context.

The following example creates a time-range called test1.

CLI Syntax:
```
config>cron>
    time-range name create
```

Example:
```
config>cron# time-range test1 create
config>cron>time-range$
```

Absolute

The absolute command configures a start and end time that will not repeat.

CLI Syntax:
```
config>cron>time-range$
    absolute absolute-time end absolute-time
```

Example:
```
config>cron>time-range$ absolute start 2006/05/05,11:00 end 2006/05/06,11:01
config>cron>time-range$
```
The following example shows an absolute time range beginning on May 5, 2006 at 11:00 and ending May 6, 2006 at 11:01:

```
A:sim1>config>cron>time-range# show cron time-range detail
===============================================================================
Cron time-range details
===============================================================================
Name        : test1
Triggers    : 0
Status      : Inactive
Absolute    : start 2006/05/05,11:00 end 2006/05/06,11:01
===============================================================================
A:sim1>config>cron>time-range#
```

Daily

The daily command configures the start and end of a periodic schedule for every day of the week (Sunday through Saturday).

CLI Syntax:
```
config>cron>time-range$
daily start time-of-day end time-of-day
```

Example:
```
config>cron>time-range$ daily start 11:00 end 12:00
config>cron>time-range$
```

The following example shows a daily time range beginning at 11:00 and ending at 12:00.

```
A:sim1>config>cron>time-range# show cron time-range detail
===============================================================================
Cron time-range details
===============================================================================
Name        : 1
Triggers    : 0
Status      : Inactive
Periodic    : daily Start 11:00 End 12:00
===============================================================================
A:sim1>config>cron>time-range#
```
Weekdays

The weekdays command configures the start and end of a periodic schedule for weekdays (Monday through Friday).

CLI Syntax:
```
config>cron>time-range$ weekdays start time-of-day end time-of-day
```

Example:
```
config>cron>time-range$ weekdays start 11:00 end 12:00
```

The following command shows a time range beginning at 11:00 and ending at 12:00. This schedule runs all weekdays during this time period.

```
A:sim1>config>cron>time-range# show cron time-range detail
===============================================================================
Cron time-range details
===============================================================================
Name        : 1
Triggers    : 0
Status      : Inactive
Periodic    : weekdays Start 11:00 End 12:00
===============================================================================
A:sim1>config>cron>time-range#
```

Weekend

The weekend command configures the start and end of a periodic schedule for weekends (Saturday and Sunday). The resolution must be at least one minute apart, for example, start at 11:00 and end at 11:01. A start time and end time of 11:00 is invalid.

CLI Syntax:
```
config>cron>time-range$ weekend start time-of-day end time-of-day
```

Example:
```
config>cron>time-range$ weekend start 11:00 end 12:00
```

The following command shows a weekend time range beginning at 11:00am and ending at 12:00pm, both Saturday and Sunday.
To specify 11:00am to 12:00pm on Saturday or Sunday only, use the **Absolute** parameter for one day, or the **Weekly** parameter for every Saturday or Sunday accordingly. In addition, see the **Schedule** parameter to schedule oneshot or periodic events in the **config>cron** context.

```
A:sim1>config>cron>time-range# show cron time-range detail
===============================================================================
Cron time-range details
===============================================================================
Name        : 1
Triggers    : 0
```
Weekly

The weekly command configures the start and end of a periodic schedule for the same day every week, for example, every Friday. The start and end dates must be the same. The resolution must be at least one minute apart, for example, start at 11:00 and end at 11:01. A start time and end time of 11:00 is invalid.

CLI Syntax:
```
config>crontime-range$
  weekly start time-in-week end time-in-week
```

Example:
```
config>crontime-range$ start fri,01:01 end fri,01:02
config>crontime-range$
```

The following command shows a weekly time range beginning on Friday at 1:01am ending Friday at 1:02am.

```
A:sim1>config>crontime-range$ info
----------------------------------------------
weekly start fri,01:01 end fri,01:02
----------------------------------------------
A:sim1>config>crontime-range$
```
Time of Day

Time of Day (TOD) suites are useful when configuring many types of time-based policies or when a large number of subscribers or SAPs require the same type of TOD changes. The TOD suite may be configured while using specific ingress or egress ACLs or QoS policies, and is an enhancement of the ingress and egress CLI trees.

Time of day elements include:

- SAPs on page 228
- Egress on page 228
- Ingress on page 230

SAPs

- If a TOD Suite is assigned to a SAP, statistics collection are not collected for that SAP.
- When an item is configured both on SAP level and in the TOD suite assigned to the SAP, the TOD-suite defined value takes precedence.
- A policy or filter assignment configured directly on a SAP has a lower priority than any assignment in a TOD Suite. Hence, it is possible that a new direct configuration has no immediate effect. If the configuration is made by CLI, a warning is given.

Egress

This command is an enhancement for specific egress policies. Use this command to create time-range based associations of previously created filter lists, QoS and scheduler policies. Multiple policies may be included and each must be assigned a different priority; in case time-ranges overlap, the priority will be used to determine the prevailing policy. Only a single reference to a policy may be included without a time-range.
Filters

In a TOD suite, filters that have entries with time-ranges may not be selected. Similarly, filter entries with a time-range may not be created while a TOD suite refers to that filter. QoS policies and filters referred to by a TOD suite must have scope “template” (default). The following syntax is used to configure TOD-suite egress parameters.

CLI Syntax:
```
config
cron
tod-suite tod-suite-name create
egress
    filter ip ip-filter-id [time-range time-range-name]
    [priority priority]
    filter mac mac-filter-id [time-range time-range-name]
    [priority priority]
```

Example:
```
config>cron>tod-suite$ egress filter ip 100
config>cron>tod-suite$
```

The following command shows an egress IP filter association with filter ID 100.
```
sim1>config>filter# ip-filter 100 create
sim1>config>filter>ip-filter$ entry 10 create
sim1>config>filter>ip-filter>entry$
A:sim1>config>cron>tod-suite# egress filter ip 100
A:sim1>config>cron>tod-suite# info detail
----------------------------------------------
no description
egress
    filter ip 100
exit
----------------------------------------------
A:sim1>config>cron>tod-suite#
```
Ingress

This command is an enhancement for specific ingress policies including filter lists and QoS policies. Use this command to create time-range based associations of previously created filter lists QoS policies. Multiple policies may be included and each must be assigned a different priority; in case time-ranges overlap, the priority will be used to determine the prevailing policy. Only a single reference to a policy may be included without a time-range. To configure a daily time-range across midnight, use a combination of two entries. An entry that starts at hour zero will take over from an entry that ends at hour 24.

CLI Syntax: config>system
cron
tod-suite tod-suite-name create
 ingress
 filter ip ip-filter-id [time-range time-range-name] [priority priority]
 filter mac mac-filter-id [time-range time-range-name] [priority priority]
 qos policy-id [time-range time-range-name] [priority priority]

Example: config>cron>tod-suite$ ingress filter ip 100
config>cron>tod-suite$

The following command shows an ingress IP filter association with filter ID 100.

sim1>config>filter# ip-filter 100 create
A: sim1>config>filter>ip-filter$ entry 10 create
A: sim1>config>filter>ip-filter>entry$
...
A: sim1>config>cron>tod-suite# ingress filter ip 100
A: sim1>config>cron>tod-suite# info detail
--
no description
ingress
 filter ip 100
exit
--
A: sim1>config>cron>tod-suite#
Example:

```
config>cron>tod-suite$ ingress qos 101
```

```
config>cron>tod-suite$
```

The following command shows an association with ingress QoS-SAP policy 101.

```
A:sim1>config>qos# sap-egress 101 create
...
A:sim1>config>cron>tod-suite# ingress qos 101
A:sim1>config>cron>tod-suite# info detail
----------------------------------------------
no description
ingress
qos 101
exit
----------------------------------------------
A:sim1>config>cron>tod-suite#
```
Configuring Backup Copies

The `config-backup` command allows you to specify the maximum number of backup versions of configuration and index files kept in the primary location.

For example, assume the `config-backup count` is set to 5 and the configuration file is called `xyz.cfg`. When a `save` command is executed, the file `xyz.cfg` is saved with a `.1` extension. Each subsequent `config-backup` command increments the numeric extension until the maximum count is reached. The oldest file (5) is deleted as more recent files are saved.

```
xyz.cfg
xyz.cfg.1
xyz.cfg.2
xyz.cfg.3
xyz.cfg.4
xyz.cfg.5
xyz.ndx
```

Each persistent index file is updated at the same time as the associated configuration file. When the index file is updated, then the save is performed to `xyz.cfg` and the index file is created as `xyz.ndx`. Synchronization between the active and standby is performed for all configurations and their associated persistent index files.

CLI Syntax:
```
config>system
config-backup count
```

Example:
```
config>system#
config>system# config-backup 7
```

The following example shows the `config-backup` configuration.

```
A:ALA-12>config>system>time# info
#------------------------------------------
echo "System Configuration"
#------------------------------------------
name "ALA-12"
    contact "Fred Information Technology"
    location "Bldg.1-floor 2-Room 201"
    clii-code "abcdefg1234"
    coordinates "N 45 58 23, W 34 56 12"
    config-backup 7
...
----------------------------------------------
A:ALA-12>config>system>time#
```

```
System Administration Parameters

Use the CLI syntax displayed below to configure various system administration parameters.

Administrative parameters include:

- Validating the Golden Bootstrap Image on page 233
- Updating the Golden Bootstrap Image on page 234
- Disconnect on page 234
- Set-time on page 235
- Display-config on page 235
- Save on page 237
- Reboot on page 238
- Post-Boot Configuration Extension Files on page 239

Validating the Golden Bootstrap Image

The `admin>check-golden-bootstrap` command validates the current golden bootstrap image, and displays its version. A default golden bootstrap image is installed on every 7210 SAS E unit.

**CLI Syntax:**

```
admin
 check-golden-bootstrap
```

**Example:**

```
admin# check-golden-bootstrap
```

The following example displays the output.

```
version TiMOS-L-0.0.1312
Golden Bootstrap Image validation successful
```
**Updating the Golden Bootstrap Image**

The `admin>update-golden-bootstrap` command validates the input file, which must be a 7210 SAS E bootstrap image, and updates the golden bootstrap image with the contents of this file.

**Note:** Only on 7210 SAS-D newer platforms, the `admin>update-golden-bootstrap` CLI command does not update the golden-bootstrap image with the boot.tim specified in the parameter value, if the boot.tim is not a new image.

**CLI Syntax:**

```
admin
update-golden-bootstrap [file-url]
```

**Example:**

```
admin# update-golden-bootstrap boot.tim
```

The following is an example of the output.

```
Updating Golden Bootstrap Image from "boot.tim"
This operation must not be interrupted
Updating Golden Bootstrap image Completed.
```

**Disconnect**

The `disconnect` command immediately disconnects a user from a console, Telnet, FTP, or SSH session.

**Note:** Configuration modifications are saved to the primary image file.

**CLI Syntax:**

```
admin
disconnect [address ip-address | username user-name | {console|telnet|ftp|ssh}]
```

**Example:**

```
admin# disconnect
```

The following example displays the disconnect command results.

```
ALA-1>admin# disconnect
ALA-1>admin# Logged out by the administrator
Connection to host lost.
C:\>
```
Set-time

Use the set-time command to set the system date and time. The time entered should be accurate for the time zone configured for the system. The system will convert the local time to UTC before saving to the system clock which is always set to UTC. If SNTP or NTP is enabled (no shutdown) then this command cannot be used. The set-time command does not take into account any daylight saving offset if defined.

CLI Syntax:  
admin
  set-time date time

Example:  
admin# set-time 2007/02/06 04:10:00

The following example displays the set-time command results.

ALA-2# admin set-time 2007/02/06 04:10:00
ALA-2# show time
Thu Feb 2 04:10:04 GMT 2007
ALA-2#

Display-config

The display-config command displays the system’s running configuration.

CLI Syntax:  
admin
  display-config [detail] [index]

Example:  
admin# display-config detail

The following example displays a portion of the display-config detail command results.

A:ALA-12>admin# display-config detail
#------------------------------------------
echo "System Configuration"
#------------------------------------------
system
  name "ALA-12"
  contact "Fred Information Technology"
  location "Bldg.1-floor 2-Room 201"
  clli-code "abcdefg1234"
  coordinates "N 45 58 23, W 34 56 12"
  config-backup 7
  boot-good-exec "ftp://test:test@192.168.xx.xxx/./1xx.cfg.A"
  boot-bad-exec "ftp://test:test@192.168.xx.xxx/./1xx.cfg.1"
  lacp-system-priority 1
  no synchronize
  snmp
    shutdown
    engineID "0000197f000000000467ff00"
packet-size 1500
   general-port 161
   exit
   login-control
   ftp
      inbound-max-sessions 3
      exit
   telnet
      inbound-max-sessions 5
      outbound-max-sessions 2
      exit
   idle-timeout 1440
   pre-login-message "Property of Service Routing Inc. Unauthorized access prohibited."
   motd text "Notice to all users: Software upgrade scheduled 3/2 1:00 AM"
   exit
   security
   management-access-filter
      default-action permit
      entry 1
      no description

...
**Tech-support**

The `tech-support` command creates a system core dump. **NOTE:** This command should only be used with explicit authorization and direction from Alcatel-Lucent’s Technical Assistance Center (TAC).

---

**Save**

The `save` command saves the running configuration to a configuration file. When the `debug-save` parameter is specified, debug configurations are saved in the config file. If this parameter is not specified, debug configurations are not saved between reboots.

**CLI Syntax:**

```
admin
 save [file-url] [detail] [index]
 debug-save [file-url]
```

**Example:**

```
admin# save ftp://test:test@192.168.x.xx/.1.cfg
admin# debug-save debugsave.txt
```

The following example displays the `save` command results.

```
A:ALA-1>admin# save ftp://test:test@192.168.x.xx/.1x.cfg
Writing file to ftp://test:test@192.168.x.xx/.1x.cfg
Saving configuration ...Completed.
A:ALA-1>admin# debug-save ftp://test:test@192.168.x.xx/.debugsave.txt
Writing file to ftp://test:test@192.168.x.xx/.debugsave.txt
Saving debug configuration ...Completed.
A:ALA-1>admin#
```
**Reboot**

The `reboot` command reboots the router including redundant cards in redundant systems. If the `now` option is not specified, you are prompted to confirm the reboot operation.

**CLI Syntax:**
```
admin
reboot [auto-init][now]
```

**Example:**
```
admin# reboot now
```

The following example displays the `reboot` command results.

```
A:ALA-1>admin# reboot now
Are you sure you want to reboot (y/n)? y
Rebooting...
Using preloaded VxWorks boot loader.
...
```

When an `admin reboot auto-init` command is issued, the system resets the existing BOF file and reboots. The system startup process after the `admin reboot auto-init` command is executed is the same as the first time system boot as described in System Initialization on page 102.

**NOTE:** Since the BOF is reset, the system may not boot up with the last saved system configuration unless the new BOF file also uses the same configuration file. If it is required that the system boot up with the last saved system configuration, it is recommended to use the `admin>save file-url` command to save the current system configuration and modify the BOF to use this.

Use the following CLI to reset the BOF and reboot:

**CLI Syntax:**
```
admin# reboot auto-init [now]
```

**Example:**
```
*A:ALA-1# admin reboot auto-init
WARNING: Configuration and/or Boot options may have changed since the last save.
Are you sure you want to reset the bof and reboot (y/n)? Y
Resetting...OK
```

Alcatel-Lucent 7210 Boot ROM. Copyright 2000-2008 Alcatel-Lucent.
All rights reserved. All use is subject to applicable license agreements.
Post-Boot Configuration Extension Files

Two post-boot configuration extension files are supported and are triggered when either a successful or failed boot configuration file is processed. The commands specify URLs for the CLI scripts to be run following the completion of the boot-up configuration. A URL must be specified or no action is taken. The commands are persistent between router (re)boots and are included in the configuration saves (admin>save).

**CLI Syntax:**
```
config>system
 boot-bad-exec file-url
 boot-good-exec file-url
```

**Example:**
```
config>system# boot-bad-exec ftp://test:test@192.168.xx.xxx/./fail.cfg
config>system# boot-good-exec ftp://test:test@192.168.xx.xxx/./ok.cfg
```

The following example displays the command output:
```
*A:ALA# configure system
*A:ALA>config>system# info
--
#--
echo "System Configuration"
#--
nname "ALA"
boot-good-exec "cf1:\good.cfg"
boot-bad-exec "cf1:\bad.cfg"
snmp
 shutdown
exit
login-control
 idle-timeout disable
 pre-login-message "ala-1" name
exit
time
 ntp
 authentication-key 1 key "SV3BxZCsIvI" hash type message-digest
 server 10.135.16.130
 peer 21.0.0.1 key-id 1
 no shutdown
exit
 snntp
 server-address 10.135.16.90 preferred
 no shutdown
exit
zone UTC
exit
thresholds
rmon
exit
exit
```

#--------------------------------------------------
echo "System Security Configuration"
#--------------------------------------------------
security
    hash-control read-version all write-version 1
telnet-server
ftp-server
snmp
    community "private" rwa version both
    community "public" r version both
exit
source-address
    application ftp 10.135.16.97
    application snmptrap 10.135.16.97
    application ping 10.135.16.97
    application dns 10.135.16.97
exit
exit
#-----------------------------------------------
*A:ALA>config>system#
Show Command Output and Console Messages

The `show>system>information` command displays the current value of the bad/good exec URLs and indicates whether a post-boot configuration extension file was executed when the system was booted. If an extension file was executed, the `show>system>information` command also indicates if it completed successfully or not.

When executing a post-boot configuration extension file, status messages are output to the CONSOLE screen prior to the “Login” prompt.

Following is an example of a failed boot-up configuration that caused a boot-bad-exec file containing another error to be executed:

```
Attempting to exec configuration file:
'ftp://test:test@192.168.xx.xxx/./12.cfg' ...
System Configuration
Log Configuration
MAJOR: CLI #1009 An error occurred while processing a CLI command -
CRITICAL: CLI #1002 An error occurred while processing the configuration file.
The system configuration is missing or incomplete.
MAJOR: CLI #1008 The SNMP daemon is disabled.
If desired, enable SNMP with the 'config>system>snmp no shutdown' command.
Attempting to exec configuration failure extension file:
'ftp://test:test@192.168.xx.xxx/./fail.cfg' ...
Config fail extension
Enabling SNMP daemon
MAJOR: CLI #1009 An error occurred while processing a CLI command -
TiMOS-B-x.0.Rx both/hops ALCATEL Copyright (c) 2000-20011 Alcatel-Lucent.
All rights reserved. All use subject to applicable license agreements.
Built on Thu Nov 207 19:19:11 PST 2008 by builder in /rel5x.0/b1/Rx/panos/main
Login:
```
System Timing

When synchronous Ethernet is enabled, the operator can select an Ethernet port as a candidate for timing reference. The timing information recovered from this port is used to time the system.

Note: In the current release the derived time is distributed only through other Ethernet ports.

CLI Syntax:
```
config>system>sync-if-timing
abort
begin
commit
ref-order first second
ref1
 source-port port-id
 no shutdown
ref2
 source-port port-id
 no shutdown
no revert
```

Edit Mode

To enter the mode to edit timing references, you must enter the `begin` keyword at the `config>system>sync-if-timing#` prompt.

Use the following CLI syntax to enter the edit mode:

**CLI Syntax:** config>system>sync-if-timing
    begin

The following error message displays when the you try to modify `sync-if-timing` parameters without entering the keyword `begin`.

**Note:** Use the option commit to save or abort to discard the changes made in a session.

```ruby
ort 2/1/1
MINOR: CLI The sync-if-timing must be in edit mode by calling begin before any changes can be made.
MINOR: CLI Unable to set source port for ref1 to 2/1/1.
A:ALA-12>config>system>sync-if-timing>ref1#
```
Configuring Timing References

Configuration Guidelines

Ref1 has to be configured to use one of the ports from 1/1/1 up to 1/1/4 and ref2 should be configured to use either 1/1/5 or 1/1/6. The software enforces this check. The ports 1/1/7 up to 1/1/10 can be configured as either ref1 or ref2.

Listed below is an example to configure timing reference parameters.

Example:

```
config>system# sync-if-timing
config>system>sync-if-timing# begin
config>system>sync-if-timing# ref1
config>system>sync-if-timing>ref1# source-port 1/1/1
config>system>sync-if-timing>ref1# no shutdown
config>system>sync-if-timing>ref1# exit
config>system>sync-if-timing# ref2
config>system>sync-if-timing>ref2# source-port 1/1/2
config>system>sync-if-timing>ref2# no shutdown
config>system>sync-if-timing>ref2# exit
config>system>sync-if-timing>commit
```

The following displays the timing reference parameters:

```
*7210-SAS>config>system>sync-if-timing#info detail

 ref-order ref1 ref2
 ref1
 source-port 1/1/1
 no shutdown
 exit
 ref2
 source-port 1/1/2
 no shutdown
 exit
 no revert

```
Using the Revert Command

If the current reference goes offline or becomes unstable the revert command allows the clock to **revert** to a higher-priority reference.

When revert is switching enabled a valid timing reference of the highest priority is used. If a reference with a higher priority becomes valid, a reference switch over to that reference is initiated. If a failure on the current reference occurs, the next highest reference takes over.

If non-revertive switching is enabled, the valid active reference always remains selected even if a higher priority reference becomes available. If the active reference becomes invalid, a reference switch over to a valid reference with the highest priority is initiated. The failed reference is eligible for selection once it becomes operational.

CLI Syntax: `config>system>sync-if-timing
no revert`
Configuring System Monitoring Thresholds

Creating Events

The event command controls the generation and notification of threshold crossing events configured with the alarm command. When a threshold crossing event is triggered, the rmon event configuration optionally specifies whether an entry in the RMON-MIB log table be created to record the occurrence of the event. It can also specify whether an SNMP notification (trap) be generated for the event. There are two notifications for threshold crossing events, a rising alarm and a falling alarm.

Creating an event entry in the RMON-MIB log table does not create a corresponding entry in the event logs. However, when the event is set to trap the generation of a rising alarm or falling alarm notification creates an entry in the event logs and that is distributed to whatever log destinations are configured: console, session, memory, file, syslog, or SNMP trap destination. The logger message includes a rising or falling threshold crossing event indicator, the sample type (absolute or delta), the sampled value, the threshold value, the rmon-alarm-id, the associated rmon-event-id and the sampled SNMP object identifier.

The alarm command configures an entry in the RMON-MIB alarm table. The alarm command controls the monitoring and triggering of threshold crossing events. In order for notification or logging of a threshold crossing event to occur there must be at least one associated rmon event configured.

The agent periodically takes statistical sample values from the MIB variable specified for monitoring and compares them to thresholds that have been configured with the alarm command. The alarm command configures the MIB variable to be monitored, the polling period (interval), sampling type (absolute or delta value), and rising and falling threshold parameters. If a sample has crossed a threshold value, the associated ‘event’ is generated.

Preconfigured CLI threshold commands are available. Preconfigured commands hide some of the complexities of configuring RMON alarm and event commands and perform the same function. In particular, the preconfigured commands do not require the user to know the SNMP object identifier to be sampled. The preconfigured threshold configurations include memory warnings and alarms and compact flash usage warnings and alarms.
To create events, use the following CLI:

**Example:**
```
config>system>thresholds# cflash-cap-warn cf1-B: rising-threshold 2000000 falling-threshold 1999900 interval 240 trap startup-alarm either
```

**Example:**
```
config>system>thresholds# memory-use-alarm rising-threshold 50000000 falling-threshold 45999999 interval 500 both startup-alarm either
```

**Example:**
```
config>system>thresh# rmon
```

**Example:**
```
config>system>thresh>rmon# event 5 both description "alarm testing" owner "Timos CLI"
```

The following example displays the command output:

```
A:ALA-49>config>system>thresholds# info
--
 rmon
 event 5 description "alarm testing" owner "Timos CLI"
 exit
 cflash-cap-warn cf1-B: rising-threshold 2000000 falling-threshold 1999900 interval 240 trap
 memory-use-alarm rising-threshold 50000000 falling-threshold 45999999 interval 500
--
A:ALA-49>config>system>thresholds#
```
System Alarm Contact Inputs in 7210 SAS-E devices

The 7210 SAS E platform hardware supports alarm contact inputs that allow an operator to monitor and report changes in the external environmental conditions. In a remote or outdoor deployment, alarm contact inputs allow an operator to detect conditions, for example, air conditioner fault, open door.

An operator can configure generation of events when alarm contact inputs transition between the open and close states. For each generated event, the operator can specify the:

- Action associated with each state transition.
- Severity associated with each state transition.
- Log message associated with each state transition.
The following output displays LLDP defaults:

```
A:7210-SAS>config>system>lldp# info detail

 no tx-interval
 no tx-hold-multiplier
 no reinit-delay
 no notification-interval
 no tx-credit-max
 no message-fast-tx
 no message-fast-tx-init
 no shutdown

```

The following example displays an LLDP port configuration:

```
*A:7210-SAS>config>port>ethernet>lldp# info

 dest-mac nearest-bridge
 admin-status tx-rx
 tx-tlvs port-desc sys-cap
 tx-mgmt-address system
 exit

*A:7210-SAS>config>port>ethernet>lldp#
```

The following example displays a global system LLDP configuration:

```
A:7210-SAS>config>system>lldp# info

 tx-interval 10
 tx-hold-multiplier 2
 reinit-delay 5
 notification-interval 10

A:7210-SAS>config>system>lldp#
```
System Resource Allocation

Allocation of Ingress Internal TCAM resources

In current releases, the system statically allocates ingress TCAM resources for use by SAP ingress QoS classification, SAP ingress access control list (ACLs), Identifying and sending CFM OAM packets to CPU for local processing, and so on. The resource allocation is not user configurable. With introduction of new capabilities such as IPv6 classification, UP MEP support, and G8032-fast-flood, the static allocation of resources by software does not meet requirements of different customers, who typically want to use different features.

The user can allocate a fixed amount of resources per system to be used for QoS, ACLs, CFM/ Y.1731 MEPs and other features. Some of these parameters are boot-time and others are run-time. A change in current value of the parameter that is designated ‘boot-time’ needs a reboot of the node, before the new value takes effect. Change in current value of the parameter that is designated ‘run-time’ takes effect immediately, if the software determines resources are available for use to accommodate the change.

During system bootup, the system reads all the resource profile parameters and allocates resources to the features, in the order of which it appears in the configuration file. (NOTE: The order in which the command appears in the configuration file is important). The resources are shared; therefore the user has to ensure that the sum total of such resources does not exceed the limit supported by the platform. If the system determines that it cannot allocate the requested resources, the system disables the feature from us. For example, if the system determines that it cannot allocate resources for g8032-fast-flood, it disables the feature from use (that is, G8032 eth-rings does not use fast-flood mechanisms). Another example is, if the system determines that it cannot allocate resources for ipv4-based SAP Ingress ACL classification, then the system does not allow users to use ipv4-based SAP ingress ACL classification feature and fails the configuration when it comes upon the first SAP in the configuration file which uses an IPv4-based SAP ingress ACL policy.

For boot-time parameters, such as g8032-fast-flood-enable, it is the user’s responsibility to ensure that configuration of services matches the resource allocated. If the system determines that it cannot allocate resources to services then it fails the configuration file at the first instance where it encounters a command to which resources cannot be allocated. The available resources can be allocated to different features. Please refer to the scaling guide for amount of resources available per platform and per feature.

For ACL and QoS resources, the user has the option to allocate resources to limit usage per feature, irrespective of the match criteria used (that is, sum of all resources used for different SAP ingress classification match-criteria is limited by the amount allocated for SAP ingress classification) and can further allocate resources for use by specific match criteria. User can enable any of the match criteria from among those supported and associate a fixed amount of resources with each of them in are put together of fixed sizes (the chunk size is dependent on the platform).
The system attempts to allocate resources in order it appears in the configuration file and fails any match criteria if it does not have any more resources to allocate. User is also provided with a keyword ‘max’ to indicate that the system needs to allocate resources when it is first required, as long as the maximum resources allocated for that feature is not exceeded or maximum resource available in the system is not exceeded. 7210 platforms allocates resources to each of the features and the match-criteria in fixed size chunks, on priority basis. The chunk size for 7210 SAS-E is 512 and for 7210 SAS-D is 256.

The no forms of the command disables the use of corresponding match criteria. During runtime, the command succeeds, if no SAPs are currently using the criteria. Similarly, reduction of resources from the current value to a lower value succeeds, if no SAPs are currently using the criteria. If the system can successfully execute the command, it can free up the resources which were in use by that slice or chunk and makes it available for use by other features. This implies the user either deletes a SAP or removes the ingress ACL policy association with a SAP to free up resources. By executing these commands the system releases some entries in a given chunk or releases an entire chunk. If an entire chunk is freed, it is returned to the system free pool for use by other features. If some entries in the chunk are freed, it is made available for use by other SAPs using the same feature to which the chunk has been allocated to.

The ‘no’ form of the commands which are designated as boot-time does not take effect immediately. It takes effect after the reboot. Before reboot it is the user’s responsibility to free up resources required for use by the feature which has been enabled to take effect after the reboot. By not doing so, results in failure when the configuration file is executed on boot up.

For more details about individual commands and features that use System Resource Allocation. Please see the CLI descriptions and the feature description in the respective user guides.

**Allocation of Egress Internal TCAM resources**

In the current releases, the system statically allocates egress TCAM resources for use by different criteria in SAP egress access control list (ACLs) and other purposes. The resource allocation is not user configurable. With introduction of new capabilities such as IPv6 match criteria in egress, the static allocation of resources by software does not meet requirements of different customers, who typically want to use different features. Therefore, ingress internal TCAM resource allocation capabilities has been extended to the egress internal TCAM resources.

For more details about individual commands and features that use System Resource Allocation. Please see the CLI descriptions and the feature description in the respective user guides.

**NOTE**: Boot-time commands under the config> system> resource-profile will not take effect when a configuration file is executed using the 'exec' CLI command. Boot-time commands under the config> system> resource-profile are read and acted upon by the system only during boot.
System Resource Allocation Examples

Example one:

```
config> system> resource-profile
...
 acl-sap-ingress 3
 mac-match-enable max
 ipv4-match-enable 1
 no ipv6_128-ipv4-match-enable
 no ipv6_64-only-match-enable
exit
...
```

In the above example CLI, the system takes the following actions:

- System allocates 3 chunks for use by the SAP ingress ACL entries.
- System allocates 1 chunk for use by SAP ingress ACL entries using ipv4-criteria. The system fails the configuration when the number of ACL entries using ipv4-criteria exceeds the configured limit (that is, the system does not allocate in excess of the configured limit of 1 chunk).
- System allocates a chunk for use by SAP ingress ACL entries using mac-criteria. The system initially allocates 1 chunk for use by SAPs that use ingress ACLs with mac-criteria. The system can allocate more chunks, up-to 2 chunks, as the user has specified the ‘max’ keyword. More chunks are allocated when user configures SAP that use mac-criteria and all of the entries in the allocated chunk(s) is used up. The system fails the configuration when the number of ACL entries with mac-criteria exceeds the limit of 2 chunks allocated to SAP ingress ACL match (that is, the system does not allocate in excess of the configured limit of 3 chunks = up-to 2 for mac-criteria and 1 for ipv4-criteria).
- The system fails user attempt to use SAP ingress ACLs with ipv6 match criteria (and the other combinations listed above), as the user has disabled the use of these criteria.

Example 2:

```
config> system> resource-profile>ingress-internal-tcam>
...
 acl-sap-ingress 3
 mac-match-enable max
 ipv4-match-enable 1
 no ipv6_128-ipv4-match-enable
 ipv6_64-only-match-enable max
exit
...
```

In the above example CLI, the system will take the following actions:

- System allocates 3 chunks for use by the SAP ingress ACL entries.
• System allocates 1 chunk for use by SAP ingress ACL entries using ipv4-criteria. The system fails the configuration when the number of ACL entries using ipv4-criteria exceeds the configured limit (that is, the system does not allocate in excess of the configured limit of 1 chunk).

• System allocates a chunk for use by SAP ingress ACL entries using mac-criteria. The system initially allocates 1 chunk for use by SAPs that use ingress ACLs with mac-criteria. The system can allocate more chunks, as the user has specified the ‘max’ keyword, if a chunk is available for use. In this particular example, as there are no more chunks available, mac-criteria cannot allocate more than 1 chunk (even though it specifies the max keyword). The system fails the configuration when the number of ACL entries with mac-criteria exceeds the limit of 1 chunks allocated to SAP ingress ACL mac-criteria (that is, the system does not allocate in excess of the configured limit of 3 chunks = 1 for mac-criteria + for ipv4-criteria + 1 for ipv6-criteria).

• System allocates a chunk for use by SAP ingress ACL entries using ipv6-64-bit criteria. The system initially allocates 1 chunk for use by SAPs that use ingress ACLs with ipv6-64-bit criteria. The system can allocate more chunks, as the user has specified the ‘max’ keyword. In this particular example, as there are no more chunks available, ipv6-64-bit criteria cannot allocate more than 1 chunk (even though it specifies the max keyword). The system fails the configuration when the number of ACL entries with ipv6-64-bit criteria exceeds the limit of one chunk allocated to SAP ingress ACL match (that is, the system does not allocate in excess of the configured limit of 3 chunks = 1 for mac-criteria + 1 for ipv4-criteria + 1 for ipv6-64-bit criteria).

• The system fails the user attempt to use SAP ingress ACLs with ipv6-128 bit match criteria (and the other combinations listed above), as the user has disabled use of these criteria.

In the example-2 above, the user can execute no ipv4-match-enable to disable use of ipv4-criteria. The system checks if there are SAPs using ipv4-criteria and fails the command if one exists; else it the chunk freed, is for use with either mac-criteria or ipv6-64-bit criteria. The entire chunk is allocated to mac-criteria, if the first SAP that needs resources requests for mac-criteria and there are no entries in the chunk already allocated to mac-criteria, leaving no more resources for use by ipv6-64-bit criteria or the entire chunk is allocated to ipv6-64-bit criteria, if the first SAP that needs resources requests for ipv6-64-bit criteria and there are no entries in the chunk already allocated to ipv6-64-bit criteria, leaving no resources for use by mac-criteria.
System Command Reference

Command Hierarchies

Configuration Commands

- System Information Commands on page 253
- System Alarm Commands on page 254
- PTP Commands (applicable only to 7210 SAS-D ETR) on page 252
- System Time Commands on page 255
- Cron Commands on page 256
- System Administration (Admin) Commands on page 257
- System Alarm Contact Commands on page 258
- LLDP System Commands on page 260
- LLDP Ethernet Port Commands on page 260
- System Resource-Profile Commands for 7210 SAS-D on page 260
- Fan Controller Commands for 7210 SAS-D and 7210 SAS-D ETR variant with 128MB flash on page 262
- Show Commands on page 263
- Debug Commands on page 264
- Clear Commands on page 264

System Information Commands

```
config
 system
 alarm-contact-input <alarm-contact-input-id> (supported only on 7210 SAS E)
 boot-bad-exec file-url
 no boot-bad-exec
 cli-code <cli-code>
 no cli-code
 config-backup count
 no config-backup
 contact <contact-name>
 no contact
 coordinates <coordinates>
 no coordinates
 lacp-system-priority <lacp-system-priority>
 no lacp-system-priority
 lldp
 location <location>
 no location
```
Command Hierarchies

— login-control
— name system-name
— no name
— power-supply [power-supply-id] type (supported only on 7210 SAS-D ETR)

System Alarm Commands

config
   — system
      — thresholds
         — cflash-cap-alarm cflash-id rising-threshold threshold [falling-threshold threshold] interval seconds [rmon-event-type] [startup-alarm alarm-type]
         — no cflash-cap-alarm cflash-id
         — cflash-cap-warn cflash-id rising-threshold threshold [falling-threshold threshold] interval seconds [rmon-event-type] [startup-alarm alarm-type]
         — no cflash-cap-warn cflash-id
         — memory-use-alarm rising-threshold threshold [falling-threshold threshold] interval seconds [rmon-event-type] [startup-alarm alarm-type]
         — no memory-use-alarm
         — memory-use-warn rising-threshold threshold [falling-threshold threshold] interval seconds [rmon-event-type] [startup-alarm alarm-type]
         — no memory-use-warn
         — [no] rmon
            — alarm rmon-alarm-id variable-oid oid-string interval seconds [sample-type] [startup-alarm alarm-type] [rising-event rmon-event-id rising-threshold threshold] [falling event rmon-event-id falling-threshold threshold] [owner owner-string]
            — no alarm rmon-alarm-id
            — event rmon-event-id [event-type] [description description-string] [owner owner-string]
            — no event rmon-event-id

PTP Commands (applicable only to 7210 SAS-D ETR)

config
   — system
      — ptp
         — clock-type boundary
         — clock-type ordinary {slave}
         — [no] domain domain
         — [no] log-sync-interval value
         — network-type {sonet|sdh}
         — [no] peer ip-address [create]
            — [no] priority local-priority
            — [no] shutdown
         — profile {g8265dot1-2010|ieee1588-2008}
         — [no] priority1 priority-value
         — [no] priority2 priority-value
         — [no] shutdown
System Time Commands

root
  -- admin
    -- set-time [date] [time]

config
  -- system
    -- time
      -- [no] ntp
        -- [no] authentication-check
        -- authentication-key key-id key [hash | hash2] type {des | message-digest}
        -- no authentication-key key-id
        -- [no] broadcast [router router-name] {interface ip-int-name} [key-id key-id]
          [version version] [ttl ttl]
        -- [no] broadcast [router router-name] {interface ip-int-name}
        -- broadcastclient [router router-name] {interface ip-int-name} [authenticate]
        -- [no] broadcastclient [router router-name] {interface ip-int-name}
        -- [no] ntp-server [transmit key-id]
        -- [no] peer ip-address [version version] [key-id key-id] [prefer]
        -- [no] server ip-address [version version] [key-id key-id] [prefer]
        -- [no] shutdown

-- [no] sntp
  -- [no] broadcast-client
  -- server-address ip-address [version version-number] [normal | preferred]
    [interval seconds]
  -- no server-address ip-address
  -- [no] shutdown

-- [no] dst-zone [std-zone-name | non-std-zone-name]
  -- end {end-week} {end-day} {end-month} [hours-minutes]
  -- offset offset
  -- start {start-week} {start-day} {start-month} [hours-minutes]
  -- zone std-zone-name | non-std-zone-name [hh [:mm]]
  -- no zone
Cron Commands

```plaintext
config
 -- [no] cron
 -- [no] action action-name [owner owner-name]
 -- expire-time {seconds | forever}
 -- lifetime {seconds | forever}
 -- max-completed unsigned
 -- [no] results file-url
 -- [no] script script-name [owner owner-name]
 -- [no] shutdown

-- [no] schedule schedule-name [owner owner-name]
 -- [no] action action-name [owner owner-name]
 -- [no] day-of-month {day-number [..day-number] all}
 -- count number
 -- [no] description description-string
 -- [no] end-time [date|day-name] time
 -- [no] hour {..hour-number [..hour-number] all}
 -- [no] interval seconds
 -- [no] minute {minute-number [..minute-number] all}
 -- [no] month {month-number [..month-number] month-name [..month-name] all}
 -- [no] shutdown
 -- type {schedule-type}
 -- [no] weekday {weekday-number [..weekday-number] day-name [..day-name] all}

-- [no] script [no] script script-name [owner owner-name]
 -- [no] description description-string
 -- [no] location file-url
 -- [no] shutdown

-- [no] time-range name [create]
 -- absolute start start-absolute-time end end-absolute-time
 -- no absolute start start-absolute-time
 -- daily start start-time-of-day end end-time-of-day
 -- no daily start start-time-of-day
 -- [no] description description-string
 -- weekdays start start-time-of-day end end-time-of-day
 -- no weekdays start start-time-of-day
 -- weekend start start-time-of-day end end-time-of-day
 -- no weekend start start-time-of-day
 -- weekly start start-time-in-week end end-time-in-week
 -- no weekly start start-time-in-week

-- [no] tod-suite <tod-suite-name> [create]
 -- egress
 -- filter ip ip-filter-id [time-range time-range-name] [priority priority]
 -- filter mac mac-filter-id [time-range time-range-name] [priority priority]
 -- no filter ip ip-filter-id [time-range time-range-name]
 -- no filter mac mac-filter-id [time-range time-range-name]

 -- ingress
 -- filter ip ip-filter-id [time-range time-range-name] [priority priority]
 -- filter mac mac-filter-id [time-range time-range-name] [priority priority]
 -- no filter ip ip-filter-id [time-range time-range-name]
 -- no filter mac mac-filter-id [time-range time-range-name]

 -- qos policy-id [time-range time-range-name] [priority priority]
 -- no qos policy-id [time-range time-range-name]
```
System Administration (Admin) Commands

```
root
 -- admin
 -- check-golden-bootstrap
 -- debug-save file-url
 -- disconnect {address ip-address | username user-name | console | telnet | ftp | ssh}
 -- display-config [detail | index]
 -- [no] enable-tech
 -- reboot [auto-init] [now]
 -- save [file-url] [detail] [index]
 -- set-time <date> <time>
 -- tech-support [file-url]
 -- update-golden-bootstrap [file-url]
```
System Alarm Contact Commands

**Note:** System alarm contact commands are not supported on 7210 SAS-D devices.

```
config
 system
 alarm-contact-input alarm-contact-input-id
 alarm-output-severity [critical | major | minor | none]
 clear-alarm-msg {alarm-msg-txt}
 description description-string
 normal-state [open | closed]
 shutdown
 trigger-alarm-msg {alarm-msg-txt}
```
System Synchronization Commands

```
config
 -- system
 -- sync-if-timing
 -- abort
 -- begin
 -- commit
 -- ref-order first second
 -- no ref-order
 -- refl
 -- ql-override {prs | stu | st2 | tnc | st3e | st3 | prc | ssua | ssub | sec | eec1 | eec2}
 -- no ql-override
 -- [no] shutdown
 -- source-port port-id
 -- no source-port
 -- ref2
 -- ql-override {prs | stu | st2 | tnc | st3e | st3 | prc | ssua | ssub | sec | eec1 | eec2}
 -- no ql-override
 -- [no] shutdown
 -- source-port port-id
 -- no source-port
 -- [no] ql-selection
 -- [no] revert
```
LLDP System Commands

```
configure
 -- system
 -- lldp
 -- message-fast-tx time
 -- no message-fast-tx
 -- message-fast-tx-init count
 -- no message-fast-tx-init
 -- notification-interval time
 -- no notification-interval
 -- reinit-delay time
 -- no reinit-delay
 -- [no] shutdown
 -- tx-credit-max count
 -- no tx-credit-max
 -- tx-hold-multiplier multiplier
 -- no tx-hold-multiplier
 -- tx-interval interval
 -- no tx-interval
```

LLDP Ethernet Port Commands

```
configure
 -- port port-id
 -- ethernet
 -- lldp
 -- dest-mac {nearest-bridge | nearest-non-tpmr | nearest-customer}
 -- admin-status {rx | tx | tx-rx | disabled}
 -- [no] notification
 -- tx-mgmt-address [system]
 -- no tx-mgmt-address
 -- tx-tlvs [port-desc] [sys-name] [sys-desc] [sys-cap]
 -- no tx-tlvs
```

System Resource-Profile Commands for 7210 SAS-D

```
configure
 -- system
 -- resource-profile
 -- egress-internal-tcam
 -- acl-sap-egress [num-resources]
 -- no acl-sap-egress
 -- [no] ipv6-128bit-match-enable num-resources
 -- mac-ipv4-match-enable num-resources
 -- no mac-ipv4-match-enable
 -- mac-ipv6-64bit-match-enable num-resources
 -- no mac-ipv6-64bit-match-enable
 -- mac-match-enable num-resources
 -- no mac-match-enable
 -- ingress-internal-tcam
```
System Resource-Profile Commands for 7210 SAS-E

configure
  -- system
  -- resource-profile
    -- ingress-internal-team
      -- no qos-sap-ingress-resource
      -- qos-sap-ingress-resource num-resources
        -- ipv4-match-enable num-resources
        -- no ipv4-match-enable
        -- ipv6-ipv4-match-enable num-resources
        -- no ipv6-ipv4-match-enable
        -- mac-match-enable num-resources
        -- no mac-match-enable

  -- acl-sap-ingress [num-resources]
  -- no acl-sap-ingress
    -- ipv4-ipv6-128-match-enable num-resources
    -- no ipv4-ipv6-128-match-enable
    -- ipv4-match-enable num-resources
    -- no ipv4-match-enable
    -- ipv6-64-only-match-enable num-resources
    -- no ipv6-64-only-match-enable
    -- mac-match-enable num-resources
    -- no mac-match-enable

  -- eth-cfm [num-resources]
  -- no eth-cfm
    -- up-mep num-resources
    -- no up-mep

  -- no qos-sap-ingress-resource
  -- qos-sap-ingress-resource num-resources
    -- ipv4-match-enable num-resources
    -- no ipv4-match-enable
    -- ipv6-ipv4-match-enable num-resources
    -- no ipv6-ipv4-match-enable
    -- mac-match-enable num-resources
    -- no mac-match-enable

  -- sap-aggregate-meter
  -- sap-aggregate-meter num-resources

  -- [no] max-ipv6-routes number
Fan Controller Commands for 7210 SAS-D and 7210 SAS-D ETR variant with 128MB flash

```
 configure
 — system
 — fan {on | off | auto}
```
Show Commands

show
  — alarm-contact-input alarm-contact-input-id detail (supported only on 7210 SAS-E)
  — alarm-contact-input all (supported only on 7210 SAS-E)
  — [environment] [power-supply] (The ‘environment’ option is supported only on 7210 SAS-E and 7210 SAS-D. The ‘power-supply’ option is applicable only to 7210 SAS-D ETR)
  — cron
    — action action-name [owner owner-name]
    — action run-history [run-state]
    — schedule action-name [owner owner-name]
    — script script-name [owner owner-name]
    — tod-suite tod-suite-name [detail] associations failed-associations
    — time-range name associations [detail]
  — time
  — system
    — connections [address ip-address [port port-number] [detail]
    — cpu [sample-period seconds]
    — information
    — lldp
    — lldp neighbor
    — memory-pools
    — ntp
    — resource-profile [active|configured]
    — sntp
    — sync-if-timing
    — thresholds
    — time
  — uptime
  — alarm-contact-input alarm-contact-input-id [detail] (Supported only on 7210 SAS-E)
  — alarm-contact-input all (Supported only on 7210 SAS-E)
Clear Commands

```
clear
 — cron
 — action
 — completed [action-name] [owner action-owner]
 — screen
 — system
 — sync-if-timing {ref1 | ref2}
```

Debug Commands

```
debug
 — sync-if-timing
 — force-reference {ref1 | ref2}
 — no force-reference
 — [no] system
 — ntp [router router-name] [interface ip-int-name]
```

Fan controller debug command (applicable only to 7210 SAS-D and 7210 SAS-D ETR variant with 128MB flash)

```
tools
 — dump
 — fan-stats
```
System Command Reference Descriptions

Generic Commands

shutdown

Syntax

[no] shutdown

Context

config>system>time>ntp
config>system>time>snmp
config>cron>action
config>cron>sched
config>cron>script

Description

This command administratively disables the entity. When disabled, an entity does not change, reset, or remove any configuration settings or statistics.

The operational state of the entity is disabled as well as the operational state of any entities contained within. Many objects must be shut down before they may be deleted.

The no form of this command places the entity into an administratively enabled state.

Default

no shutdown

description

Syntax

description description-string
no description

Context

config>cron>sched

Description

This command creates a text description stored in the configuration file for a configuration context.

The description command associates a text string with a configuration context to help identify the content in the configuration file.

The no form of this command removes the string from the configuration.

Default

No description associated with the configuration context.

Parameters

string — The description character string. Allowed values are any string up to 80 characters long composed of printable, 7-bit ASCII characters. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.
System Information Commands

boot-bad-exec

Syntax  
<boot-bad-exec file-url>
no boot-bad-exec

Context  
config>system

Description  
Use this command to configure a URL for a CLI script to exec following a failure of a boot-up configuration. The command specifies a URL for the CLI scripts to be run following the completion of the boot-up configuration. A URL must be specified or no action is taken.

The commands are persistent between router (re)boots and are included in the configuration saves (admin>save).

Default  
no boot-bad-exec

Parameters  
file-url — Specifies the location and name of the CLI script file executed following failure of the boot-up configuration file execution. When this parameter is not specified, no CLI script file is executed.

Values  
local-url: [<cflash-id> | <usb-flash-id>][file-path]  
remote-url: [ftp://] login:pswd@remote-locn/[file-path]  
remote-locn  
ipv4-address  
cflash-id: cf1:  
usb-flash-id: uf1:

Related Commands  
exec command on page 51 — This command executes the contents of a text file as if they were CLI commands entered at the console.

boot-good-exec

Syntax  
<boot-good-exec file-url>
no boot-good-exec

Context  
config>system

Description  
Use this command to configure a URL for a CLI script to exec following the success of a boot-up configuration.

Default  
no boot-good-exec

Parameters  
file-url — Specifies the location and name of the file executed following successful completion of the boot-up configuration file execution. When this parameter is not specified, no CLI script file is executed.
Values

- file url: local-url | remote-url: 255 chars max
- local-url: [\<cflash-id/\> | \<usb-flash-id\>][file-path]
- remote-url: [\{ftp://\} login:pswd@remote-locn][file-path]
- remote-locn [ hostname | ipv4-address ]
- ipv4-address a.b.c.d
- cflash-id: cf1:
- usb-flash-id uf1:

Related Commands

- **exec command on page 51** — This command executes the contents of a text file as if they were CLI commands entered at the console.

**clli-code**

**Syntax**

```plaintext
clli-code clli-code
no clli-code
```

**Context**

config>system

**Description**

This command creates a Common Language Location Identifier (CLLI) code string for the router. A CLLI code is an 11-character standardized geographic identifier that uniquely identifies geographic locations and certain functional categories of equipment unique to the telecommunications industry.

No CLLI validity checks other than truncating or padding the string to eleven characters are performed.

Only one CLLI code can be configured, if multiple CLLI codes are configured the last one entered overwrites the previous entry.

The **no** form of the command removes the CLLI code.

**Default**

none — No CLLI codes are configured.

**Parameters**

`clli-code` — The 11 character string CLLI code. Any printable, seven bit ASCII characters can be used within the string. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes. If more than 11 characters are entered, the string is truncated. If less than 11 characters are entered the string is padded with spaces.

**config-backup**

**Syntax**

```plaintext
config-backup count
no config-backup
```

**Context**

config>system

**Description**

This command configures the maximum number of backup versions maintained for configuration files and BOF.

For example, assume the **config-backup count** is set to 5 and the configuration file is called `xyz.cfg`. When a **save** command is executed, the file `xyz.cfg` is saved with a .1 extension. Each subsequent **config-backup** command increments the numeric extension until the maximum count is reached.
xyz.cfg
xyz.cfg.1
xyz.cfg.2
xyz.cfg.3
xyz.cfg.4
xyz.cfg.5
xyz.ndx

Each persistent index file is updated at the same time as the associated configuration file. When the index file is updated, then the save is performed to \textit{xyz.cfg} and the index file is created as \textit{xyz.ndx}. Synchronization between the active and standby is performed for all configurations and their associated persistent index files.

The \texttt{no} form of the command returns the configuration to the default value.

\begin{description}
\item[Default] 5
\item[Parameters] \textit{count} — The maximum number of backup revisions.
\item[Values] 1 — 9
\end{description}

\section*{contact}

\begin{description}
\item[Syntax] \texttt{contact contact-name}
\item[no contact]
\item[Context] config>system
\item[Description] This command creates a text string that identifies the contact name for the device.

Only one contact can be configured, if multiple contacts are configured the last one entered will overwrite the previous entry.

The \texttt{no} form of the command reverts to default.

\item[Default] none — No contact name is configured.
\item[Parameters] \textit{contact-name} — The contact name character string. The string can be up to 80 characters long. Any printable, seven-bit ASCII characters can be used within the string. If the string contains special characters (\#, $, spaces, etc.), the entire string must be enclosed within double quotes.
\end{description}

\section*{coordinates}

\begin{description}
\item[Syntax] \texttt{coordinates coordinates}
\item[no coordinates]
\item[Context] config>system
\item[Description] This command creates a text string that identifies the system coordinates for the device location. For example, the command \texttt{coordinates "37.390 -122.0550"} is read as latitude 37.390 north and longitude 122.0550 west.
Only one set of coordinates can be configured. If multiple coordinates are configured, the last one entered overwrites the previous entry.

The no form of the command reverts to the default value.

**Default**

none — No coordinates are configured.

**Parameters**

coordinates — The coordinates describing the device location character string. The string may be up to 80 characters long. Any printable, seven-bit ASCII characters can be used within the string. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes. If the coordinates are subsequently used by an algorithm that locates the exact position of this node then the string must match the requirements of the algorithm.

**lacp-system-priority**

**Syntax**

lacp-system-priority lacp-system-priority
no lacp-system-priority

**Context**

config>system

**Description**

This command configures the Link Aggregation Control Protocol (LACP) system priority on aggregated Ethernet interfaces. LACP allows the operator to aggregate multiple physical interfaces to form one logical interface.

**Default**

32768

**Parameters**

lacp-system-priority — Specifies the LACP system priority.

**Values**

1 — 65535

**location**

**Syntax**

location location
no location

**Context**

config>system

**Description**

This command creates a text string that identifies the system location for the device.

Only one location can be configured. If multiple locations are configured, the last one entered overwrites the previous entry.

The no form of the command reverts to the default value.

**Default**

none — No system location is configured.

**Parameters**

location — Enter the location as a character string. The string may be up to 80 characters long. Any printable, seven-bit ASCII characters can be used within the string. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.
login-control

Syntax  
```
login-control
```

Context  
```
config>system
```

Description  
This command enables the context to configure login control.

name

Syntax  
```
name system-name
no name
```

Context  
```
config>system
```

Description  
This command creates a system name string for the device.

For example, system-name parameter ALA-1 for the name command configures the device name as ALA-1.

```
ABC>config>system# name "ALA-1"
ALA-1>config>system#
```

Only one system name can be configured. If multiple system names are configured, the last one encountered overwrites the previous entry.

The no form of the command reverts to the default value.

Default  
The default system name is set to the chassis serial number which is read from the backplane EEPROM.

Parameters  
```
 system-name — Enter the system name as a character string. The string may be up to 32 characters long. Any printable, seven-bit ASCII characters can be used within the string. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.
```

power-supply

Syntax  
```
power-supply [power-supply-id] type
```

Context  
```
config>system
```

Description  
This command enables the context to configure a power-supply.

On 7210 SAS-D ETR, by default, the software does not generate any traps or alarms for PS2, when the external power-supply failure has been detected. The user is provided with an option to configure the external backup power-supply type. Only if the user configures the power-supply type as 'ac' or 'dc' the system generates alarm or trap on a power-supply failure. The user can disable generation of alarms or traps by setting the value to 'none'.

NOTES:
9. By setting the value to 'none', the software does not send out a trap to the management station to clear the alarm, if there was one pending. The ‘none’ value only clears the trap locally and resets the LED color, if there are no other major or critical alarms pending. It is expected that the management station takes appropriate action on receiving the configuration change event or trap.

10. This CLI command does not affect generation of trap or alarm for the integrated power supply. Traps or alarms are always generated on detection of failure of the integrated power supply, when an external power supply is in use.

11. The 7210 SAS-D ETR does not have the capability to detect the power-supply type, that is, it cannot detect if the external power-supply type is an AC or DC version. Therefore, the user configured value is not validated by the software. It is the users responsibility to ensure if it is correct and corresponds to what they are using. If they provide a wrong value, the software continues to display the configured value and generate traps or alarms.

12. The ‘power-supply’ command is applicable only to 7210 SAS-D ETR. If used on 7210 SAS-D, the software returns an error message.

Parameters

\[\text{power-supply-id} \] — Identifies the power-supply for which the 'type' is to be applied.

Values

| 2 | Identifies the optional external backup power supply on the 7210 SAS-D ETR. |

\[\text{type} \] — Identifies the type of power-supply.

Values

| keywords - dc|ac|none |
System Alarm Commands

alarm

Syntax

```
alarm rmon-alarm-id variable-oid oid-string interval seconds [sample-type] [startup-alarm alarm-type] [rising-event rmon-event-id rising-threshold threshold] [falling-event rmon-event-id falling-threshold threshold] [owner owner-string]
```

Context

config>system>thresholds>rmon

Description

The alarm command configures an entry in the RMON-MIB alarmTable. The alarm command controls the monitoring and triggering of threshold crossing events. In order for notification or logging of a threshold crossing event to occur there must be at least one associated rmon>event configured.

The agent periodically takes statistical sample values from the MIB variable specified for monitoring and compares them to thresholds that have been configured with the alarm command. The alarm command configures the MIB variable to be monitored, the polling period (interval), sampling type (absolute or delta value), and rising and falling threshold parameters. If a sample has crossed a threshold value, the associated event is generated.

Use the `no` form of this command to remove an rmon-alarm-id from the configuration.

Parameters

- **rmon-alarm-id**  — The rmon-alarm-id is a numerical identifier for the alarm being configured. The number of alarms that can be created is limited to 1200.
  - Default: None
  - Values: 1 — 65535

- **variable-oid oid-string**  — The oid-string is the SNMP object identifier of the particular variable to be sampled. Only SNMP variables that resolve to an ASN.1 primitive type of integer (integer, Integer32, Counter32, Counter64, Gauge, or TimeTicks) may be sampled. The oid-string may be expressed using either the dotted string notation or as object name plus dotted instance identifier. For example, "1.3.6.1.2.1.2.2.1.10.184582144" or "ifInOctets.184582144".
  - The oid-string has a maximum length of 255 characters
  - Default: None

- **interval seconds**  — The interval in seconds specifies the polling period over which the data is sampled and compared with the rising and falling thresholds. When setting this interval value, care should be taken in the case of `delta` type sampling - the interval should be set short enough that the sampled variable is very unlikely to increase or decrease by more than 2147483647 - 1 during a single sampling interval. Care should also be taken not to set the interval value too low to avoid creating unnecessary processing overhead.
  - Default: None
  - Values: 1 — 2147483647
sample-type — Specifies the method of sampling the selected variable and calculating the value to be compared against the thresholds.

Default Absolute

Values  
absolute — Specifies that the value of the selected variable will be compared directly with the thresholds at the end of the sampling interval.

delta — Specifies that the value of the selected variable at the last sample will be subtracted from the current value, and the difference compared with the thresholds.

startup-alarm alarm-type — Specifies the alarm that may be sent when this alarm is first created.

If the first sample is greater than or equal to the rising threshold value and 'startup-alarm' is equal to 'rising' or 'either', then a single rising threshold crossing event is generated.

If the first sample is less than or equal to the falling threshold value and 'startup-alarm' is equal to 'falling' or 'either', a single falling threshold crossing event is generated.

Default either

Values rising, falling, either

rising-event rmon-event-id — The identifier of the the rmon>event that specifies the action to be taken when a rising threshold crossing event occurs.

If there is no corresponding 'event' configured for the specified rmon-event-id, then no association exists and no action is taken.

If the 'rising-event rmon-event-id' has a value of zero (0), no associated event exists.

If a 'rising event rmon-event' is configured, the CLI requires a 'rising-threshold' to also be configured.

Default 0

Values 0 — 65535

rising-threshold threshold — Specifies a threshold for the sampled statistic. When the current sampled value is greater than or equal to this threshold, and the value at the last sampling interval was less than this threshold, a single threshold crossing event will be generated. A single threshold crossing event will also be generated if the first sample taken is greater than or equal to this threshold and the associated startup-alarm is equal to rising or either.

After a rising threshold crossing event is generated, another such event will not be generated until the sampled value falls below this threshold and reaches less than or equal the 'falling-threshold' value.

Default 0

Values -2147483648 — 2147483647

falling-event rmon-event-id — The identifier of the rmon>event that specifies the action to be taken when a falling threshold crossing event occurs. If there is no corresponding event configured for the specified rmon-event-id, then no association exists and no action is taken. If the falling-event has a value of zero (0), no associated event exists.

If a 'falling event' is configured, the CLI requires a 'falling-threshold' to also be configured.

Default 0

Values -2147483648 — 2147483647
falling-threshold threshold — Specifies a threshold for the sampled statistic. When the current sampled value is less than or equal to this threshold, and the value at the last sampling interval was greater than this threshold, a single threshold crossing event will be generated. A single threshold crossing event will also be generated if the first sample taken is less than or equal to this threshold and the associated ‘startup-alarm’ is equal to ‘falling’ or ‘either’.

After a rising threshold crossing event is generated, another such event will not be generated until the sampled value rises above this threshold and reaches greater than or equal the rising-threshold threshold value.

Default 0
Values -2147483648 — 2147483647

owner owner — The owner identifies the creator of this alarm. It defaults to "TiMOS CLI". This parameter is defined primarily to allow entries that have been created in the RMON-MIB alarmTable by remote SNMP managers to be saved and reloaded in a CLI configuration file. The owner will not normally be configured by CLI users and can be a maximum of 80 characters long.

Default TiMOS CLI

Configuration example:

alarm 3 variable-oid ifInOctets.184582144 interval 20 sample-type delta start-alarm either rising-event 5 rising-threshold 10000 falling-event 5 falling-threshold 9000 owner "TiMOS CLI"

cflash-cap-alarm

Syntax cflash-cap-alarm cflash-id rising-threshold threshold [falling-threshold threshold] interval seconds [rmon-event-type] [startup-alarm alarm-type]

Context config>system>thresholds

Description This command enables capacity monitoring of the compact flash specified in this command. The severity level is alarm. Both a rising and falling threshold can be specified.

The no form of this command removes the configured compact flash threshold alarm.

Parameters cflash-id — The cflash-id specifies the name of the cflash device to be monitored.

Values cfl:, cfl-A:

rising-threshold threshold — Specifies a threshold for the sampled statistic. When the current sampled value is greater than or equal to this threshold, and the value at the last sampling interval was less than this threshold, a single threshold crossing event will be generated. A single threshold crossing event will also be generated if the first sample taken is greater than or equal to this threshold and the associated 'startup-alarm' is equal to 'rising' or 'either'.
After a rising threshold crossing event is generated, another such event will not be generated until the sampled value falls below this threshold and reaches less than or equal the 'falling-threshold' value.

Default 0
Values -2147483648 — 2147483647

falling-threshold threshold — Specifies a threshold for the sampled statistic. When the current sampled value is less than or equal to this threshold, and the value at the last sampling interval was greater than this threshold, a single threshold crossing event will be generated. A single threshold crossing event will also be generated if the first sample taken is less than or equal to this threshold and the associated startup-alarm is equal to falling or either.

After a rising threshold crossing event is generated, another such event will not be generated until the sampled value raises above this threshold and reaches greater than or equal the rising-threshold value.

Default 0
Values -2147483648 — 2147483647

interval seconds — Specifies the polling period, in seconds, over which the data is sampled and compared with the rising and falling thresholds.

Values 1 — 2147483647

rmon-event-type — Specifies the type of notification action to be taken when this event occurs.

Values log — An entry is made in the RMON-MIB log table for each event occurrence. This does not create a TiMOS logger entry. The RMON-MIB log table entries can be viewed using the show>system>thresholds CLI command.

trap — A TiMOS logger event is generated. The TiMOS logger utility then distributes the notification of this event to its configured log destinations which may be CONSOLE, telnet session, memory log, cflash file, syslog, or SNMP trap destinations logs.

both — Both a entry in the RMON-MIB logTable and a TiMOS logger event are generated.

none — No action is taken.

Default both

startup-alarm alarm-type — Specifies the alarm that may be sent when this alarm is first created.

If the first sample is greater than or equal to the rising threshold value and startup-alarm is equal to rising or either, then a single rising threshold crossing event is generated.

If the first sample is less than or equal to the falling threshold value and startup-alarm is equal to falling or either, a single falling threshold crossing event is generated.

Default either
Values rising, falling, either

Configuration example:
cflash-cap-alarm cf1-A: rising-threshold 50000000 falling-threshold 49999900 interval 120 rmon-event-type both start-alarm rising.

cflash-cap-warn

**Syntax**
```
cflash-cap-warn cflash-id rising-threshold threshold [falling-threshold threshold] interval seconds [rmon-event-type] [startup-alarm alarm-type]
no cflash-cap-warn cflash-id
```

**Context**
config>system>thresholds

**Description**
This command enables capacity monitoring of the compact flash specified in this command. The severity level is warning. Both a rising and falling threshold can be specified. The no form of this command removes the configured compact flash threshold warning.

**Parameters**
- **cflash-id** — The cflash-id specifies the name of the cflash device to be monitored.
  - **Values**: cf1:, cf1-A:
- **rising-threshold threshold** — Specifies a threshold for the sampled statistic. When the current sampled value is greater than or equal to this threshold, and the value at the last sampling interval was less than this threshold, a single threshold crossing event will be generated. A single threshold crossing event will also be generated if the first sample taken is greater than or equal to this threshold and the associated startup-alarm is equal to rising or either.
  - **Default**: 0
  - **Values**: -2147483648 — 2147483647
- **falling-threshold threshold** — Specifies a threshold for the sampled statistic. When the current sampled value is less than or equal to this threshold, and the value at the last sampling interval was greater than this threshold, a single threshold crossing event will be generated. A single threshold crossing event will also be generated if the first sample taken is less than or equal to this threshold and the associated startup-alarm is equal to falling or either.
  - **Default**: 0
  - **Values**: -2147483648 — 2147483647
- **interval seconds** — Specifies the polling period over which the data is sampled and compared with the rising and falling thresholds.
  - **Values**: 1 — 2147483647
- **rmon-event-type** — Specifies the type of notification action to be taken when this event occurs.
Values log — In the case of log, an entry is made in the RMON-MIB log table for each event occurrence. This does not create a TiMOS logger entry. The RMON-MIB log table entries can be viewed using the show>system>thresholds CLI command.

trap — In the case of trap, a TiMOS logger event is generated. The TiMOS logger utility then distributes the notification of this event to its configured log destinations which may be CONSOLE, telnet session, memory log, cf flash file, syslog, or SNMP trap destinations logs.

both — In the case of both, both a entry in the RMON-MIB logTable and a TiMOS logger event are generated.

none — In the case of none, no action is taken.

Default both

startup-alarm alarm-type — Specifies the alarm that may be sent when this alarm is first created. If the first sample is greater than or equal to the rising threshold value and startup-alarm is equal to rising or either, then a single rising threshold crossing event is generated. If the first sample is less than or equal to the falling threshold value and startup-alarm is equal to falling or either, a single falling threshold crossing event is generated.

Values rising, falling, either

Default either

Configuration example:

cflash-cap-warn cf1-B: rising-threshold 2000000 falling-threshold 1999900 interval 240 rmon-event-type trap start-alarm either

event

Syntax event rmon-event-id [event-type] [description description-string] [owner owner-string] no event rmon-event-id

Context config>system>thresholds>rmon

Description The event command configures an entry in the RMON-MIB event table. The event command controls the generation and notification of threshold crossing events configured with the alarm command. When a threshold crossing event is triggered, the rmon>event configuration optionally specifies if an entry in the RMON-MIB log table should be created to record the occurrence of the event. It may also specify that an SNMP notification (trap) should be generated for the event. The RMON-MIB defines two notifications for threshold crossing events: Rising Alarm and Falling Alarm.

Creating an event entry in the RMON-MIB log table does not create a corresponding entry in the TiMOS event logs. However, when the event-type is set to trap, the generation of a Rising Alarm or Falling Alarm notification creates an entry in the TiMOS event logs and that is distributed to whatever TiMOS log destinations are configured: CONSOLE, session, memory, file, syslog, or SNMP trap destination.
The TiMOS logger message includes a rising or falling threshold crossing event indicator, the sample type (absolute or delta), the sampled value, the threshold value, the RMON-alarm-id, the associated RMON-event-id and the sampled SNMP object identifier.

Use the `no` form of this command to remove an rmon-event-id from the configuration.

**Parameters**

- **rmon-event-type** — The rmon-event-type specifies the type of notification action to be taken when this event occurs.

  **Values**

  - `log` — In the case of log, an entry is made in the RMON-MIB log table for each event occurrence.
  - `trap` — In the case of trap, a TiMOS logger event is generated. The TiMOS logger utility then distributes the notification of this event to its configured log destinations which may be CONSOLE, telnet session, memory log, cflash file, syslog, or SNMP trap destinations logs.
  - `both` — In the case of both, both a entry in the RMON-MIB logTable and a TiMOS logger event are generated.
  - `none` — In the case of none, no action is taken.

  **Default** both

- **description** — The description is a user configurable string that can be used to identify the purpose of this event. This is an optional parameter and can be 80 characters long. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

  **Default** An empty string.

- **owner** — The owner identifies the creator of this alarm. It defaults to "TiMOS CLI". This parameter is defined primarily to allow entries that have been created in the RMON-MIB alarmTable by remote SNMP managers to be saved and reloaded in a CLI configuration file. The owner will not normally be configured by CLI users and can be a maximum of 80 characters long.

  **Default** TiMOS CLI

Configuration example:

**Default**

```
event 5 rmon-event-type both description "alarm testing" owner "TiMOS CLI"
```
memory-use-alarm

**Syntax**

```
memory-use-alarm rising-threshold threshold [falling-threshold threshold] interval seconds [rmon-event-type] [startup-alarm alarm-type]
no memory-use-alarm
```

**Context**

```
config>system>thresholds
```

**Description**

The memory thresholds are based on monitoring the TIMETRA-SYSTEM-MIB sgiMemoryUsed object. This object contains the amount of memory currently used by the system. The severity level is Alarm. The absolute sample type method is used.

The `no` form of this command removes the configured memory threshold warning.

**Parameters**

- **rising-threshold threshold** — Specifies a threshold for the sampled statistic. When the current sampled value is greater than or equal to this threshold, and the value at the last sampling interval was less than this threshold, a single threshold crossing event will be generated. A single threshold crossing event will also be generated if the first sample taken is greater than or equal to this threshold and the associated startup-alarm is equal to rising or either.

  After a rising threshold crossing event is generated, another such event will not be generated until the sampled value falls below this threshold and reaches less than or equal the falling-threshold value.

  **Default** 0

  **Values** -2147483648 — 2147483647

- **falling-threshold threshold** — Specifies a threshold for the sampled statistic. When the current sampled value is less than or equal to this threshold, and the value at the last sampling interval was greater than this threshold, a single threshold crossing event will be generated. A single threshold crossing event will also be generated if the first sample taken is less than or equal to this threshold and the associated startup-alarm is equal to falling or either.

  After a rising threshold crossing event is generated, another such event will not be generated until the sampled value raises above this threshold and reaches greater than or equal the rising-threshold threshold value.

  **Default** 0

  **Values** -2147483648 — 2147483647

- **interval seconds** — Specifies the polling period over which the data is sampled and compared with the rising and falling thresholds.

  **Values** 1 — 2147483647

- **rmon-event-type** — Specifies the type of notification action to be taken when this event occurs.

  **Values**
  - **log** — In the case of log, an entry is made in the RMON-MIB log table for each event occurrence. This does not create an OS logger entry. The RMON-MIB log table entries can be viewed using the CLI command.
  - **trap** — In the case of trap, a TiMOS logger event is generated. The TiMOS logger utility then distributes the notification of this event to its configured log
destinations which may be CONSOLE, telnet session, memory log, cflash file, syslog, or SNMP trap destinations logs.

both — In the case of both, both a entry in the RMON-MIB logTable and a TiMOS logger event are generated.
one none In the case of none, no action is taken.

Default both

startup-alarm alarm-type — Specifies the alarm that may be sent when this alarm is first created. If the first sample is greater than or equal to the rising threshold value and startup-alarm is equal to rising or either, then a single rising threshold crossing event is generated. If the first sample is less than or equal to the falling threshold value and startup-alarm is equal to falling or either, a single falling threshold crossing event is generated.

Values rising, falling, either

Default either

Configuration example:

memory-use-alarm rising-threshold 50000000 falling-threshold 45999999 interval 500 rmon-event-type both start-alarm either

memory-use-warn

Syntax memory-use-warn rising-threshold threshold [falling-threshold threshold] interval seconds [rmon-event-type] [startup-alarm alarm-type] no memory-use-warn

Context config>system>thresholds

Description The memory thresholds are based on monitoring MemoryUsed object. This object contains the amount of memory currently used by the system. The severity level is Alarm.

The absolute sample type method is used.

The no form of this command removes the configured compact flash threshold warning.

Parameters rising-threshold threshold — The rising-threshold specifies a threshold for the sampled statistic. When the current sampled value is greater than or equal to this threshold, and the value at the last sampling interval was less than this threshold, a single threshold crossing event will be generated. A single threshold crossing event will also be generated if the first sample taken is greater than or equal to this threshold and the associated startup-alarm is equal to rising or either.

After a rising threshold crossing event is generated, another such event will not be generated until the sampled value falls below this threshold and reaches less than or equal the falling-threshold value.

Default 0

Values -2147483648 — 2147483647
falling-threshold *threshold* — The falling-threshold specifies a threshold for the sampled statistic. When the current sampled value is less than or equal to this threshold, and the value at the last sampling interval was greater than this threshold, a single threshold crossing event will be generated. A single threshold crossing event will also be generated if the first sample taken is less than or equal to this threshold and the associated startup-alarm is equal to falling or either.

After a rising threshold crossing event is generated, another such event will not be generated until the sampled value raises above this threshold and reaches greater than or equal the rising-threshold threshold value.

**Default** 0

**Values** -2147483648 — 2147483647

interval *seconds* — The interval in seconds specifies the polling period over which the data is sampled and compared with the rising and falling thresholds.

**Values** 1 — 2147483647

rmon-event-type — Specifies the type of notification action to be taken when this event occurs.

**Values**
- log — In the case of log, an entry is made in the RMON-MIB log table for each event occurrence.
  
  This does not create a TiMOS logger entry. The RMON-MIB log table entries can be viewed using the `show>system>thresholds` CLI command.

- trap — In the case of trap, a TiMOS logger event is generated. The TiMOS logger utility then distributes the notification of this event to its configured log destinations which may be CONSOLE, telnet session, memory log, cflash file, syslog, or SNMP trap destinations logs.

- both — In the case of both, both a entry in the RMON-MIB logTable and a TiMOS logger event are generated.

- none — In the case of none, no action is taken.

**Default** both

**Values** log, trap, both, none

startup-alarm *alarm-type* — Specifies the alarm that may be sent when this alarm is first created. If the first sample is greater than or equal to the rising threshold value and startup-alarm is equal to rising or either, then a single rising threshold crossing event is generated. If the first sample is less than or equal to the falling threshold value and startup-alarm is equal to falling or either, a single falling threshold crossing event is generated.

**Default** either

**Values** rising, falling, either

Configuration example:

```
memory-use-warn rising-threshold 500000 falling-threshold 400000 interval 800 rmon-
event-type log start-alarm falling
```
System Alarm Commands

rmon

Syntax: rmon
Context: config>system>thresholds
Description: This command creates the context to configure generic RMON alarms and events.
Generic RMON alarms can be created on any SNMP object-ID that is valid for RMON monitoring (for example, an integer-based datatype).
The configuration of an event controls the generation and notification of threshold crossing events configured with the alarm command.

thresholds

Syntax: thresholds
Context: config>system
Description: This command enables the context to configure monitoring thresholds.
PTP Commands

ptp

**Syntax**  
[no] ptp  

**Context**  
config>system

**Description**  
This command enables the context to configure parameters for IEEE 1588-2008, Precision Time Protocol.  
This command is only available on the control assemblies that support 1588.

shutdown

**Syntax**  
[no] shutdown

**Context**  
config>system>ptp

**Description**  
This command disables or enables the PTP protocol. If PTP is disabled, the router will not transmit any PTP packets, and will ignore all received PTP packets. If the user attempts to do a 'no shutdown' on hardware that does not support PTP, an alarm will be raised to indicate limited capabilities.  
When ptp is shutdown, the PTP slave port is not operational. It shall not be considered as a source for system timing.

**Default**  
shutdown

clock-type

**Syntax**  
clock-type {{ordinary [slave]}}

**Context**  
config>system>ptp

**Description**  
This command configures the type of clock. The clock-type can only be changed when ptp is shutdown.  
The clock-type cannot be changed to master-only if PTP reference is no shutdown. In addition, clock-type cannot be changed to master-only if there are peers configured.

**Default**  
ordinary slave

**Parameters**  
ordinary — The clock is capable of being either a PTP grandmaster or slave.  
slave — The clock supports boundary-clock functionality (master and slave concurrently).
domain

Syntax  
\[\text{no} \ \text{domain} \ \text{domain}\]

Context  
\text{config>system>ptp}

Description  
This command configures the PTP domain.

The no form of the command reverts to the default configuration. Note some profiles may require a domain number in a restricted range. It is up to the operator to ensure the value aligns with what is expected within the profile.

Domain cannot be changed unless PTP is shutdown.

If the PTP profile is changed, the domain is changed to the default domain for the new PTP profile.

Default  
0 for ieee1588-2008 or 4 for g.8265.1-2010

Parameters  
\text{domain} — The PTP domain.

Values  
0-255

log-sync-interval

Syntax  
\[\text{no} \ \text{log-sync-interval} \ \text{value}\]

Context  
\text{config>system>ptp}

Description  
This command allows the user to configure the PTP Sync and PTP Delay-Req message rate that a PTP slave requests of a PTP master. The value specified is used as the rate for both PTP Sync and Delay-Req messages. User can set a lower pps rate, typically when using syncE for frequency and PTP for only time.

The no form of the command sets it to a default value of 64pps.

Default  
64pps

Parameters  
\text{value} — Specifies the rate for both PTP Sync and Delay-Req messages.

Values  
-6, -5, -4, and -3

<table>
<thead>
<tr>
<th>Value</th>
<th>pps Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>-6</td>
<td>64pps</td>
</tr>
<tr>
<td>-5</td>
<td>32pps</td>
</tr>
<tr>
<td>-4</td>
<td>16pps</td>
</tr>
<tr>
<td>-3</td>
<td>8pps</td>
</tr>
</tbody>
</table>
priority1

**Syntax**  
[no] priority1 priority

**Context**  
config>system>ptp

This command configures the priority1 value of the local clock. This parameter is only used when the profile is set to ieee1588-2008. This value is used by the Best Master Clock Algorithm to determine which clock should provide timing for the network.

Note: This value is used both for the value to advertise in the Announce messages and for the local clock value in data set comparisons. The no form of the command reverts to the default configuration.

The no form of the command reverts to the default configuration.

**Default**  
128

**Parameters**  
priority — Specifies the value of the priority1 field.

**Values**  
0-255
priority2

Syntax  
[no] priority2 priority

Context  
config>system>ptp

This command configures the priority2 value of the local clock. This parameter is only used when the profile is set to ieee1588-2008. This value is used by the Best Master Clock algorithm to determine which clock should provide timing for the network.

Note: This value is used both for the value to advertise in the Announce messages and for the local clock value in data set comparisons.

The no form of the command reverts to the default configuration.

Default  
128

Parameters  
priority — Specifies the value of the priority2 field.

Values  
0-255

profile

Syntax  
profile { ieee1588-2008| g.8265.1-2010 }

Context  
config>system>ptp

Description  
This command configures the profile to be used for the internal ptp clock. This principally defines the BMCA behaviour.

The profile cannot be changed unless ptp is shutdown.

When the profile is changed, the domain is changed to the default value for the new profile. In addition, if the profile is changed to ieee1588-2008, the wait-to-retorerestore timer is disabled.

Default  
ieee1588-2008

Parameters  
ieee1588-2008 — Conform to the default BMCA of the 2008 version of the IEEE1588 standard.

g.8265.1-2010 — Conform to the BMCA specified in the ITU-T G.8264.1 specification.

network-type

Syntax  
network-type <sonet|sdh>

Context  
config>system>ptp

Description  
This command configures the codeset to be used for the encoding of QL values into PTP clockClass values when the profile is configured for G.8265.1. The codeset is defined in Table 1/G.8265.1.

This setting only applies to the range of values observed in the clockClass values transmitted out of the node in Announce messages. The 7750 will support the reception of any valid value in Table 1/G.8265.1.
Default

```
Default
```

Parameters

```
Parameters
```

### Default

sdh

### Parameters

**sdh** — Specifies the values used on a G.781 Option 1 compliant network.

**sonet** — Specifies the values used on a G.781 Option 2 compliant network.

---

**peer**

**Syntax**

```
peer ip-address
```

**Context**

```
config>system>ptp
```

This command configures a remote PTP peer. It provides the context to configure parameters for the remote PTP peer.

Up to twenty remote PTP peers may be configured.

The no form of the command deletes the specified peer.

If the clock-type is ordinary slave or boundary, and PTP is no shutdown, the last peer cannot be deleted. This prevents the user from having PTP enabled without any peer configured & enabled.

Peers cannot be created when the clock-type is ordinary master.

**Default**

```
Default
```

```
none
```

**Parameters**

```
Parameters
```

**ip-address** — The IP address of the remote peer.

**Values**

```
Values
```

```
ipv4-address a.b.c.d
```

---

**priority**

**Syntax**

```
priority local_priority
```

**Context**

```
configure>system>ptp>peer>
```

This command configures the local priority used to choose between PTP masters in the best master clock algorithm (BMCA). This setting is only relevant when the g.8265.1-2010 profile is selected. The parameter is ignored when the ieee1588-2008 profile is selected. The value 1 is the highest priority and 255 is the lowest priority.

The priority of a peer cannot be configured if the PTP profile is ieee1588-2008.

There is a limit of 20 configured PTP peers.

**Default**

```
Default
```

```
128
```

**Parameters**

```
Parameters
```

**local_priority** — Specifies the value of the local priority.

**Values**

```
Values
```

```
1-255
```

---

**shutdown**

---

---
Syntax  [no] shutdown

Context  configure>system>ptp>peer

This command disables or enables a specific PTP peer. Shutting down a peer sends cancel unicast negotiation messages on any established unicast sessions. When shutdown, all received packets from the peer are ignored.

If the clock-type is ordinary slave or boundary, and PTP is no shutdown, the last enabled peer cannot be shutdown. This prevents the user from having PTP enabled without any peer configured & enabled.

Default  no shutdown
Date and Time Commands

set-time

Syntax  set-time [date] [time]
Context  admin
Description  This command sets the local system time.
             The time entered should be accurate for the time zone configured for the system. The system will convert the local time to UTC before saving to the system clock which is always set to UTC. This command does not take into account any daylight saving offset if defined.
Parameters  date — The local date and time accurate to the minute in the YYYY/MM/DD format.
           
               Values  YYYY is the four-digit year
                        MM is the two-digit month
                        DD is the two-digit date

           time — The time (accurate to the second) in the hh:mm[:ss] format. If no seconds value is entered, the seconds are reset to :00.

               Default  0
               Values  hh is the two-digit hour in 24 hour format (00=midnight, 12=noon)
                        mm is the two-digit minute


time

Syntax  time
Context  config>system
Description  This command enables the context to configure the system time zone and time synchronization parameters.
Network Time Protocol Commands

ntp

Syntax  [no] ntp
Context  config>system>time
Description  This command enables the context to configure Network Time Protocol (NTP) and its operation. This protocol defines a method to accurately distribute and maintain time for network elements. Furthermore, this capability allows for the synchronization of clocks between the various network elements. Use the no form of the command to stop the execution of NTP and remove its configuration.

Default  none

authentication-check

Syntax  [no] authentication-check
Context  config>system>time>ntp
Description  This command provides the option to skip the rejection of NTP PDUs that do not match the authentication key-id, type or key requirements. The default behavior when authentication is configured is to reject all NTP protocol PDUs that have a mismatch in either the authentication key-id, type or key.

When authentication-check is enabled, NTP PDUs are authenticated on receipt. However, mismatches cause a counter to be increased, one counter for type and one for key-id, one for type, value mismatches. These counters are visible in a show command.

The no form of this command allows authentication mismatches to be accepted; the counters however are maintained.

Default  authentication-check — Rejects authentication mismatches.
authentication-key

Syntax

```
authentication-key key-id {key key} [hash | hash2] type {des | message-digest}

no authentication-key key-id
```

Context

`config>system>time>ntp`

Description

This command sets the authentication key-id, type and key used to authenticate NTP PDUs sent to or received by other network elements participating in the NTP protocol. For authentication to work, the authentication key-id, type and key value must match.

The `no` form of the command removes the authentication key.

Default

`none`

Parameters

- `key-id` — Configure the authentication key-id that will be used by the node when transmitting or receiving Network Time Protocol packets.

  Entering the authentication-key command with a key-id value that matches an existing configuration key will result in overriding the existing entry.

  Recipients of the NTP packets must have the same authentication key-id, type, and key value in order to use the data transmitted by this node. This is an optional parameter.

  **Default** None

  **Values** 1 — 255

- `key` — The authentication key associated with the configured key-id, the value configured in this parameter is the actual value used by other network elements to authenticate the NTP packet.

  The key can be any combination of ASCII characters up to maximum 8 characters in length for message-digest (md5) or maximum 8 characters in length for des (length limits are unencrypted lengths). If spaces are used in the string, enclose the entire string in quotation marks (" ").

- `hash` — Specifies the key is entered in an encrypted form. If the hash or hash2 parameter is not used, the key is assumed to be in a non-encrypted, clear text form. For security, all keys are stored in encrypted form in the configuration file with the hash or hash2 parameter specified.

- `hash2` — Specifies the key is entered in a more complex encrypted form that involves more variables then the key value alone, this means that hash2 encrypted variable can’t be copied and pasted. If the hash or hash2 parameter is not used, the key is assumed to be in a non-encrypted, clear text form. For security, all keys are stored in encrypted form in the configuration file with the hash or hash2 parameter specified.

- `type` — This parameter determines if DES or message-digest authentication is used.

  This is a required parameter; either DES or message-digest must be configured.

  **Values**

  - `des` — Specifies that DES authentication is used for this key
  - `message-digest` — Specifies that MD5 authentication in accordance with RFC 2104 is used for this key.
broadcast

**Syntax**

```
broadcast [router router-name] {interface ip-int-name} [key-id key-id] [version version] [ttl ttl]
no broadcast [router router-name] {interface ip-int-name}
```

**Context**

```
config>system>time>ntp
```

**Description**

This command configures the node to transmit NTP packets on a given interface. Broadcast and multicast messages can easily be spoofed, thus, authentication is strongly recommended. The `no` form of this command removes the address from the configuration.

**Parameters**

- **router** — Specifies the router name used to transmit NTP packets. Base is the default and the only router name supported currently.
  - **Values** Base
  - **Default** Base
- **ip-int-name** — Specifies the local interface on which to transmit NTP broadcast packets. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.
  - **Values** 32 character maximum
- **key-id** — Identifies the configured authentication key and authentication type used by this node to receive and transmit NTP packets to and from an NTP server and peers. If an NTP packet is received by this node both authentication key and authentication type must be valid otherwise the packet will be rejected and an event/trap generated.
  - **Values** 1 — 255
  - **Default** none
- **version** — Specifies the NTP version number that is generated by this node. This parameter does not need to be configured when in client mode in which case all versions will be accepted.
  - **Values** 2 — 4
  - **Default** 4
- **ttl** — Specifies the IP Time To Live (TTL) value.
  - **Values** 1 — 255
  - **Default** none
broadcastclient

Syntax  
broadcastclient [router router-name] [interface ip-int-name] [authenticate]  
no broadcastclient [router router-name] [interface ip-int-name]

Context  
config>system>time>ntp

Description  
When configuring NTP, the node can be configured to receive broadcast packets on a given subnet. Broadcast and multicast messages can easily be spoofed, thus, authentication is strongly recommended. If broadcast is not configured then received NTP broadcast traffic will be ignored. Use the show command to view the state of the configuration.

The no form of this command removes the address from the configuration.

Parameters  
router router-name — Specifies the router name used to receive NTP packets.

Values  
Base

Default  
Base

interface ip-int-name — Specifies the local interface on which to receive NTP broadcast packets. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.

Values  
32 character maximum

authenticate — Specifies whether or not to require authentication of NTP PDUs. When enabled, NTP PDUs are authenticated upon receipt.

ntp-server

Syntax  
ntp-server [transmit key-id]

no ntp-server

Context  
config>system>time>ntp

Description  
This command configures the node to assume the role of an NTP server. Unless the server command is used, this node will function as an NTP client only and will not distribute the time to downstream network elements.

Default  
no ntp-server

Parameters  
key-id — If specified, requires client packets to be authenticated.

Values  
1 — 255

Default  
None

peer
Date and Time Commands

**Syntax**

```plaintext
peer ip-address [key-id key-id] [version version] [prefer]
no peer ip-address
```

**Context**

config>system>time>ntp

**Description**

Configuration of an NTP peer configures symmetric active mode for the configured peer. Although any system can be configured to peer with any other NTP node it is recommended to configure authentication and to configure known time servers as their peers.

The `no` form of the command removes the configured peer.

**Parameters**

- **ip-address** — Configure the IP address of the peer that requires a peering relationship to be set up. This is a required parameter.
  
  **Default** None
  
  **Values** Any valid IP-address

- **key-id key-id** — Successful authentication requires that both peers must have configured the same authentication key-id, type and key value.

  Specify the `key-id` that identifies the configured authentication key and authentication type used by this node to transmit NTP packets to an NTP peer. If an NTP packet is received by this node, the authentication key-id, type, and key value must be valid otherwise the packet will be rejected and an event/trap generated.

  **Default** None

  **Values** 1 — 255

- **version version** — Specify the NTP version number that is generated by this node. This parameter does not need to be configured when in client mode in which case all three nodes are accepted.

  **Default** 4

  **Values** 2 — 4

- **prefer** — When configuring more than one peer, one remote system can be configured as the preferred peer. When a second peer is configured as preferred, then the new entry overrides the old entry.
server

Syntax

server ip address [key-id key-id] [version version] [prefer]
no server ip address

Context
config>system>time>ntp

Description
This command is used when the node should operate in client mode with the ntp server specified in
the address field of this command. The no construct of this command removes the server with the
specified address from the configuration.

Up to five NTP servers can be configured.

Parameters

ip-address — Configure the IP address of a node that acts as an NTP server to this network element.
This is a required parameter.

Values
Any valid IP address

key-id key-id — Enter the key-id that identifies the configured authentication key and authentication
type used by this node to transmit NTP packets to an NTP server. If an NTP packet is received by
this node, the authentication key-id, type, and key value must be valid otherwise the packet will
be rejected and an event/trap generated. This is an optional parameter.

Values
1 — 255

version version — Use this command to configure the NTP version number that is expected by this
node. This is an optional parameter

Default
4

Values
2 — 4

prefer — When configuring more than one peer, one remote system can be configured as the
preferred peer. When a second peer is configured as preferred, then the new entry overrides the
old entry.
SNTP Commands

sntp

Syntax   [no] sntp
Context   config>system>time
Description   This command creates the context to edit the Simple Network Time Protocol (SNTP).
SNTP can be configured in either broadcast or unicast client mode. SNTP is a compact, client-only version of the NTP. SNTP can only receive the time from SNTP/NTP servers. It cannot be used to provide time services to other systems.
The system clock is automatically adjusted at system initialization time or when the protocol first starts up.
When the time differential between the SNTP/NTP server and the system is more than 2.5 seconds, the time on the system is gradually adjusted.
SNTP is created in an administratively enabled state (no shutdown).
The no form of the command removes the SNTP instance and configuration. SNTP does not need to be administratively disabled when removing the SNTP instance and configuration.

Default   no sntp

broadcast-client

Syntax   [no] broadcast-client
Context   config>system>time>sntp
Description   This command enables listening to SNTP/NTP broadcast messages on interfaces with broadcast client enabled at global device level.
SNTP must be shutdown prior to changing either to or from broadcast mode.
The no form of the command disables broadcast client mode.

Default   no broadcast-client
server-address

Syntax

```
server-address ip-address [version version-number] [normal | preferred]
[interval seconds]
no server-address
```

Context

`config>system>time>sntp`

Description

This command creates an SNTP server for unicast client mode.

Parameters

- `ip-address` — Specifies the IP address of the SNTP server.
- `version version-number` — Specifies the SNTP version supported by this server.
  - **Values**: 1 — 3
  - **Default**: 3
- `normal | preferred` — Specifies the preference value for this SNTP server. When more than one time-server is configured, one server can have preference over others. The value for that server should be set to `preferred`. Only one server in the table can be a preferred server.
  - **Default**: normal
- `interval seconds` — Specifies the frequency at which this server is queried.
  - **Values**: 64 — 1024
  - **Default**: 64
CRON Commands

cron

Syntax  cron
Context  config
Description  This command creates the context to create scripts, script parameters and schedules which support the Service Assurance Agent (SAA) functions.

CRON features are saved to the configuration file on both primary and backup control modules. If a control module switchover occurs, CRON events are restored when the new configuration is loaded. If a control module switchover occurs during the execution of a cron script, the failover behavior will be determined by the contents of the script.

action

Syntax  [no] action action-name [owner action-owner]
Context  config>cron
           config>cron>sched
Description  This command configures action parameters for a script.
Default  none
Parameters  action  action-name — Specifies the action name.
Values  Maximum 32 characters.

owner  action-owner — Specifies the owner name.
Default  TiMOS CLI

expire-time

Syntax  expire-time {seconds | forever}
Context  config>cron>action
Description  This command configures the maximum amount of time to keep the results from a script run.
Parameters  seconds — Specifies the maximum amount of time to keep the results from a script run.
Values  1 — 21474836
Default  3600 (1 hour)

forever — Specifies to keep the results from a script run forever.
**lifetime**

**Syntax**

```plaintext
lifetime {seconds | forever}
```

**Context**

`config>cron>action`

**Description**

This command configures the maximum amount of time the script may run.

**Parameters**

- `seconds` — Specifies the maximum amount of time to keep the results from a script run.
  - **Values**
    - `1` — `21474836`
  - **Default**
    - `3600` (1 hour)

- `forever` — Specifies to keep the results from a script run forever.

**max-completed**

**Syntax**

```plaintext
max-completed unsigned
```

**Context**

`config>cron>action`

**Description**

This command specifies the maximum number of completed sessions to keep in the event execution log. If a new event execution record exceeds the number of records specified this command, the oldest record is deleted.

The `no` form of this command resets the value to the default.

**Parameters**

- `unsigned` — Specifies the maximum number of completed sessions to keep in the event execution log.
  - **Values**
    - `0` — `255`
  - **Default**
    - `1`

**results**

**Syntax**

```plaintext
[no] results file-url
```

**Context**

`config>cron>action`

**Description**

This command specifies the location where the system writes the output of an event script’s execution.

The `no` form of this command removes the file location from the configuration.

**Parameters**

- `file-url` — Specifies the location where the system writes the output of an event script’s execution.
  - **Values**
    - `file-url`: local-url | remote-url: 255 chars max
      - local-url: `<cflash-id>/> |<usb-flash-id>/>[[<file-path>]]`
      - remote-url: `[{ftp://} login:pswd@remote-locn][<file-path>`
      - remote-locn `[hostname | ipv4-address]`
      - ipv4-address `a.b.c.d`
Date and Time Commands

```
cflash-id: cf1:
usb-flash-id: uf1:
```

### script

**Syntax**

```
[no] script script-name [owner owner-name]
```

**Context**

```
config>cron>action
```

**Description**

This command creates action parameters for a script including the maximum amount of time to keep the results from a script run, the maximum amount of time a script may run, the maximum number of script runs to store and the location to store the results.

The no form of this command removes the script parameters from the configuration.

**Default**

none — No server-address is configured.

**Parameters**

- `script script-name` — The script command in the action context connects and event to the script which will run when the event is triggered.
- `owner owner-name` — Owner name of the schedule.

**Default**

TiMOS CLI

The no form of this command removes the script entry from the action context.

### schedule

**Syntax**

```
[no] schedule schedule-name [owner owner-name]
```

**Context**

```
config>cron
```

**Description**

This command configures the type of schedule to run, including one-time only (oneshot), periodic or calendar-based runs. All runs are determined by month, day of month or weekday, hour, minute and interval (seconds).

The no form of the command removes the context from the configuration.

**Default**

none

**Parameters**

- `schedule-name` — Name of the schedule.
- `owner owner-name` — Owner name of the schedule.

### count
Syntax  count number
Context  config>cron>sched
Description  This command configures the total number of times a CRON “interval” schedule is run. For example, if the interval is set to 600 and the count is set to 4, the schedule runs 4 times at 600 second intervals.
Parameters  
<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
</tr>
<tr>
<td>1 — 65535</td>
</tr>
</tbody>
</table>
Default   65535

day-of-month
Syntax  [no] day-of-month {day-number [.day-number] all}
Context  config>cron>sched
Description  This command specifies which days of the month that the schedule will occur. Multiple days of the month can be specified. When multiple days are configured, each of them will cause the schedule to trigger. If a day-of-month is configured without configuring month, weekday, hour and minute, the event will not execute.
Using the weekday command as well as the day-of-month command will cause the script to run twice. For example, consider that “today” is Monday January 1. If “Tuesday January 5” is configured, the script will run on Tuesday (tomorrow) as well as January 5 (Friday).
The no form of this command removes the specified day-of-month from the list.
Parameters  
<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
</table>
| day-number  
| The positive integers specify the day of the month counting from the first of the month. The negative integers specify the day of the month counting from the last day of the month. For example, configuring day-of-month -5, 5 in a month that has 31 days will specify the schedule to occur on the 27th and 5th of that month. Integer values must map to a valid day for the month in question. For example, February 30 is not a valid date. |
| 1 — 31, -31 — -1 (maximum 62 day-numbers) |
| all  
| Specifies all days of the month. |
end-time
Syntax  [no] end-time [date | day-name] time
Context  config>cron>sched
Description  This command is used concurrently with type periodic or calendar. Using the type of periodic, end-time determines at which interval the schedule will end. Using the type of calendar, end-time determines on which date the schedule will end.
When no end-time is specified, the schedule runs forever.
Date and Time Commands

**Parameters**

- **date** — Specifies the date to schedule a command.
  - **Values**  YYYY:MM:DD in year:month:day number format

- **day-name** — Specifies the day of the week to schedule a command.
  - **Values**  sunday|monday|tuesday|wednesday|thursday|friday|saturday

- **time** — Specifies the time of day to schedule a command.
  - **Values**  hh:mm in hour:minute format

**hour**

**Syntax**  

```plaintext
[no] hour {..hour-number [..hour-number]| all}
```

**Context**  config>cron>sched

**Description**  
This command specifies which hour to schedule a command. Multiple hours of the day can be specified. When multiple hours are configured, each of them will cause the schedule to trigger. Day-of-month or weekday must also be specified. All days of the month or weekdays can be specified. If an hour is configured without configuring month, weekday, day-of-month, and minute, the event will not execute.

The **no** form of this command removes the specified hour from the configuration.

**Parameters**

- **hour-number** — Specifies the hour to schedule a command.
  - **Values**  0 — 23 (maximum 24 hour-numbers)

- **all** — Specifies all hours.

**interval**

**Syntax**  

```plaintext
[no] interval seconds
```

**Context**  config>cron>sched

**Description**  
This command specifies the interval between runs of an event.

**Parameters**

- **seconds** — The interval, in seconds, between runs of an event.
  - **Values**  30 — 4,294,967,295

**minute**

**Syntax**  

```plaintext
[no] minute {minute-number [..minute-number]| all}
```

**Context**  config>cron>sched

**Description**  
This command specifies the minute to schedule a command. Multiple minutes of the hour can be specified. When multiple minutes are configured, each of them will cause the schedule to occur. If a
minute is configured, but no hour or day is configured, the event will not execute. If a minute is configured without configuring month, weekday, day-of-month, and hour, the event will not execute. The no form of this command removes the specified minute from the configuration.

**Parameters**  
minute-number — Specifies the minute to schedule a command.

**Values**  
0 — 59 (maximum 60 minute-numbers)

all — Specifies all minutes.

### month

**Syntax**  
[no] month {month-number [..month-number]|month-name [..month-name]|all}

**Context**  
config>cron>sched

**Description**  
This command specifies the month when the event should be executed. Multiple months can be specified. When multiple months are configured, each of them will cause the schedule to trigger. If a month is configured without configuring weekday, day-of-month, hour and minute, the event will not execute.

The no form of this command removes the specified month from the configuration.

**Parameters**  
month-number — Specifies a month number.

**Values**  
1 — 12 (maximum 12 month-numbers)

all — Specifies all months.

month-name — Specifies a month by name

**Values**  
january, february, march, april, may, june, july, august, september, october, november, december (maximum 12 month names)

### type

**Syntax**  
type {schedule-type}

**Context**  
config>cron>sched

**Description**  
This command specifies how the system should interpret the commands contained within the schedule node.

**Parameters**  
schedule-type — Specify the type of schedule for the system to interpret the commands contained within the schedule node.

**Values**  
periodic — Specifies a schedule which runs at a given interval. interval must be specified for this feature to run successfully.

calendar — Specifies a schedule which runs based on a calendar. weekday, month, day-of-month, hour and minute must be specified for this feature to run successfully.

oneshot — Specifies a schedule which runs one time only. As soon as the first
event specified in these parameters takes place and the associated event occurs, the schedule enters a shutdown state. month, weekday, day-of-month, hour and minute must be specified for this feature to run successfully.

**Default**
periodic

### weekday

**Syntax**

```plaintext
[no] weekday {weekday-number [... weekday-number] day-name [... day-name]| all}
```

**Context**
config>cron>sched

**Description**
This command specifies which days of the week that the schedule will fire on. Multiple days of the week can be specified. When multiple days are configured, each of them will cause the schedule to occur. If a weekday is configured without configuring month, day-of-month, hour and minute, the event will not execute.

Using the `weekday` command as well as the `day-of month` command will cause the script to run twice. For example, consider that “today” is Monday January 1. If “Tuesday January 5” is configured, the script will run on Tuesday (tomorrow) as well as January 5 (Friday).

The `no` form of this command removes the specified weekday from the configuration.

**Parameters**

day-number — Specifies a weekday number.

Values: 1 — 7 (maximum 7 week-day-numbers)

day-name — Specifies a day by name

Values: sunday, monday, tuesday, wednesday, thursday, friday, saturday (maximum 7 week-day names)

all — Specifies all days of the week.

### script

**Syntax**

```plaintext
[no] script script-name [owner owner-name]
```

**Context**
config>cron>script

**Description**
This command configures the name associated with this script.

**Parameters**

script-name — Specifies the script name.

### location

**Syntax**

```plaintext
[no] location file-url
```

**Context**
config>cron>script

**Description**
This command configures the location of script to be scheduled.
**Parameters**  

`file-url` — Specifies the location where the system writes the output of an event script’s execution.

**Values**

- `file-url`: local-url | remote-url: 255 chars max
- `local-url`: `<cflash-id>/` | `<usb-flash-id>/` | `<file-path>`
- `remote-url`: `{ftp://} login:pswd@remote-locn/` | `<file-path>`
  - `remote-locn`: `hostname` | `ipv4-address`
  - `ipv4-address`: `a.b.c.d`
- `cflash-id`: `cf1:`
- `usb-flash-id`: `uf1:`
Time Range Commands

time-range

Syntax  
[no] time-range name [create]

Context  
config>cron

Description  
This command configures a time range.

The no form of the command removes the name from the configuration.

Default  
none

Parameters  
name — Configures a name for the time range up to 32 characters in length.

absolute

Syntax  
absolute start start-absolute-time end end-absolute-time
no absolute start absolute-time

Context  
config>cron>time-range

Description  
This command configures an absolute time interval that will not repeat.

The no form of the command removes the absolute time range from the configuration.

Parameters  
start absolute-time — Specifies starting parameters for the absolute time-range.

Values  
absolute-time:  year/month/day,hh:mm
year: 2005 — 2099
month: 1 — 12
day: 1 — 31
hh: 0 — 23
mm: [ 0 — 59

end absolute-time — Specifies end parameters for the absolute time-range.

Values  
absolute-time:  year/month/day,hh:mm
year: 2005 — 2099
month: 1 — 12
day: 1 — 31
hh: 0 — 23
mm: [ 0 — 59
daily

Syntax

- daily start <start-time-of-day> end <end-time-of-day>
- no daily start <start-time-of-day>

Context

config>cron>time-range

Description

This command configures the start and end of a schedule for every day of the week. To configure a daily time-range across midnight, use a combination of two entries. An entry that starts at hour zero will take over from an entry that ends at hour 24.

The no form of the command removes the daily time parameters from the configuration.

Parameters

- start-time-of-day — Specifies the starting time for the time range.

  Values

  Syntax: hh:mm
  - hh 0 — 23
  - mm 0 — 59

- end-time-of-day — Specifies the ending time for the time range.

  Values

  Syntax: hh:mm
  - hh 0 — 24
  - mm 0 — 59

weekdays

Syntax

- weekdays start <start-time-of-day> end <end-time-of-day>
- no weekdays start <start-time-of-day>

Context

config>cron>time-range

Description

This command configures the start and end of a weekday schedule.

The no form of the command removes the weekday parameters from the configuration.

Parameters

- start-time-of-day — Specifies the starting time for the time range.

  Values

  Syntax: hh:mm
  - hh 0 — 23
  - mm 0 — 59

- end-time-of-day — Specifies the ending time for the time range.

  Values

  Syntax: hh:mm
  - hh 0 — 24
  - mm 0 — 59
Date and Time Commands

**weekend**

**Syntax**

```plaintext
weekend start start-time-of-day end end-time-of-day
no weekend start start-time-of-day
```

**Context**

`config>cron>time-range`

**Description**

This command configures a time interval for every weekend day in the time range.

The resolution must be at least one minute apart, for example, start at 11:00 and end at 11:01. An 11:00 start and end time is invalid. This example configures a start at 11:00 and an end at 11:01 on both Saturday and Sunday.

The `no` form of the command removes the weekend parameters from the configuration.

**Parameters**

- `start-time-of-day` — Specifies the starting time for the time range.

  **Values**

  Syntax: `hh:mm`

  - `hh` 0 — 23
  - `mm` 0 — 59

- `end-time-of-day` — Specifies the ending time for the time range.

  **Values**

  Syntax: `hh:mm`

  - `hh` 0 — 24
  - `mm` 0 — 59

**weekly**

**Syntax**

```plaintext
weekly start start-time-in-week end end-time-in-week
no weekly start start-time-in-week
```

**Context**

`config>cron>time-range`

**Description**

This command configures a weekly periodic interval in the time range.

The `no` form of the command removes the weekly parameters from the configuration.

**Parameters**

- `start-time-in-week` — Specifies the start day and time of the week.

  **Values**

  Syntax: `day,hh:mm`

  - `day` sun, mon, tue, wed, thu, fri, sat
    - sunday, monday, tuesday, wednesday, thursday, friday, saturday
  - `hh` 0 — 23
  - `mm` 0 — 59

- `end-time-in-week` — Specifies the end day and time of the week.

  **Values**

  Syntax: `day,hh:mm`

  - `day` sun, mon, tue, wed, thu, fri, sat
    - sunday, monday, tuesday, wednesday, thursday, friday, saturday
weekly start time-in-week end time-in-week — This parameter configures the start and end of a schedule for the same day every week, for example, every Friday. The start and end dates must be the same. The resolution must be at least one minute apart, for example, start at 11:00 and end at 11:01. A start time and end time of 11:00 is invalid.

Values  00 — 23, 00 — 59

Default  no time-range
Time of Day Commands

tod-suite

Syntax: [no] tod-suite tod-suite name create

Context: config>cron

Description: This command creates the tod-suite context.

Default: no tod-suite

egress

Syntax: egress

Context: config>cron>tod-suite

Description: This command enables the TOD suite egress parameters.

ingress

Syntax: ingress

Context: config>cron>tod-suite

Description: This command enables the TOD suite ingress parameters.

filter

Syntax:

- filter ip ip-filter-id [time-range time-range-name] [priority priority]
- filter mac mac-filter-id [time-range time-range-name] [priority priority]
- no ip ip-filter-id [time-range time-range-name]
- no filter mac mac-filter-id [time-range time-range-name]

Context: config>cron>tod-suite>egress
config>cron>tod-suite>ingress

Description: This command creates time-range based associations of previously created filter policies. Multiple policies may be included and each must be assigned a different priority; in case time-ranges overlap, the priority will be used to determine the prevailing policy. Only a single reference to a policy may be included without a time-range.

Parameters:

- ip-filter ip-filter-id — Specifies an IP filter for this tod-suite.
Values  1 — 65535

time-range time-range-name — Name for the specified time-range. If the time-range is not populated the system will assume the assignment to mean “all times”. Only one entry without a time-range is allowed for every type of policy. The system does not allow the user to specify more than one policy with the same time-range and priority.

Values  Up to 32 characters

priority priority — Priority of the time-range. Only one time-range assignment of the same type and priority is allowed.

Values  1 — 10

mac mac-filter-id — Specifies a MAC filter for this tod-suite.

Values  1 — 65535

qos

Syntax  qos policy-id [time-range time-range-name] [priority priority]  
no qos policy-id [time-range time-range-name] [  

Context  config>cron>tod-suite>ingress

Description  This command creates time-range based associations of previously created QoS policies. Multiple policies may be included and each must be assigned a different priority; in case time-ranges overlap, the priority will be used to determine the prevailing policy. Only a single reference to a policy may be included without a time-range.

The no form of the command reverts to the

Parameters  policy-id — Specifies an egress QoS policy for this tod-suite.

Values  1 — 65535

Values  Up to 32 characters

Default  "NO-TIME-RANGE" policy

priority priority — Priority of the time-range. Only one time-range assignment of the same type and priority is allowed.

Values  1 — 10

Default  5
System Time Commands

dst-zone

**Syntax**

```
[no] dst-zone [std-zone-name | non-std-zone-name]
```

**Context**

config>system>time

**Description**

This command configures the start and end dates and offset for summer time or daylight savings time to override system defaults or for user defined time zones.

When configured, the time is adjusted by adding the configured offset when summer time starts and subtracting the configured offset when summer time ends.

If the time zone configured is listed in Table 17, System-defined Time Zones, on page 171, then the starting and ending parameters and offset do not need to be configured with this command unless it is necessary to override the system defaults. The command returns an error if the start and ending dates and times are not available either in Table 17 on page 171 or entered as optional parameters in this command.

Up to five summer time zones may be configured, for example, for five successive years or for five different time zones. Configuring a sixth entry will return an error message. If no summer (daylight savings) time is supplied, it is assumed no summer time adjustment is required.

The `no` form of the command removes a configured summer (daylight savings) time entry.

**Default**

none — No summer time is configured.

**Parameters**

*std-zone-name* — The standard time zone name. The standard name must be a system-defined zone in Table 17. For zone names in the table that have an implicit summer time setting, for example MDT for Mountain Daylight Saving Time, the remaining *start-date*, *end-date* and *offset* parameters need to be provided unless it is necessary to override the system defaults for the time zone.

*Values* std-zone-name ADT, AKDT, CDT, CEST, EDT, EEST, MDT, PDT, WEST, NDT, NZDT

*non-std-zone-name* — The non-standard time zone name. Create a user-defined name created using the *zone* command on page 314

*Values* 5 characters maximum
end

Syntax  end {end-week} {end-day} {end-month} [hours-minutes]
Context  config>system>time>dst-zone
Description  This command configures start of summer time settings.
Parameters  end-week — Specifies the starting week of the month when the summer time will end.
   Values   first, second, third, fourth, last
   Default  first
end-day — Specifies the starting day of the week when the summer time will end.
   Values   sunday, monday, tuesday, wednesday, thursday, friday, saturday
   Default  sunday
end-month — The starting month of the year when the summer time will take effect.
   Values   january, february, march, april, may, june, july, august, september, october, november, december
   Default  january
hours — Specifies the hour at which the summer time will end.
   Values   0 — 24
   Default  0
minutes — Specifies the number of minutes, after the hours defined by the hours parameter, when the summer time will end.
   Values   0 — 59
   Default  0

offset

Syntax  offset offset
Context  config>system>time>dst-zone
Description  This command specifies the number of minutes that will be added to the time when summer time takes effect. The same number of minutes will be subtracted from the time when the summer time ends.
Parameters  offset — The number of minutes added to the time at the beginning of summer time and subtracted at the end of summer time, expressed as an integer.
   Default  60
**Values**  
0 — 60

**start**

**Syntax**  
```
start {start-week} {start-day} {start-month} [hours-minutes]
```

**Context**  
`config>system>time>dst-zone`

**Description**  
This command configures start of summer time settings.

**Parameters**

- **start-week** — Specifies the starting week of the month when the summer time will take effect.
  - **Values**  
    - first, second, third, fourth, last
  - **Default**  
    - first

- **start-day** — Specifies the starting day of the week when the summer time will take effect.
  - **Default**  
    - sunday
  - **Values**  
    - sunday, monday, tuesday, wednesday, thursday, friday, saturday

- **start-month** — The starting month of the year when the summer time will take effect.
  - **Values**  
    - january, february, march, april, may, june, july, august, september, october, november, december
  - **Default**  
    - january

- **hours** — Specifies the hour at which the summer time will take effect.
  - **Default**  
    - 0

- **minutes** — Specifies the number of minutes, after the hours defined by the `hours` parameter, when the summer time will take effect.
  - **Default**  
    - 0

**zone**

**Syntax**  
```
zone [std-zone-name | non-std-zone-name] [hh [:mm]]
no zone
```

**Context**  
`config>system>time`

**Description**  
This command sets the time zone and/or time zone offset for the device.

The OS supports system-defined and user-defined time zones. The system-defined time zones are listed in Table 17, System-defined Time Zones, on page 171.

For user-defined time zones, the zone and the UTC offset must be specified.

The `no` form of the command reverts to the default of Coordinated Universal Time (UTC). If the time zone in use was a user-defined time zone, the time zone will be deleted. If a `dst-zone` command has
been configured that references the zone, the summer commands must be deleted before the zone can be reset to UTC.

**Default**

`zone utc` - The time zone is set for Coordinated Universal Time (UTC).

**Parameters**

*std-zone-name* — The standard time zone name. The standard name must be a system-defined zone in Table 17. For zone names in the table that have an implicit summer time setting, for example MDT for Mountain Daylight Saving Time, the remaining *start-date, end-date* and *offset* parameters need to be provided unless it is necessary to override the system defaults for the time zone.

For system-defined time zones, a different offset cannot be specified. If a new time zone is needed with a different offset, the user must create a new time zone. Note that some system-defined time zones have implicit summer time settings which causes the switchover to summer time to occur automatically; configuring the *dst-zone* parameter is not required.

A user-defined time zone name is case-sensitive and can be up to 5 characters in length.

**Values**

A user-defined value can be up to 4 characters or one of the following values: GMT, BST, IST, WET, WEST, CET, CEST, EET, EEST, MSK, MSD, AST, ADT, EST, EDT, ET, CST, CDT, CT, MST, MDT, MT, PST, PDT, PT, HST, AKST, AKDT, WAST, CAST, EAST

*non-std-zone-name* — The non-standard time zone name.

**Values**

Up to 5 characters maximum.

*hh [:mm]* — The hours and minutes offset from UTC time, expressed as integers. Some time zones do not have an offset that is an integral number of hours. In these instances, the *minutes-offset* must be specified. For example, the time zone in Pirlangimpi, Australia UTC + 9.5 hours.

**Default**

hours: 0
minutes: 0

**Values**

hours: -11 — 12
minutes: 0 — 59
System Synchronization Commands

sync-if-timing

Syntax  sync-if-timing
Context  config>system
Description  This command creates or edits the context to create or modify timing reference parameters.
Default  Disabled (The ref-order must be specified in order for this command to be enabled.)

abort

Syntax  abort
Context  config>system>sync-if-timing
Description  This command is required to discard changes that have been made to the synchronous interface timing configuration during a session.
Default  No default

begin

Syntax  begin
Context  config>system>sync-if-timing
Description  This command is required in order to enter the mode to create or edit the system synchronous interface timing configuration.
Default  No default

commit

Syntax  commit
Context  config>system>sync-if-timing
Description  This command saves changes made to the system synchronous interface timing configuration.
Default  No default

Values
ql-override

Syntax
ql-override (prs|stu|st2|tnc|st3e|st3|eec1|sec|prc|ssu-a|ssu-b|eec2)
no ql-override

Context
config>system>sync-if-timing>ptp
config>system>sync-if-timing>ref1
config>system>sync-if-timing>ref2

Description
This command configures the QL value to be used for the reference for SETS input selection and
BITS output. This value overrides any value received by that reference's SSM process.

Default
no ql-override

Parameters
prs — SONET Primary Reference Source Traceable
stu — SONET Synchronous Traceability Unknown
st2 — SONET Stratum 2 Traceable
tnc — SONET Transit Node Clock Traceable
st3e — SONET Stratum 3E Traceable
st3 — SONET Stratum 3 Traceable
eec1 — Ethernet Equipment Clock Option 1 Traceable (sdh)
eec2 — Ethernet Equipment Clock Option 2 Traceable (sonet)
prc — SDH Primary Reference Clock Traceable
ssu-a — SDH Primary Level Synchronization Supply Unit Traceable
ssu-b — SDH Second Level Synchronization Supply Unit Traceable
sec — SDH Synchronous Equipment Clock Traceable

ql-selection

Syntax
[no] ql-selection

Context
config>system>sync-if-timing

Description
When enabled the selection of system timing reference and BITS output timing reference takes into
account quality level. This command turns-on or turns-off SSM encoding as a means of timing
reference selection.

Default
no ql-selection
ref-order

Syntax

```
ref-order first second [third]
no ref-order
```

Context
config>system>sync-if-timing

Description
The synchronous equipment timing subsystem can lock to different timing reference inputs, those specified in the ref1, ref2 command configuration. This command organizes the priority order of the timing references.

If a reference source is disabled, then the clock from the next reference source as defined by ref-order is used. If all reference sources are disabled, then clocking is derived from a local oscillator.

Note that if a sync-if-timing reference is linked to a source port that is operationally down, the port is no longer qualified as a valid reference. Only SFP based Ethernet ports can be used for reference in the current release.

**NOTE**: If PTP is specified as reference, then the other reference cannot be specified as syncE. In other words use of PTP and syncE as a reference is mutually exclusive.

The no form of the command resets the reference order to the default values.

**Note**: Ref1 has to be configured to use one of the ports from 1/1/1 up to 1/1/4 and ref2 should be configured to use either 1/1/5 or 1/1/6. The software enforces this check. The ports 1/1/7 up to 1/1/10 can be configured as either ref1 or ref2.

Default
ref1 ref2 ptp

Parameters

ref1

Syntax

```
ref1
```

Context
config>system>sync-if-timing

Description
This command enables the context to configure parameters for the first timing reference.
### ref2

<table>
<thead>
<tr>
<th>Syntax</th>
<th>ref2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context</td>
<td>config&gt;system&gt;sync-if-timing</td>
</tr>
<tr>
<td>Description</td>
<td>This command enables the context to configure parameters for the second timing reference.</td>
</tr>
</tbody>
</table>
System Synchronization Commands

revert

Syntax
[no] revert

Context
config>system>sync-if-timing

Description
This command allows the clock to revert to a higher priority reference if the current reference goes offline or becomes unstable.

If revertive switching is enabled, the highest-priority valid timing reference will be used. If a reference with a higher priority becomes valid, a reference switch over to that reference will be initiated. If a failure on the current reference occurs, the next highest reference takes over.

If non-revertive switching is enabled, the valid active reference always remains selected, even if a higher-priority reference becomes available. If this reference becomes invalid, a reference switch over to a valid reference with the highest priority will be initiated. When the failed reference becomes operational, it is eligible for selection.

Default
no revert

source-port

Syntax
source-port port-id
no source-port

Context
config>system>sync-if-timing>ref1
config>system>sync-if-timing>ref2

Description
This command configures the source port for timing reference ref1 or ref2. If the port is unavailable or the link is down, then the reference sources are re-evaluated according to the reference order configured in the ref-order command.

The no form of the command deletes the source port from the reference.

Parameters
port-id — Identify the physical port in the slot/mda/port format.
**Generic Commands**

**shutdown**

**Syntax**

```
[no] shutdown
```

**Context**

```
config>system>time>sntp
config>system>sync-if-timing>ptp
```

**Description**

This command administratively disables an entity. When disabled, an entity does not change, reset, or remove any configuration settings or statistics.

The operational state of the entity is disabled as well as the operational state of any entities contained within. Many objects must be shut down before they may be deleted.

The `no` form of this command administratively enables an entity.

Unlike other commands and parameters where the default state is not indicated in the configuration file, the `shutdown` and `no shutdown` states are always indicated in system generated configuration files.

The `no` form of the command places an entity in an administratively enabled state.

**description**

**Syntax**

```
description description-string
no description
```

**Context**

```
config>system>persistence>sub-mgmt
config>system>persistence>dhcp-server
```

**Description**

The command allows the user to configure a string that can be used to identify the purpose of this event. This is an optional parameter and can be 80 characters long. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.
System Administration Commands

admin

Syntax  admin
Context <ROOT>
Description The context to configure administrative system commands. Only authorized users can execute the commands in the admin context.
Default none

check-golden-bootstrap

Syntax  check-golden-bootstrap
Context admin
Description This command validates the current golden bootstrap image, and displays its version, if found to be valid. If the golden bootstrap image is not found to be a valid, an error message is displayed to that effect.

debug-save

Syntax  debug-save file-url
Context admin
Description This command saves existing debug configuration. Debug configurations are not preserved in configuration saves.
Default none
Parameters file-url — The file URL location to save the debug configuration.

Values

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>file-url</td>
<td>local-url</td>
</tr>
<tr>
<td>local-url</td>
<td>[&lt;cflash-id&gt;/</td>
</tr>
<tr>
<td>remote-url</td>
<td>[ftp://] login:pswd@remote-locn/][file-path]</td>
</tr>
<tr>
<td>remote-locn</td>
<td>[hostname</td>
</tr>
<tr>
<td>ipv4-address</td>
<td>a.b.c.d</td>
</tr>
<tr>
<td></td>
<td>255 chars max, directory length 99 chars max each</td>
</tr>
<tr>
<td>cflash-id</td>
<td>cf1:</td>
</tr>
<tr>
<td>ush-flash-id</td>
<td>uf1:</td>
</tr>
</tbody>
</table>
disconnect

**Syntax**
```
disconnect {address ip-address | username user-name | console | telnet | ftp | ssh}
```

**Context**
`admin`

**Description**
This command disconnects a user from a console, Telnet, FTP, or SSH session. If any of the console, Telnet, FTP, or SSH options are specified, then only the respective console, Telnet, FTP, or SSH sessions are affected. If no console, Telnet, FTP, or SSH options are specified, then all sessions from the IP address or from the specified user are disconnected. Any task that the user is executing is terminated. FTP files accessed by the user will not be removed. A major severity security log event is created specifying what was terminated and by whom.

**Default**
none — No disconnect options are configured.

**Parameters**
- **address ip-address** — The IP address to disconnect, specified in dotted decimal notation.
  - **Values**
    - `ipv4-address a.b.c.d`
    - `ipv6-address - x:x:x:x:x:x` (eight 16-bit pieces)
    - `x:x:x:x:d.d.d.d`
    - `x - [0..FFFF]H`
    - `d - [0..255]D`

- **username user-name** — The name of the user.

- **console** — Disconnects the console session.

- **telnet** — Disconnects the Telnet session.

- **ftp** — Disconnects the FTP session.

- **ssh** — Disconnects the SSH session.

display-config

**Syntax**
```
display-config [detail | index]
```

**Context**
`admin`

**Description**
This command displays the system’s running configuration. By default, only non-default settings are displayed. Specifying the `detail` option displays all default and non-default configuration parameters.

**Parameters**
- **detail** — Displays default and non-default configuration parameters.

- **index** — Displays only persistent-indices.
reboot

Syntax

reboot [auto-init] [now]

Context

admin

Description

This command is used only to reboot the system or initiate an upgrade of the firmware along with a reboot of the node or initiate an autoinit boot procedure along with a reboot of the node.

If no options are specified, the user is prompted to confirm the reboot operation. For example:

ALA-1>admin# reboot
Are you sure you want to reboot (y/n)?

If the now option is specified, boot confirmation messages appear.

Parameters

7210 SAS OSboot.tim7210 SAS OSboot.tim7210 SAS OS7210 SAS OSnow — Forces a reboot of the router immediately without an interactive confirmation.

auto-init — Specifies to reset the BOF and initiates a reboot.

save

Syntax

save [file-url] [detail] [index]

Context

admin

Description

This command saves the running configuration to a configuration file. For example:

A:ALA-1>admin# save ftp://test:test@192.168.x.xx./100.cfg
Saving configuration ..........Completed.

By default, the running configuration is saved to the primary configuration file.

Parameters

file-url — The file URL location to save the configuration file.

Default

The primary configuration file location.

Values

<file-url> : <local-url>|<remote-url> - [255 chars max]

local-url - [<flash-id>]/ <usb-flash-id>][file-path]
remote-url - [{ftp://|tftp://}<login>:<pswd>@<remote-locn>/][<file-path>]
remote-locn - [ <hostname> | <ipv4-address> | ""<ipv6-address>""]
ipv4-address a.b.c.d
ipv6-address - x:x:x:x:x:x:x[-interface] x:x:x:x:x:d.d.d.d[-interface]
x - [0..FFFF]H
d - [0..255]D

interface - 32 chars max, for link
local addresses

cflash-id      - cf1:
usb-flash-id   - uf1:

detail — Saves both default and non-default configuration parameters.

index — Forces a save of the persistent index file regardless of the persistent status in the BOF file.
         The index option can also be used to avoid an additional boot required while changing your
         system to use the persistence indices.

enable-tech

Syntax [no] enable-tech
Context admin
Description This command enables the shell and kernel commands.

NOTE: This command should only be used with authorized direction from the Alcatel-Lucent
       Technical Assistance Center (TAC).

tech-support

Syntax tech-support file-url
Context admin
Description This command creates a system core dump.

NOTE: This command should only be used with authorized direction from the Alcatel-Lucent
       Technical Assistance Center (TAC).

file-url — The file URL location to save the binary file.

file-url:     local-url | remote-url: 255 chars max
local-url:    [<cflash-id> ] <usb-flash-id>] [file-path], 200 chars max,
              including the cflash-id directory length, 99 chars max each
remote-url:   [ftp://] login:pswd@remote-locn/][file-path]
              remote-locn [ hostname | ipv4-address]
              ipv4-address a.b.c.d
              255 chars max, directory length 99 chars max each

cflash-id:    cf1:
usb-flash-id  uf1:
Syntax  update-golden-bootstrap [file-url]

Context  admin

Description  This command updates the golden bootstrap image with the file-url, after validating it as a bootstrap image for the 7210 SAS platforms. Only on 7210 SAS-D newer platforms, the `admin>update-golden-bootstrap` CLI command does not update the golden-bootstrap image with the boot.tim specified in the parameter value, if the boot.tim is not a newer image.

Default  cf1:/boot.tim

Parameters  

Values  

- file-url: 255 characters max
- local-url: [cflash-id/][file-path]
- cflash-id: cf1:
System Alarm Contact Commands

Note: System Alarm Contact commands are not supported on 7210 SAS-D devices.

alarm-contact-input

Syntax
```
alarm-contact-input alarm-contact-input-id
```

Context
```
config>system>alarm-contact-input
```

Description
This command provides the context to configure one of four available alarm contact input pins.

Default
None

Parameters
```
alarm-contact-input-id — Identifies the alarm contact input pin.
```

Values
```
1 — 4
```

alarm-output-severity

Syntax
```
[[no] alarm-output-severity {critical | major | minor | none}]
```

Context
```
config>system>alarm-contact-input
```

Description
This command allows the user to relay alarms from the alarm-contact input to the alarm-contact output by associating an appropriate alarm-contact output with the alarm-contact input. The system generates or clears the alarm-contact output when it triggers or clears the alarm for the associated alarm-contact input.

If multiple alarm-contact input pins share an alarm-contact output, the system generates the alarm-contact output even if any one of the alarm-contact input is triggered and the system clears alarm-contact output only when all the alarm-contact input pins are cleared.

The severity parameter configured by the user determines the appropriate alarm-contact output to be used for generation and clearing the alarm.

Note: The system relays the alarm-contact input to the appropriate alarm-contact output only if the alarm-contact output is available on the platform.

Default
Major

Parameters
```
critical — A critical alarm output is generated or cleared.
major — A major alarm output is generated or cleared.
minor — A minor alarm output is generated or cleared.
none — No alarm output is generated or cleared.
```
clear-alarm-msg

Syntax  
[no] clear-alarm-msg \{alarm-msg-text\}

Context  
config>system>alarm-contact-input alarm-contact-input-id

Description  
This command allows the user to configure a text message for use along with SNMP trap and Log message that are sent when the system clears an alarm. The system generates a default message if the message is not configured. The system does not generate a trap or log if no form of the command is enabled.

Default  
None

Parameters  
alarm-msg-text — A printable character string, up to 160 characters in length.

description

Syntax  
description description-string

Context  
config>system>alarm-contact-input alarm-contact-input-id description

Description  
This command describes an alarm contact input pin. The description provides an indication of the usage or attribute of the pin. It is stored in the CLI configuration file and helps the user in identifying the purpose of the pin.

Default  
None

normal-state

Syntax  
normal-state \{open | closed\}

Context  
config>system>alarm-contact-input alarm-contact-input-id

Description  
This command configures the normal state to be associated with the alarm-contact input. When the system detects a transition from the normal state, an alarm is generated. The alarm is cleared when the system detects a transition is back to the normal state.

Default  
closed

Parameters  
open — The normal-state is identified as ‘open’. When the system detects a transition to the ‘closed’ state, an alarm is generated. The alarm is cleared when the system detects a transition back to the ‘Open’ state.

closed-state — The normal-state is identified as ‘closed’. When the system detects a transition to the ‘open’ state, and alarm is generated. The alarm is cleared when the system detects a transition back to the ‘closed’ state.
shutdown

Syntax  [no] shutdown
Context  config>system>alarm-contact-input
Description  This command stops tracking the state changes associated with the alarm contact input. The system does not generate or clear the alarms for the alarm-contact input, but if an alarm is generated for the alarm-contact-input, the system clears the alarm when the shutdown command is executed.

The no form of the command starts tracking the state changes associated with the alarm contact input.

Default  Shutdown

trigger-alarm-msg

Syntax  [no] trigger-alarm-msg {alarm-msg-text}
Context  config>system>alarm-contact-input alarm-contact-input-id
Description  This command allows the user to configure a text message for use along with SNMP trap and Log message that are sent when the system generates an alarm. The system generates a default message if the message is not configured. The system does not generate a trap or log if no form of the command is enabled.

Default  None
Parameters  alarm-msg-text — A printable character string, up to 160 characters in length.
LLDP System Commands

lldp

Syntax lldp
Context config>system
Description This command enables the context to configure system-wide Link Layer Discovery Protocol parameters.

message-fast-tx

Syntax message-fast-tx time
no message-fast-tx
Context config>system>lldp
Description This command configures the duration of the fast transmission period.
Parameters time — Specifies the fast transmission period in seconds.
Values 1 — 3600
Default 1

message-fast-tx-init

Syntax message-fast-tx-init count
no message-fast-tx-init
Context config>system>lldp
Description This command configures the number of LLDPDUs to send during the fast transmission period.
Parameters count — Specifies the number of LLDPDUs to send during the fast transmission period.
Values 1 — 8
Default 4
notification-interval

Syntax  

```
notification-interval time
no notification-interval
```

Context  
```
config>system>lldp
```

Description  
This command configures the minimum time between change notifications.

Parameters  
```
time — Specifies the minimum time, in seconds, between change notifications.
```

Values  
```
5 — 3600
```

Default  
```
5
```

reinit-delay

Syntax  

```
reinit-delay time
no reinit-delay
```

Context  
```
config>system>lldp
```

Description  
This command configures the time before re-initializing LLDP on a port.

Parameters  
```
time — Specifies the time, in seconds, before re-initializing LLDP on a port.
```

Values  
```
1 — 10
```

Default  
```
2
```

tx-credit-max

Syntax  

```
no tx-credit-max
```

Context  
```
config>system>lldp
```

Description  
This command configures the maximum consecutive LLDPDUs transmitted.

Parameters  
```
count — Specifies the maximum consecutive LLDPDUs transmitted.
```

Values  
```
1 — 100
```

Default  
```
5
```

**tx-hold-multiplier**

**Syntax**

```
tx-hold-multiplier multiplier
no tx-hold-multiplier
```

**Context**

```
config>system>lldp
```

**Description**

This command configures the multiplier of the tx-interval.

**Parameters**

- `multiplier` — Specifies the multiplier of the tx-interval.
  - **Values**: 2 — 10
  - **Default**: 4

---

**tx-interval**

**Syntax**

```
tx-interval interval
no tx-interval
```

**Context**

```
config>system>lldp
```

**Description**

This command configures the LLDP transmit interval time.

**Parameters**

- `interval` — Specifies the LLDP transmit interval time.
  - **Values**: 1 — 100
  - **Default**: 5
LLDP Ethernet Port Commands

lldp

Syntax  lldp
Context  config>port>ethernet
Description  This command enables the context to configure Link Layer Discovery Protocol (LLDP) parameters on the specified port.

dest-mac

Syntax  dest-mac {bridge-mac}
Context  config>port>ethernet>lldp
Description  This command configures destination MAC address parameters.
Parameters  bridge-mac — Specifies destination bridge MAC type to use by LLDP.
Values  nearest-bridge — Specifies to use the nearest bridge.
nearest-non-tpmr — Specifies to use the nearest non-Two-Port MAC Relay (TPMR).
nearest-customer — Specifies to use the nearest customer.

admin-status

Syntax  admin-status {rx | tx | tx-rx | disabled}
Context  config>port>ethernet>lldp>dstmac
Description  This command specifies the administratively desired status of the local LLDP agent.
Parameters  rx — Specifies the LLDP agent will receive, but will not transmit LLDP frames on this port.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tx</td>
<td>Specifies that the LLDP agent will transmit LLDP frames on this port and will not store any information about the remote systems connected.</td>
</tr>
<tr>
<td>tx-rx</td>
<td>Specifies that the LLDP agent will transmit and receive LLDP frames on this port.</td>
</tr>
<tr>
<td>disabled</td>
<td>Specifies that the LLDP agent will not transmit or receive LLDP frames on this port. If there is remote systems information which is received on this port and stored in other tables, before the port's admin status becomes disabled, then the information will naturally age out.</td>
</tr>
</tbody>
</table>
notification

**Syntax**

```plaintext
[no] notification
```

**Context**

`config>port>ethernet>lldp>dstmac`

**Description**

This command enables LLDP notifications.

The `no` form of the command disables LLDP notifications.

---

tx-mgmt-address

**Syntax**

```plaintext
 tx-mgmt-address [system]
 no tx-mgmt-address
```

**Context**

`config>port>ethernet>lldp>dstmac`

**Description**

This command specifies which management address to transmit.

The `no` form of the command resets value to the default.

**Default**

`no tx-mgmt-address`

**Parameters**

`system` — Specifies to use the system IP address. Note that the system address will only be transmitted once it has been configured if this parameter is specified.

---

tx-tlvs

**Syntax**

```plaintext
 tx-tlvs [port-desc] [sys-name] [sys-desc] [sys-cap]
 no tx-tlvs
```

**Context**

`config>port>ethernet>lldp>dstmac`

**Description**

This command specifies which LLDP TLVs to transmit.

The `no` form of the command resets the value to the default.

**Default**

`no tx-tlvs`

**Parameters**

`port-desc` — Indicates that the LLDP agent should transmit port description TLVs.

`sys-name` — Indicates that the LLDP agent should transmit system name TLVs.

`sys-desc` — Indicates that the LLDP agent should transmit system description TLVs.

`sys-cap` — Indicates that the LLDP agent should transmit system capabilities TLVs.
System Resource-Profile Commands

resource-profile

Syntax  resource-profile
Context  configure>system
Description  This command enables the context to configure resource-profile parameters on the system.

egress-internal-tcam

Syntax  egress-internal-tcam
Context  configure>system>resource-profile
Description  This command provides the context to allocate egress internal TCAM resources.

acl-sap-egress

Syntax  [no] acl-sap-egress
Context  configure>system>resource-profile>egress-internal-tcam
Description  This command allows the user to allocate maximum resources for use by egress filter policies using any of the supported match criteria. This command limits the total amount of chunks allocated for use by egress filter policies to the value specified by num-resources. In other words, the cumulative sum of chunks allocated to different match criteria supported by filter policies cannot exceed the value configured with num-resources.

With the no form of the command, software does not allocate any resources for use by egress filter policies. If no resources are allocated for use, then the software fails all attempts to associate a service entity (For example: SAP, IP interface, etc) with a filter policy using any of the match criteria.

Parameters  num-resources — Specifies the amount of resources that can be allocated for use by ACL policies.

Values  [0-2]
Default  2
ipv6-128bit-match-enable

**Syntax**  
[no] ipv6-128bit-match-enable num-resources

**Context**  
configure>system>resource-profile>egress-internal-tcam>acl-sap-egress

**Description**  
This command allows the user to allocate maximum resources for use by egress filter policies using ipv6 criteria with 128-bit IPv6 addresses.

The resources cannot be shared with any other egress filter policies that specify other match criteria. Please see the 7210 M,X Router Configuration guide for more information on resource allocation details and fields available for use.

With the no form of the command, the software does not allocate any resources for use by egress filter policies using ipv6 criteria with 128-bit IPv6 addresses. If no resources are allocated for use, then the software fails all attempts to associate a service entity (e.g. SAP, IP interface, etc.) with a filter policy using this match criteria.

**Default**  
no ipv6-128bit-match-enable

**Parameters**

**num-resources**  — Specifies the maximum amount of resources for use by this filter match criteria.

**Values**  
[0|2]

**Default**  
0

NOTE: A value of 1 cannot be used.

mac-ipv4-match-enable

**Syntax**  
[no] mac-ipv4-match-enable num-resources

**Context**  
configure>system>resource-profile>egress-internal-tcam>acl-sap-egress

**Description**  
This command allows the user to allocate maximum resources for use by egress filter policies using IPv4 criteria or MAC criteria. The resources allocated are allocated on a first-cum-first-serve basis among service entities (For example: SAP, IP interface, etc) using IPv4 and MAC criteria egress filter policies.

The resources cannot be shared with any other egress filter policies that specify other match criteria. Please see the 7210 M,X Router Configuration guide for more information on resource allocation details and fields available for use.

With the no form of the command, the software does not allocate any resources for use by egress filter policies using MAC or IPv4 criteria. If no resources are allocated for use, then the software fails all attempts to associate a service entity (e.g. SAP, IP interface, etc.) with a filter policy using this match criteria.

**Default**  
mac-ipv4-match-enable 2 (to maintain backward compatibility with earlier releases)

**Parameters**

**num-resources**  — Specifies the maximum amount of resources for use by this filter match criteria.

**Values**  
[0|2]

**Default**  
0
mac-ipv6-64bit-match-enable

**Syntax**

```
[no] mac-ipv6-64bit-match-enable num-resources
```

**Context**

`configure>system>resource-profile>egress-internal-tcam>acl-sap-egress`

**Description**

This command allows the user to allocate maximum resources for use by egress filter policies using MAC criteria or IPv6 criteria using only the upper 64-bits of the IPv6 addresses. The resources allocated are allocated on a first-cum-first-serve basis among service entities (For example: SAP, IP interface, etc.) using IPv6 64-bit and MAC criteria egress filter policies.

The resources cannot be shared with any other egress filter policies that specify other match criteria. Please see the 7210 M,X Router Configuration guide for more information on resource allocation details and fields available for use.

With the no form of the command, the software does not allocate any resources for use by egress filter policies using MAC or IPv6 64-bit criteria. If no resources are allocated for use, then the software fails all attempts to associate a service entity (e.g. SAP, IP interface, etc.) with a filter policy using this match criteria.

**Default**

`no mac-ipv6-64bit-match-enable`

**Parameters**

`num-resources` — Specifies the maximum amount of resources for use by this filter match criteria.

**Values**

`[0|2]`

mac-match-enable

**Syntax**

```
[no] mac-match-enable
```

**Context**

`configure> system> resource-profile> egress-internal-tcam> acl-sap-egress`

**Description**

This command allows the user to allocate maximum resources for use by egress filter policies using MAC criteria. The resources allocated are allocated on a first-cum-first-serve basis among service entities (For example: SAP, IP interface, etc.) using MAC criteria egress filter policies. This option provides for use of all available resources exclusively by MAC criteria egress filter policies and provide larger number of policies to be used.

The resources cannot be shared with any other egress filter policies that specify other match criteria. Please see the 7210 M,X Router Configuration guide for more information on resource allocation details and fields available for use.

With the no form of the command, the software does not allocate any resources for use by egress filter policies using MAC criteria. If no resources are allocated for use, then the software fails all attempts to associate a service entity (e.g. SAP, IP interface, etc.) with a filter policy using this match criteria.

Note that, its possible to use MAC policies by allocating resources that are shared with other match criteria. This option allows for better scaling.

**Default**

`no mac-match-enable`

**Parameters**

`num-resources` — Specifies the maximum amount of resources for use by this filter match criteria.

**Values**

`[0|2]`
ingress-internal-tcam

Syntax: ingress-internal-tcam

Context: configure>system>resource-profile

Description: This command provides the context to allocate ingress internal TCAM resources.

acl-sap-ingress

Syntax: [no] acl-sap-ingress

Context: configure>system>resource-profile>ingress-internal-tcam

Description: This command allows the user to allocate maximum resources for use by ingress filter policies using any of the supported match criteria. This command limits the total amount of chunks allocated for use by ingress filter policies to the value specified by num-resources. In other words, the cumulative sum of chunks allocated to different match criteria supported by ingress filter policies cannot exceed the value configured with num-resources.

With the no form of the command, software does not allocate any resources for use by filter policies. If no resources are allocated for use, then the software fails all attempts to associate a service entity (For example: SAP, IP interface, etc.) with a filter policy using any of the match criteria.

Parameters:
- num-resources — Specifies the amount of resources that can be allocated for use by ACL policies.
  
  Values:
  - [0-3] only for 7210 SAS-D
  
  Default: 2

ipv4-ipv6-128-match-enable

Syntax: [no] ipv4-ipv6-128-match-enable

Context: configure>system>resource-profile>ingress-internal-tcam>acl-sap-ingress

Description: This command allows the user to allocate maximum resources for use by ingress filter policies using ipv6 criteria with 128-bit IPv6 addresses. The resources can be shared with IPv4 ingress filter policies. Please see the 7210 M,X Router Configuration guide for more information on how to allow filter policies using IPv4 criteria to share resources with filter policies that use IPv6 criteria with 128-bit address and resource allocation details and fields available for use.

With the no form of the command, the software does not allocate any resources for use by ingress filter policies using ipv6 criteria with 128-bit IPv6 addresses. If no resources are allocated for use, then the software fails all attempts to associate a service entity (For example: SAP, IP interface, etc.) with a ingress filter policy using this match criteria.

Parameters:
- num-resources — Specifies the maximum amount of resources for use by this filter match criteria.
Values [0-3] only for 7210 SAS-D
Default 0
Values [0-5] for 7210 SAS-M
Default 0
Values [0-2] for 7210 SAS-X
Default 0

max — It is a special keyword. If user specifies max, then the software allocates one chunk when the first SAP is associated with an ingress filter policy using this match criteria. It continues to allocate resources to the service entity associated with an ingress filter policy using this criteria, as long as the total amount of resources allocated does not exceed the resources allocated to ingress filter policies (configured with the command config> system> resource-profile> ingress-internal-tcam> acl-sap-ingress command) and chunks are available for use.

ipv4-match-enable

Syntax [no] ipv4-match-enable
Context configure>system>resource-profile>ingress-internal-tcam>acl-sap-ingress configure>system>resource-profile>ingress-internal-tcam>qos-sap-ingress-resource

Description This command allows the user to allocate maximum resources for use by ingress filter policies using ipv4 criteria. Or when used under the qos-sap-ingress-resource context, its used to allocates resources for use by SAP ingress QoS policies using IPv4 criteria (any).

The resource cannot be shared with ingress filter or SAP ingress QoS filter policies using mac criteria or ipv6 criteria. Please see the 7210 M,X Router Configuration guide for more information on resource allocation details and fields available for use.

With the no form of the command, the software does not allocate any resources for use by ingress filter policies or SAP ingress QoS policies using ipv4 criteria. If no resources are allocated for use, then software fails all attempts to associate a service entity (For example: SAP, IP interface, etc.) with a ingress filter policy or SAP ingress QoS policy using this match criteria.

Parameters num-resources — Specifies the maximum amount of resources for use by this filter match criteria.

Values [0 - 3][max] for 7210 SAS-D

max — It is a special keyword. If user specifies max, then the software allocates one chunk when the first SAP is associated with an ingress filter policy using this match criteria. It continues to allocate resources to SAPs associated with a ingress filter policy using this criteria, as long as the total amount of resources allocated does not exceed the resources allocated to ingress filter policies (configured with the command config> system> resource-profile> ingress-internal-tcam> acl-sap-ingress command) and chunks are available for use.

ipv6-64-only-match-enable
Syntax: \[no\] ipv6-64-only-match-enable

Context: configure>system>resource-profile>ingress-internal-tcam>acl-sap-ingress

Description: This command allows the user to allocate maximum resources for use by ingress filter policies using IPv6 criteria with 64-bit IPv6 addresses. Please see the 7210 M,X Router Configuration guide for more information on resource allocation details and fields available for use.

The resources cannot be shared with IPv4 filter policies or IPv6 filter policies specifying 128-bit addresses.

With the no form of the command, the software does not allocate any resources for use by filter policies using IPv6 criteria with 64-bit IPv6 addresses. If no resources are allocated for use, then software fails all attempts to associate a service entity (For example: SAP, IP interface, etc.) with an ingress filter policy using this match criteria.

Parameters:

- num-resources — Specifies the maximum amount of resources for use by this filter match criteria.
  
  Values:
  
  - max — It is a special keyword. If user specifies max, then the software allocates one chunk when the first SAP is associated with an ingress filter policy using this match criteria. It continues to allocate resources to SAPs associated with an ingress filter policy using this criteria, as long as the total amount of resources allocated does not exceed the resources allocated to ingress filter policies (configured with the command config> system> resource-profile> ingress-internal-tcam> acl-sap-ingress command) and chunks are available for use.

mac-match-enable

Syntax: \[no\] mac-match-enable

Context: configure>system>resource-profile>ingress-internal-tcam>acl-sap-ingress
_configure>system>resource-profile>ingress-internal-tcam> qos-sap-ingress-resource

Description: This command allows the user to allocate maximum resources for use by ingress filter policies using MAC criteria. Or when used under the qos-sap-ingress-resource context, it's used to allocate resources for use by SAP ingress QoS policies using MAC criteria (any).

The resources cannot be shared with policies that use either IPv4 or IPv6 match criteria. For more details about the resource allocation for ingress filter policy and fields available for use with ingress filter policy please refer the 7210 SAS-D/E Router Configuration user guide. For more details about the resource allocation for SAP ingress QoS policy please refer to 7210 SAS-DE QoS user guide.

With the no form of the command, the software does not allocate any resources for use by ingress filter policies or SAP ingress QoS policies using mac criteria. If no resources are allocated for use, then software fails all attempts to associate a service entity (For example: SAP, IP interface, etc.) with a ingress filter policy or SAP ingress QoS policy using this match criteria.

Parameters:

- num-resources — Specifies the maximum amount of resources for use by this filter match criteria.
  
  Values:
  
  - max — It is a special keyword. If user specifies max, then the software allocates one chunk when the first SAP is associated with a ingress filter policy using this match criteria. It continues to allocate...
resources to SAPs associated with a ingress filter policy using this criteria, as long as the total amount of resources allocated does not exceed the resources allocated to ingress filter policies (configured with the command `config > system > resource-profile > ingress-internal-tcam > acl-sap-ingress` command) and chunks are available for use.

**NOTE:** In 7210 SAS-D, mac-criteria SAP ingress QoS policies get to use an additional 128 classification entries with 64 meters. These entries are allocated to mac-criteria SAP ingress QoS resource pool by default and cannot be reassigned to any another feature or any other match criteria.

**eth-cfm**

**Syntax**

```
[no] eth-cfm
```

**Context**

```
configure > system > resource-profile > ingress-internal-tcam
```

**Description**

This command provides the context to allocate resources for CFM UP MEPs.

With the no form of the command, the software does not allocate any resources for use by CFM UP MEPs.

**NOTE:** CFM Down MEPs does not require explicit resource allocation by user.

**Parameters**

`num-resources` — Specifies the maximum amount of resources for use by eth-cfm.

**Values**

```
[0-1]
```

**up-mep**

**Syntax**

```
[no] up-mep
```

**Context**

```
configure > system > resource-profile > ingress-internal-tcam > eth-cfm
```

**Description**

This command provides the context to allocate resources for CFM UP MEPs.

With the no form of the command, the software does not allocate any resources for use by CFM UP MEPs. If no resources are allocated for use, then software fails all attempts to configure an UP MEP.

**NOTE:** CFM Down MEPs does not require explicit resource allocation by user.

**Parameters**

`num-resources` — Specifies the maximum amount of resources for use by up-mep.

**Values**

```
[0-1]
```

**ipv6-ipv4-match-enable**
**Syntax**

ipv6-ipv4-match-enable
no ipv6-ipv4-match-enable

**Context**

configure>system>resource-profile>qos-sap-ingress-resource

**Description**

User needs to allocate resources from the SAP ingress QoS resource pool for ipv6-criteria by using the command "configure> system> resource-profile> ingress-internal-team> qos-sap-ingress-resource> ipv6-ipv4-match-enable" before using IPv6 criteria SAP ingress QoS policies.

These resources can be shared with SAP ingress policies that use IPv4 criteria. For more details about the resource allocation for ingress filter policy and fields available for use with ingress filter policy please refer the 7210 SAS-DE Router Configuration user guide. For more details about the resource allocation for SAP ingress QoS policy please refer to 7210 SAS-DE QoS user guide.

With the no form of the command, the software does not allocate any resources for use by ingress SAP QoS policies using IPv6 criteria. If no resources are allocated for use, then software fails all attempts to associate a service entity (For example: SAP, IP interface, etc.) with a ingress filter policy using this match criteria.

**Parameters**

`num-resources` — Specifies the maximum amount of resources for use by this SAP ingress Qos policy match criteria.

- **Values**
  
  [0 - 6] for 7210 SAS-E
  
  [0 - 3] for 7210 SAS-D

`max` — It is a special keyword. If user specifies max, then the software allocates one chunk when the first SAP is associated with a SAP ingress QoS policy using this match criteria. It continues to allocate resources to SAPs associated with SAP ingress QoS policy using this criteria, as long as the total amount of resources allocated does not exceed the resources allocated to SAP ingress QoS policies (configured with the command `config> system> resource-profile> ingress-internal-team> qos-sap-ingress-resource command`) and chunks are available for use.

---

**qos-sap-ingress-resource**

**Syntax**

qos-sap-ingress-resource
no qos-sap-ingress-resource

**Context**

configure>system>resource-profile

**Description**

This command allows the user to allocate maximum resources for use by SAP ingress QoS policies using any of the supported match criteria. This command limits the total amount of chunks allocated for use by SAP ingress QoS policies to the value specified by num-resources. In other words, the cumulative sum of chunks allocated to different match criteria supported by SAP ingress QoS policies cannot exceed the value configured with num-resources.

With the no form of the command, software does not allocate any resources for use by SAP ingress QoS policies.
If no resources are allocated for use, then the software fails all attempts to associate a service entity (For example: SAP, IP interface, etc.) with a SAP ingress QoS policy using any of the match criteria.

**Parameters**

<table>
<thead>
<tr>
<th>num-resources</th>
<th>Specifies the amount of resources that can be allocated for use by SAP ingress QoS policies.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values</td>
<td>[6 - 6] for 7210 SAS-E</td>
</tr>
<tr>
<td>Default</td>
<td>6</td>
</tr>
<tr>
<td>Values</td>
<td>[0 - 3] for 7210 SAS-D</td>
</tr>
<tr>
<td>Default</td>
<td>1</td>
</tr>
</tbody>
</table>

**sap-aggregate-meter**

**Syntax**

```
[no] sap-aggregate-meter num-resource
```

**Context**

`configure>system>resource-profile>ingress-internal-tcam>

**Description**

NOTE: This command is not supported on 7210 SAS-E.

This command allows the user to allocate maximum resources for use by meters/policers used to implement SAP ingress aggregate meter functionality from the global pool of ingress CAM resources. Before using the command `configure>service>sap>ingress>aggregate-meter-rate` user must ensure that resources are allocated to aggregate meters using this command.

NOTE: For the command to take effect the node must be rebooted after making the change.

This command allocates meter resources from the available global ingress CAM resource pool. By default, when resources are allocated to SAP ingress QoS policy, along with the CAM classification entries, meter resources are also allocated. Hence, if user needs to use SAP aggregate meter functionality they cannot allocate all the available resources in the global resource pool to SAP ingress QoS policies and ETH-CFM UP MEP. They need to allocate some resources for use by SAP aggregate meter (or SAP ingress ACLs or G8032-fast-flood feature).

By default, when resources are allocated for ingress ACLs (and G8032 in 7210-M network mode only), only classification entries are used and meters resources are not used. SAP aggregate meter resources can use meters from this pool of meter resources. In other words, SAP aggregate meters are stolen from the unused meters in the resources allocated to ingress ACLs.

If user allocates resources for ingress ACLs (or for G8032-fast-flood feature in 7210-M network mode only) and then configures resources for SAP aggregate meter using this command, then the software does the following:

- It does not allocate any additional chunks/resources from the available global ingress CAM resource pool to SAP aggregate meter, if it can allocate the required number of meters from the chunks/resources allocated to ingress ACLs (or from resources allocated to G8032-fast-flood in 7210-M network mode only). For example, if user has allocated 2 chunks of 512 entries each for ingress ACLs and then configures sap-aggregate-meter to use 2 chunks to use about 512 aggregate meters, then the software will not allocate any additional entries from the available global resource pool.
• If the number of ingress ACL resources allocated by user is less than the number of resources assigned by the user to sap-aggregate-meter (or if no resources are allocated to G8032), then it allocates the difference from the available global ingress CAM resource pool. For example, if user has allocated 1 chunk of 512 entries for ingress ACLs and then configures sap-aggregate-meter to use 2 chunks to use about 512 aggregate meters, then the software will allocate 1 additional chunk (2 chunks required for SAP aggregate - 1 chunk allotted to ingress ACLs) for use with SAP aggregate meter. The classification entries associated with additional chunk allotted for SAP aggregate-meter can be used by the ingress ACLs policies. It cannot be used by SAP ingress QoS policies and eth-cfm UP MEP.

Similar checks as above are performed when user allocates resources for SAP aggregate meters using this command and then configures resources for ingress ACLs (or for G8032-fast-flood feature). That is, the software does the following:

• It does not allocate any additional entries from the available global ingress CAM resource pool to ingress ACLs, if it can allocate the required number of classification entries from the chunks allocated to SAP aggregate meter feature. For example, if user has allocated 2 chunks of 512 entries each for SAP aggregate meters and then configures ingress ACLs to use 2 chunks to use about 512 classification entries, then the software will not allocate any additional entries from the available global resource pool.

• If the number of SAP aggregate meter resources allocated by user is less than the number of resources requested by the user for ingress ACLs, then it allocates the difference from the available global ingress CAM resource pool. For example, if user has allocated 1 chunk of 512 entries for SAP aggregate meters and then configures ingress ACLs to use 2 chunks, then the software will allocate 1 additional chunk (2 chunks required for ingress ACLs - 1 chunk allotted to SAP aggregate meter) for use with ingress ACLs. The meter resources associated with additional chunk allotted for ingress ACLs can be assigned to the SAP aggregate feature, if needed.

Please see the 7210 DE QoS user guide, 7210 DE Systems Basic Guide and the 7210 SAS-DE Router Configuration Guide for more information about use of SAP aggregate feature, ingress CAM resource allocation and use of ACLs policies respectively.

With the no form of the command, the software does not allocate any resources for use by SAP ingress aggregate meter. If no resources are allocated for use, then the software fails all attempts to associate an aggregate-meter with SAP ingress.

**Parameters**

- **num-resources** — Specifies the maximum amount of resources for use by this filter match criteria.

**Values**

- [0-1] for 7210 SAS-D

**max-ipv6-routes**

**Syntax**

[no] max-ipv6-routes number

**Context**

configure>system>resource-profile>

**Description**

NOTE: This command is supported only on 7210 SAS-D.

This command allows the user to allocate IPv6 route entries in the L3 forwarding table.
L3 forwarding table entries is shared among IPv4 and IPv6 route entries. Before adding routes for IPv6 destinations, route entries in the routed lookup table needs to be allocated for IPv6 addresses using this command. This command allocates route entries for /64 IPv6 prefix route lookups. The remainder of the L3 forwarding table is used for IPv4 routing entries. The system does not allocate any IPv6 route entries by default and user needs to allocate some resources before using IPv6.

**NOTE:** For the command to take effect the node must be rebooted after making the change. Please see the example below and the Systems Basic guide for more information.

**NOTE:** A separate route table is used for IPv6 /128-bit prefix route lookup. A limited amount of IPv6 /128 prefixes route lookup entries is supported. The software enables lookups in this table by default (in other words no user configuration is required to enable IPv6 /128-bit route lookup).

**NOTE:** IPv6 IP interfaces are allowed to be created without allocating IPv6 route entries. With this only IPv6 hosts on the same IPv6 subnet will be reachable.

With the no form of the command, the software does not allocate any resources for use by IPv6 routes.

**Default**

no max-ipv6-routes

**Parameters**

number — Specifies the maximum amount of entries to be used for IPv6 routes.

**Values**

[1 - 6000] on 7210 SAS-D

This command provides the context to configure the QoS parameters.

*highUcastLowMcast* When user executes this command with the option highUcastLowMcast, on the next reboot, the mode of the device is set to allow for use of unicast queues and shaping for SAP ingress traffic. This mode allows user to have larger amount of SAP ingress queued traffic at the expense of lesser multicast replication capacity. In this mode, the total bandwidth for unicast ingress queued traffic is limited to 20G and total bandwidth for multicast traffic (post-replication) is limited to 11G. In this mode, user must ensure that the unicast ingress queued traffic received by the node does not exceed 20G, that is, over-subscription of the ingress queued traffic must be prevented. The software does not implement any mechanism to detect the overload condition, hence proper care must be exercised by the user to prevent it.

When the no form of the command is executed, on the next reboot, the mode of the device does not allow for use of unicast queues and shaping for SAP ingress traffic. This mode allows user to have larger multicast replication capability and the total bandwidth available for multicast traffic (post replication) is limited to 23G. In this mode, software will error out any queue configuration in the SAP ingress QoS policy. **NOTE:** In both these modes, Network Port and SAP egress queuing and shaping is supported. About 44G of bandwidth is available for Network Port and SAP egress traffic.

**Default**

no sap-ingress-queues

**NOTE:** A reboot is needed for the change to take effect.
Fan Controller Commands

fan

Syntax  
fan {on | off | auto}

Context  
configure>system

Description  
7210 SAS-D chassis with 128MB flash has a fan to help in circulating the air inside the chassis. It does not provide for cooling. This command allows the operator to control the operation of the fan. Operators can choose to either switch 'on' or 'off' the fan permanently or let the system control the operation of the fan by setting the value to 'auto'.

In auto mode, software controls the operation of the fan. It switches the fan 'on', if the system defined temperature threshold is exceeded and switches it 'off' when temperature falls back to normal. It also ensures that fan is not switched on and off more than once in 30 minutes.

Default  
auto

Parameters  
on  —  The operation of the fan is controlled by the user and it is always switched on/operating.

off  —  The operation of the fan is controlled by the user and it is always switched off/not operating.

auto  —  The fan is controlled by the system. It is switched on when the temperature threshold exceeds certain value and is switched off when the temperature threshold falls back below a certain value.
Show Commands

**SYSTEM COMMANDS**

**connections**

**Syntax**
connections [address ip-address [interface interface-name]] [port port-number] [detail]

**Context**
show\>system

**Description**
This command displays UDP and TCP connection information. If no command line options are specified, a summary of the TCP and UDP connections displays.

**Parameters**
- **ip-address** — Displays only the connection information for the specified IP address.
  - **Values**
    - ipv4-address: a.b.c.d (host bits must be 0)
    - ipv6-address: x:x:x:x:x:x:x (eight 16-bit pieces)
    - x - [0..FFFF]H
    - d - [0..255]D

- **port-number** — Displays only the connection information for the specified port number.
  - **Values**
    - 0 — 65535

- **detail** — Appends TCP statistics to the display output.

**Output**
**Standard Connection Output** — The following table describes the system connections output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proto</td>
<td>Displays the socket protocol, either TCP or UDP.</td>
</tr>
<tr>
<td>RecvQ</td>
<td>Displays the number of input packets received by the protocol.</td>
</tr>
<tr>
<td>TxmtQ</td>
<td>Displays the number of output packets sent by the application.</td>
</tr>
<tr>
<td>Local Address</td>
<td>Displays the local address of the socket. The socket port is separated by a period.</td>
</tr>
<tr>
<td>Remote Address</td>
<td>Displays the remote address of the socket. The socket port is separated by a period.</td>
</tr>
<tr>
<td>State</td>
<td><strong>Listen</strong> — The protocol state is in the listen mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Established</strong> — The protocol state is established.</td>
</tr>
</tbody>
</table>
Sample Output

A:ALA-12# show system connections
===============================================================================
Connections :
===============================================================================
<table>
<thead>
<tr>
<th>Proto</th>
<th>RecvQ</th>
<th>TxmtQ</th>
<th>Local Address</th>
<th>Remote Address</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>0</td>
<td>0</td>
<td>0.0.0.0.21</td>
<td>0.0.0.0.0</td>
<td>LISTEN</td>
</tr>
<tr>
<td>TCP</td>
<td>0</td>
<td>0</td>
<td>0.0.0.0.23</td>
<td>0.0.0.0.0</td>
<td>LISTEN</td>
</tr>
<tr>
<td>TCP</td>
<td>0</td>
<td>0</td>
<td>0.0.0.0.179</td>
<td>0.0.0.0.0</td>
<td>LISTEN</td>
</tr>
<tr>
<td>TCP</td>
<td>0</td>
<td>0</td>
<td>10.0.0.xxx.51138</td>
<td>10.0.0.104.179</td>
<td>SYN_SEND</td>
</tr>
<tr>
<td>TCP</td>
<td>0</td>
<td>0</td>
<td>10.0.0.xxx.51139</td>
<td>10.0.0.91.179</td>
<td>SYN_SEND</td>
</tr>
<tr>
<td>TCP</td>
<td>0</td>
<td>0</td>
<td>10.10.10.xxx.646</td>
<td>0.0.0.0.0</td>
<td>LISTEN</td>
</tr>
<tr>
<td>TCP</td>
<td>0</td>
<td>0</td>
<td>10.10.10.xxx.646</td>
<td>10.10.10.49406</td>
<td>ESTABLISHED</td>
</tr>
<tr>
<td>TCP</td>
<td>0</td>
<td>0</td>
<td>11.1.0.1.51140</td>
<td>11.1.0.2.179</td>
<td>SYN_SEND</td>
</tr>
<tr>
<td>UDP</td>
<td>0</td>
<td>0</td>
<td>993.192.168.x.xxx.23</td>
<td>192.168.x.xxx.1xxxx</td>
<td>ESTABLISHED</td>
</tr>
<tr>
<td>UDP</td>
<td>0</td>
<td>0</td>
<td>0.0.0.0.123</td>
<td>0.0.0.0.0</td>
<td>---</td>
</tr>
<tr>
<td>UDP</td>
<td>0</td>
<td>0</td>
<td>0.0.0.0.646</td>
<td>0.0.0.0.0</td>
<td>---</td>
</tr>
<tr>
<td>UDP</td>
<td>0</td>
<td>0</td>
<td>0.0.0.0.17185</td>
<td>0.0.0.0.0</td>
<td>---</td>
</tr>
<tr>
<td>UDP</td>
<td>0</td>
<td>0</td>
<td>10.10.10.xxx.0.65</td>
<td>0.0.0.0.0</td>
<td>---</td>
</tr>
<tr>
<td>UDP</td>
<td>0</td>
<td>0</td>
<td>127.0.0.1.50130</td>
<td>127.0.0.1.17185</td>
<td>---</td>
</tr>
</tbody>
</table>
No. of Connections: 14
===============================================================================
A:ALA-12#

Sample Detailed Output

A:ALA-12# show system connections detail
===============================================================================
TCF Statistics
===============================================================================
packets sent                      : 659635
data packets                      : 338982 (7435146 bytes)
data packet retransmitted          : 73 (1368 bytes)
ack-only packets                  : 320548 (140960 delayed)
URG only packet                   : 0
window probe packet               : 0
window update packet              : 0
control packets                   : 32
packets received                  : 658893
acks                               : 338738 for (7435123 bytes)
duplicate acks                    : 23
ack for unsent data               : 0
packets received in-sequence      : 324705 (5568368 bytes)
completely duplicate packet       : 2 (36 bytes)
packet with some dup. data        : 0 (0 bytes)
out-of-order packets              : 20 (0 bytes)
packet of data after window       : 0 (0 bytes)
window probe                      : 0
window update packet              : 3
packets received after close      : 0
discarded for bad checksum        : 0
discarded for bad header offset field : 0
discarded because packet too short : 0
connection request : 4  
connection accept : 24  
connections established (including accepts) : 27  
connections closed : 26 (including 2 drops)  
embryonic connections dropped : 0  
segments updated rtt : 338742 (of 338747 attempts)  
retransmit timeouts : 75  
connections dropped by retransmit timeout : 0  
persist timeouts : 0  
keepalive timeouts : 26  
keepalive probes sent : 0  
connections dropped by keepalive : 1  
pcb cache lookups failed : 0

A:ALA-12#

cpu

**Syntax**  
cpu [sample-period seconds]

**Context**  
show>system

**Description**  
This command displays CPU utilization per task over a sample period.

**Parameters**  

- *sample-period seconds* — The number of seconds over which to sample CPU task utilization.
  
  **Default** 1
  
  **Values** 1 — 5

**Output**  
System CPU Output — The following table describes the system CPU output fields.

**Table 25: Show System CPU Output Fields**

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Utilization</td>
<td>The total amount of CPU time.</td>
</tr>
<tr>
<td>Name</td>
<td>The process or protocol name.</td>
</tr>
<tr>
<td>CPU Time (uSec)</td>
<td>The CPU time each process or protocol has used in the specified time.</td>
</tr>
<tr>
<td>CPU Usage</td>
<td>The sum of CPU usage of all the processes and protocols.</td>
</tr>
<tr>
<td>Capacity Usage</td>
<td>Displays the level the specified service is being utilized. When this number hits 100%, this part of the system is busied out. There may be extra CPU cycles still left for other processes, but this service is running at capacity. This column does not reflect the true CPU utilization value; that data is still available in the CPU Usage column. This column is the busiest task in each group, where busiest is defined as either actually running or blocked attempting to acquire a lock.</td>
</tr>
</tbody>
</table>
Sample Output

*A:cses-E11# show system cpu sample-period 2
===============================================================================
CPU Utilization (Sample period: 2 seconds)
===============================================================================
<table>
<thead>
<tr>
<th>Name</th>
<th>CPU Time (uSec)</th>
<th>CPU Usage</th>
<th>Capacity Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFD</td>
<td>10</td>
<td>~0.00%</td>
<td>~0.00%</td>
</tr>
<tr>
<td>Cards &amp; Ports</td>
<td>8,332</td>
<td>0.41%</td>
<td>0.08%</td>
</tr>
<tr>
<td>IS-IS</td>
<td>1,213</td>
<td>0.06%</td>
<td>0.06%</td>
</tr>
<tr>
<td>ISA</td>
<td>2,496</td>
<td>0.12%</td>
<td>0.07%</td>
</tr>
<tr>
<td>LDP</td>
<td>0</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Logging</td>
<td>32</td>
<td>~0.00%</td>
<td>~0.00%</td>
</tr>
<tr>
<td>MSDP</td>
<td>0</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Management</td>
<td>5,969</td>
<td>0.29%</td>
<td>0.15%</td>
</tr>
<tr>
<td>OAM</td>
<td>907</td>
<td>0.04%</td>
<td>0.02%</td>
</tr>
<tr>
<td>OSPF</td>
<td>25</td>
<td>~0.00%</td>
<td>~0.00%</td>
</tr>
<tr>
<td>Redundancy</td>
<td>3,635</td>
<td>0.18%</td>
<td>0.13%</td>
</tr>
<tr>
<td>SIM</td>
<td>1,462</td>
<td>0.07%</td>
<td>0.04%</td>
</tr>
<tr>
<td>SNMP Daemon</td>
<td>0</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Services</td>
<td>2,241</td>
<td>0.11%</td>
<td>0.05%</td>
</tr>
<tr>
<td>Stats</td>
<td>0</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Subscriber Mgmt</td>
<td>2,129</td>
<td>0.10%</td>
<td>0.04%</td>
</tr>
<tr>
<td>System</td>
<td>8,802</td>
<td>0.43%</td>
<td>0.17%</td>
</tr>
<tr>
<td>Traffic Eng</td>
<td>0</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>WEB Redirect</td>
<td>125</td>
<td>~0.00%</td>
<td>~0.00%</td>
</tr>
<tr>
<td>Total</td>
<td>2,014,761</td>
<td>100.00%</td>
<td></td>
</tr>
<tr>
<td>Idle</td>
<td>1,945,113</td>
<td>96.54%</td>
<td></td>
</tr>
<tr>
<td>Usage</td>
<td>69,648</td>
<td>3.45%</td>
<td></td>
</tr>
<tr>
<td>Busiest Core Utilization</td>
<td>69,648</td>
<td>3.45%</td>
<td></td>
</tr>
</tbody>
</table>
===============================================================================
*A:cses-E11#

cron

Syntax cron

Context show>cron

Description This command enters the show CRON context.

action

Syntax action [action-name] [owner action-owner] run-history run-state

Context show>cron#

Description This command displays cron action parameters.
Parameters

- **action** action-name — Specifies the action name.
  - **Values** maximum 32 characters

- **owner** action-owner — Specifies the owner name.
  - **Default** TiMOS CLI

- **run-history** run-state — Specifies the state of the test to be run.
  - **Values** executing, initializing, terminated

Output

The following table describes the show cron action output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
<td>Displays the name of the action.</td>
</tr>
<tr>
<td>Action owner</td>
<td>The name of the action owner.</td>
</tr>
<tr>
<td>Administrative status</td>
<td>Enabled — Administrative status is enabled</td>
</tr>
<tr>
<td></td>
<td>Disabled — Administrative status is disabled</td>
</tr>
<tr>
<td>Script</td>
<td>The name of the script</td>
</tr>
<tr>
<td>Script owner</td>
<td>The name of the script owner.</td>
</tr>
<tr>
<td>Script source location</td>
<td>Displays the location of scheduled script.</td>
</tr>
<tr>
<td>Max running allowed</td>
<td>Displays the maximum number of allowed sessions.</td>
</tr>
<tr>
<td>Max completed run histories</td>
<td>Displays the maximum number of sessions previously run.</td>
</tr>
<tr>
<td>Max lifetime allowed</td>
<td>Displays the maximum amount of time the script may run.</td>
</tr>
<tr>
<td>Completed run histories</td>
<td>Displays the number of completed sessions.</td>
</tr>
<tr>
<td>Executing run histories</td>
<td>Displays the number of sessions in the process of executing.</td>
</tr>
<tr>
<td>Initializing run histories</td>
<td>Displays the number of sessions ready to run/queued but not executed.</td>
</tr>
<tr>
<td>Max time run history saved</td>
<td>Displays the maximum amount of time to keep the results from a script run.</td>
</tr>
<tr>
<td>Last change</td>
<td>Displays the system time a change was made to the configuration.</td>
</tr>
</tbody>
</table>
Sample Output

*A:Redundancy# show cron action run-history terminated

--------
CRON Action Run History
----------
Action "test"
Owner "TiMOS CLI"
--------
Script Run #17
--------
Start time    : 2006/11/06 20:30:09     End time      : 2006/11/06 20:35:24
Elapsed time  : Od 00:05:15             Lifetime      : Od 00:00:00
State         : terminated              Run exit code : noError
Result time   : 2006/11/06 20:35:24     Keep history : Od 00:49:57
Error time    : never                   Results file : ftp://*:*@192.168.15.18/home/testlab_bgp/cron/_20061106-203008. out
Result time   : 2006/11/06 20:35:24     Run exit      : Success
Keep history  : Od 00:49:57
Error time    : never
--------
Script Run #18
--------
Start time    : 2006/11/06 20:35:24     End time      : 2006/11/06 20:40:40
Elapsed time  : Od 00:05:16             Lifetime      : Od 00:00:00
State         : terminated              Run exit code : noError
Result time   : 2006/11/06 20:40:40     Keep history : Od 00:55:13
Error time    : never                   Results file : ftp://*:*@192.168.15.18/home/testlab_bgp/cron/_20061106-203523. out
Result time   : 2006/11/06 20:40:40     Run exit      : Success
Keep history  : Od 00:55:13
Error time    : never
--------
*A:Redundancy# show cron action run-history executing

--------
CRON Action Run History
----------
Action "test"
Owner "TiMOS CLI"
--------
Script Run #20
--------
Start time    : 2006/11/06 20:46:00     End time      : never
Elapsed time  : Od 00:00:56             Lifetime      : Od 00:59:04
State         : executing              Run exit code : noError
Result time   : never                   Keep history : Od 01:00:00
Error time    : never                   Results file : ftp://*:*@192.168.15.18/home/testlab_bgp/cron/_20061106-204559. out
--------
*A:Redundancy# show cron action run-history initializing

--------
CRON Action Run History
----------
Action "test"

Owner "TiMOS CLI"

Script Run #21

Start time    : never                   End time      : never
Elapsed time  : 0d 00:00:00             Lifetime      : 0d 01:00:00
State         : initializing            Run exit code : noError
Result time   : never                   Keep history  : 0d 01:00:00
Error time    : never
Results file  : none

Script Run #22

Start time    : never                   End time      : never
Elapsed time  : 0d 00:00:00             Lifetime      : 0d 01:00:00
State         : initializing            Run exit code : noError
Result time   : never                   Keep history  : 0d 01:00:00
Error time    : never
Results file  : none

Script Run #23

Start time    : never                   End time      : never
Elapsed time  : 0d 00:00:00             Lifetime      : 0d 01:00:00
State         : initializing            Run exit code : noError
Result time   : never                   Keep history  : 0d 01:00:00
Error time    : never
Results file  : none

*As:Redundancy#

schedule

Syntax  schedule [schedule-name] [owner schedule-owner]

Context show>cron#

Description This command displays cron schedule parameters.

Parameters schedule-name — Displays information for the specified scheduler name.

owner schedule-owner — Displays information for the specified scheduler owner.

Output The following table describes the show cron schedule output fields.

A:sim1>show>cron schedule test

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule name</td>
<td>Displays the schedule name.</td>
</tr>
<tr>
<td>Schedule owner</td>
<td>Displays the owner name of the action.</td>
</tr>
<tr>
<td>Description</td>
<td>Displays the schedule’s description.</td>
</tr>
<tr>
<td>Label</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>Administrative status</td>
<td>Enabled — The administrative status is enabled.</td>
</tr>
<tr>
<td></td>
<td>Disabled — Administratively disabled.</td>
</tr>
<tr>
<td>Operational status</td>
<td>Enabled — The operational status is enabled.</td>
</tr>
<tr>
<td></td>
<td>Disabled — Operationally disabled.</td>
</tr>
<tr>
<td>Action</td>
<td>Displays the action name</td>
</tr>
<tr>
<td>Action owner</td>
<td>Displays the name of action owner.</td>
</tr>
<tr>
<td>Script</td>
<td>Displays the name of the script.</td>
</tr>
<tr>
<td>Script owner</td>
<td>Displays the name of the script.</td>
</tr>
<tr>
<td>Script owner</td>
<td>Displays the name of the script owner.</td>
</tr>
<tr>
<td>Script source location</td>
<td>Displays the location of scheduled script.</td>
</tr>
<tr>
<td>Script results location</td>
<td>Displays the location where the script results have been sent.</td>
</tr>
<tr>
<td>Schedule type</td>
<td>Periodic — Displays a schedule which ran at a given interval.</td>
</tr>
<tr>
<td></td>
<td>Calendar — Displays a schedule which ran based on a calendar.</td>
</tr>
<tr>
<td></td>
<td>Oneshot — Displays a schedule which ran one time only.</td>
</tr>
<tr>
<td>Interval</td>
<td>Displays the interval between runs of an event.</td>
</tr>
<tr>
<td>Next scheduled run</td>
<td>Displays the time for the next scheduled run.</td>
</tr>
<tr>
<td>Weekday</td>
<td>Displays the configured weekday.</td>
</tr>
<tr>
<td>Month</td>
<td>Displays the configured month.</td>
</tr>
<tr>
<td>Day of Month</td>
<td>Displays the configured day of month.</td>
</tr>
<tr>
<td>Hour</td>
<td>Displays the configured hour.</td>
</tr>
<tr>
<td>Minute</td>
<td>Displays the configured minute.</td>
</tr>
<tr>
<td>Number of scheduled runs</td>
<td>Displays the number of scheduled sessions.</td>
</tr>
<tr>
<td>Last scheduled run</td>
<td>Displays the last scheduled session.</td>
</tr>
<tr>
<td>Number of scheduled failures</td>
<td>Displays the number of scheduled sessions that failed to execute.</td>
</tr>
<tr>
<td>Last scheduled failure</td>
<td>Displays the last scheduled session that failed to execute.</td>
</tr>
</tbody>
</table>
CRON Schedule Information

Schedule                     : test
Schedule owner               : TiMOS CLI
Description                  : none
Administrative status        : enabled
Operational status           : enabled
Action                       : test
Action owner                 : TiMOS CLI
Script                       : test
Script Owner                 : TiMOS CLI
Script source location       : ftp://*****:******@192.168.15.1/home/testlab_bgp/cron/test1.cfg
Script results location      : ftp://*****:******@192.168.15.1/home/testlab_bgp/cron/res
Schedule type                : periodic
Interval                     : 0d 00:01:00 (60 seconds)
Next scheduled run           : 0d 00:00:42
Weekday                      : tuesday
Month                        : none
Day of month                 : none
Hour                         : none
Minute                       : none
Number of schedule runs      : 10
Last schedule run            : 2008/01/01 17:20:52
Number of schedule failures  : 0
Last schedule failure        : no error
Last failure time            : never

A:sim1>show>cron

script

**Syntax**
```
script [script-name] [owner script-owner]
```

**Context**
`show>cron`#

**Description**
This command displays cron script parameters.

**Parameters**
- `script-name` — Displays information for the specified script.
- `owner schedule-owner` — Displays information for the specified script owner.

**Output**
The following table describes the show cron script output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last failure time</td>
<td>Displays the system time of the last failure.</td>
</tr>
</tbody>
</table>

---

CRON Schedule Information

Schedule                     : test
Schedule owner               : TiMOS CLI
Description                  : none
Administrative status        : enabled
Operational status           : enabled
Action                       : test
Action owner                 : TiMOS CLI
Script                       : test
Script Owner                 : TiMOS CLI
Script source location       : ftp://*****:******@192.168.15.1/home/testlab_bgp/cron/test1.cfg
Script results location      : ftp://*****:******@192.168.15.1/home/testlab_bgp/cron/res
Schedule type                : periodic
Interval                     : 0d 00:01:00 (60 seconds)
Next scheduled run           : 0d 00:00:42
Weekday                      : tuesday
Month                        : none
Day of month                 : none
Hour                         : none
Minute                       : none
Number of schedule runs      : 10
Last schedule run            : 2008/01/01 17:20:52
Number of schedule failures  : 0
Last schedule failure        : no error
Last failure time            : never

A:sim1>show>cron

script

**Syntax**
```
script [script-name] [owner script-owner]
```

**Context**
`show>cron`#

**Description**
This command displays cron script parameters.

**Parameters**
- `script-name` — Displays information for the specified script.
- `owner schedule-owner` — Displays information for the specified script owner.

**Output**
The following table describes the show cron script output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last failure time</td>
<td>Displays the system time of the last failure.</td>
</tr>
</tbody>
</table>

---

CRON Schedule Information

Schedule                     : test
Schedule owner               : TiMOS CLI
Description                  : none
Administrative status        : enabled
Operational status           : enabled
Action                       : test
Action owner                 : TiMOS CLI
Script                       : test
Script Owner                 : TiMOS CLI
Script source location       : ftp://*****:******@192.168.15.1/home/testlab_bgp/cron/test1.cfg
Script results location      : ftp://*****:******@192.168.15.1/home/testlab_bgp/cron/res
Schedule type                : periodic
Interval                     : 0d 00:01:00 (60 seconds)
Next scheduled run           : 0d 00:00:42
Weekday                      : tuesday
Month                        : none
Day of month                 : none
Hour                         : none
Minute                       : none
Number of schedule runs      : 10
Last schedule run            : 2008/01/01 17:20:52
Number of schedule failures  : 0
Last schedule failure        : no error
Last failure time            : never

A:sim1>show>cron

script

**Syntax**
```
script [script-name] [owner script-owner]
```

**Context**
`show>cron`#

**Description**
This command displays cron script parameters.

**Parameters**
- `script-name` — Displays information for the specified script.
- `owner schedule-owner` — Displays information for the specified script owner.

**Output**
The following table describes the show cron script output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last failure time</td>
<td>Displays the system time of the last failure.</td>
</tr>
</tbody>
</table>

---

CRON Schedule Information

Schedule                     : test
Schedule owner               : TiMOS CLI
Description                  : none
Administrative status        : enabled
Operational status           : enabled
Action                       : test
Action owner                 : TiMOS CLI
Script                       : test
Script Owner                 : TiMOS CLI
Script source location       : ftp://*****:******@192.168.15.1/home/testlab_bgp/cron/test1.cfg
Script results location      : ftp://*****:******@192.168.15.1/home/testlab_bgp/cron/res
Schedule type                : periodic
Interval                     : 0d 00:01:00 (60 seconds)
Next scheduled run           : 0d 00:00:42
Weekday                      : tuesday
Month                        : none
Day of month                 : none
Hour                         : none
Minute                       : none
Number of schedule runs      : 10
Last schedule run            : 2008/01/01 17:20:52
Number of schedule failures  : 0
Last schedule failure        : no error
Last failure time            : never

A:sim1>show>cron

script

**Syntax**
```
script [script-name] [owner script-owner]
```

**Context**
`show>cron`#

**Description**
This command displays cron script parameters.

**Parameters**
- `script-name` — Displays information for the specified script.
- `owner schedule-owner` — Displays information for the specified script owner.

**Output**
The following table describes the show cron script output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last failure time</td>
<td>Displays the system time of the last failure.</td>
</tr>
</tbody>
</table>
**System Commands**

### Label	Description (Continued)
Script owner	Displays the owner name of script.
Administrative status	Enabled — Administrative status is enabled.
Disabled — Administratively abled.	
Operational status	Enabled — Operational status is enabled.
Disabled — Operationally disabled.	
Script source location | Displays the location of scheduled script.
Last script error | Displays the system time of the last error.
Last change | Displays the system time of the last change.

**Sample Output**

```
A:sim1>show>cron# script
===
CRON Script Information
===
Script : test
Owner name : TiMOS CLI
Description : asd
Administrative status : enabled
Operational status : enabled
Script source location : ftp://*****:******@192.168.15.1/home/testlab_bgp/cron/test1.cfg
Last script error : none
Last change : 2006/11/07 17:10:03
===
A:sim1>show>cron#
```

**Syntax information**

**Context**

```
show>system
```

**Description**

This command displays general system information including basic system, SNMP server, last boot and DNS client information.
Output System Information Output — The following table describes the system information output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Name</td>
<td>The configured system name.</td>
</tr>
<tr>
<td>System Contact</td>
<td>A text string that describes the system contact information.</td>
</tr>
<tr>
<td>System Location</td>
<td>A text string that describes the system location.</td>
</tr>
<tr>
<td>System Coordinates</td>
<td>A text string that describes the system coordinates.</td>
</tr>
<tr>
<td>System Up Time</td>
<td>The time since the last boot.</td>
</tr>
<tr>
<td>SNMP Port</td>
<td>The port number used by this node to receive SNMP request messages and to send replies.</td>
</tr>
<tr>
<td>SNMP Engine ID</td>
<td>The SNMP engineID to uniquely identify the SNMPv3 node.</td>
</tr>
<tr>
<td>SNMP Max Message Size</td>
<td>The maximum SNMP packet size generated by this node.</td>
</tr>
<tr>
<td>SNMP Admin State</td>
<td>Enabled — SNMP is administratively enabled and running.</td>
</tr>
<tr>
<td></td>
<td>Disabled — SNMP is administratively shutdown and not running.</td>
</tr>
<tr>
<td>SNMP Oper State</td>
<td>Enabled — SNMP is operationally enabled.</td>
</tr>
<tr>
<td></td>
<td>Disabled — SNMP is operationally disabled.</td>
</tr>
<tr>
<td>SNMP Index Boot Status</td>
<td>Persistent — System indexes are saved between reboots.</td>
</tr>
<tr>
<td></td>
<td>Not Persistent — System indexes are not saved between reboots.</td>
</tr>
<tr>
<td>Telnet/SSH/FTP Admin</td>
<td>Displays the administrative state of the Telnet, SSH, and FTP sessions.</td>
</tr>
<tr>
<td>Telnet/SSH/FTP Oper</td>
<td>Displays the operational state of the Telnet, SSH, and FTP sessions.</td>
</tr>
<tr>
<td>BOF Source</td>
<td>The location of the BOF.</td>
</tr>
<tr>
<td>Image Source</td>
<td>Primary — Indicates that the directory location for runtime image file was loaded from the primary source.</td>
</tr>
<tr>
<td></td>
<td>Secondary — Indicates that the directory location for runtime image file was loaded from the secondary source.</td>
</tr>
<tr>
<td></td>
<td>Tertiary — Indicates that the directory location for runtime image file was loaded from the tertiary source.</td>
</tr>
<tr>
<td><strong>Label</strong></td>
<td><strong>Description</strong></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| Config Source                 | **Primary** — Indicates that the directory location for configuration file was loaded from the primary source.  
**Secondary** — Indicates that the directory location for configuration file was loaded from the secondary source.  
**Tertiary** — Indicates that the directory location for configuration file was loaded from the tertiary source. |
| Last Booted Config File       | The URL and filename of the last loaded configuration file.                                                                                                                                                          |
| Last Boot Cfg Version         | The date and time of the last boot.                                                                                                                                                                                  |
| Last Boot Config Header       | Displays header information such as image version, date built, date generated.                                                                                                                                      |
| Last Boot Index Version       | The version of the persistence index file read when the card was last rebooted.                                                                                                                                     |
| Last Boot Index Header        | The header of the persistence index file read when the card was last rebooted.                                                                                                                                       |
| Last Saved Config             | The location and filename of the last saved configuration file.                                                                                                                                                      |
| Time Last Saved               | The date and time of the last time configuration file was saved.                                                                                                                                                    |
| Changes Since Last Save       | **Yes** — There are unsaved configuration file changes.  
**No** — There are no unsaved configuration file changes.                                                                                                                                                     |
| Time Last Modified            | The date and time of the last modification.                                                                                                                                                                           |
| Max Cfg/BOF Backup Rev        | The maximum number of backup revisions maintained for a configuration file. This value also applies to the number of revisions maintained for the BOF file.                                                      |
| Cfg-OK Script                 | URL — The location and name of the CLI script file executed following successful completion of the boot-up configuration file execution.                                                                          |
| Cfg-OK Script Status          | **Successful/Failed.** The results from the execution of the CLI script file specified in the Cfg-OK Script location.  
**Not used** — No CLI script file was executed.                                                                                                           |
| Cfg-Fail Script               | URL — The location and name of the CLI script file executed following a failed boot-up configuration file execution.  
**Not used** — No CLI script file was executed.                                                                                                           |
| Cfg-Fail Script Status        | **Successful/Failed** — The results from the execution of the CLI script file specified in the Cfg-Fail Script location.  
**Not used** — No CLI script file was executed.                                                                                                           |
memory-pools

Syntax memory-pools

Context show>system

Description This command displays system memory status.

Output Memory Pools Output — The following table describes memory pool output fields.

Table 26: Show Memory Pool Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The name of the system or process.</td>
</tr>
<tr>
<td>Max Allowed</td>
<td>Integer – The maximum allocated memory size.</td>
</tr>
<tr>
<td></td>
<td>No Limit – No size limit.</td>
</tr>
<tr>
<td>Current Size</td>
<td>The current size of the memory pool.</td>
</tr>
<tr>
<td>Max So Far</td>
<td>The largest amount of memory pool used.</td>
</tr>
<tr>
<td>In Use</td>
<td>The current amount of the memory pool currently in use.</td>
</tr>
<tr>
<td>Current Total Size</td>
<td>The sum of the Current Size column.</td>
</tr>
<tr>
<td>Total In Use</td>
<td>The sum of the In Use column.</td>
</tr>
<tr>
<td>Available Memory</td>
<td>The amount of available memory.</td>
</tr>
</tbody>
</table>

Sample Output

A:ALA-1# show system memory-pools

Memory Pools

<table>
<thead>
<tr>
<th>Name</th>
<th>Max Allowed</th>
<th>Current Size</th>
<th>Max So Far</th>
<th>In Use</th>
</tr>
</thead>
</table>
System Commands

---

<table>
<thead>
<tr>
<th>System</th>
<th>No limit</th>
<th>24,117,248</th>
<th>24,117,248</th>
<th>16,974,832</th>
</tr>
</thead>
<tbody>
<tr>
<td>Icc</td>
<td>8,388,608</td>
<td>1,048,576</td>
<td>1,048,576</td>
<td>85,200</td>
</tr>
<tr>
<td>RTM/Policies</td>
<td>No limit</td>
<td>5,242,912</td>
<td>5,242,912</td>
<td>3,944,104</td>
</tr>
<tr>
<td>OSPF</td>
<td>No limit</td>
<td>3,145,728</td>
<td>3,145,728</td>
<td>2,617,384</td>
</tr>
<tr>
<td>MPLS/RSVF</td>
<td>No limit</td>
<td>9,769,480</td>
<td>9,769,480</td>
<td>8,173,760</td>
</tr>
<tr>
<td>LDP</td>
<td>No limit</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IS-IS</td>
<td>No limit</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RIP</td>
<td>No limit</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VRRP</td>
<td>No limit</td>
<td>1,048,576</td>
<td>1,048,576</td>
<td>96</td>
</tr>
<tr>
<td>Services</td>
<td>No limit</td>
<td>2,097,152</td>
<td>2,097,152</td>
<td>1,589,824</td>
</tr>
<tr>
<td>IOM</td>
<td>No limit</td>
<td>205,226,800</td>
<td>205,226,800</td>
<td>202,962,744</td>
</tr>
<tr>
<td>SIM</td>
<td>No limit</td>
<td>1,048,576</td>
<td>1,048,576</td>
<td>392</td>
</tr>
<tr>
<td>IGMP</td>
<td>No limit</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MMPI</td>
<td>No limit</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MFIB</td>
<td>No limit</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PIP</td>
<td>No limit</td>
<td>79,943,024</td>
<td>79,943,024</td>
<td>78,895,248</td>
</tr>
<tr>
<td>MBUF</td>
<td>67,108,864</td>
<td>5,837,328</td>
<td>5,837,328</td>
<td>4,834,280</td>
</tr>
</tbody>
</table>

---

Current Total Size : 343,495,200 bytes
Total In Use       : 324,492,768 bytes
Available Memory   : 640,178,652 bytes
---

A:ALA-1#

ntp

**Syntax**

```text
ntp [{peers | peer peer-address}] | {servers | server server-address} |[all] | [detail]
```

**Context**

`show>system`

**Description**

This command displays NTP protocol configuration and state.

**Output**

**Show NTP Output** — The following table describes NTP output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td>yes  — NTP is enabled.</td>
</tr>
<tr>
<td></td>
<td>no   — NTP is disabled.</td>
</tr>
<tr>
<td>Admin Status</td>
<td>yes  — Administrative state is enabled.</td>
</tr>
<tr>
<td></td>
<td>no   — Administrative state is disabled.</td>
</tr>
<tr>
<td>NTP Server</td>
<td>Displays NTP server state of this node.</td>
</tr>
<tr>
<td>Stratum</td>
<td>Displays stratum level of this node.</td>
</tr>
<tr>
<td>Oper Status</td>
<td>yes  — The operational state is enabled.</td>
</tr>
<tr>
<td></td>
<td>no   — The operational state is disabled.</td>
</tr>
<tr>
<td>Auth Check</td>
<td>Displays the authentication requirement</td>
</tr>
</tbody>
</table>

---

Page 360  7210 SAS D, E OS Basic System Configuration Guide
<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Ref. ID</td>
<td>IP address of this node or a 4-character ASCII code showing the state.</td>
</tr>
<tr>
<td>Auth Error</td>
<td>Displays the number of authentication errors.</td>
</tr>
<tr>
<td>Auth Errors Ignored</td>
<td>Displays the number of authentication errors ignored.</td>
</tr>
<tr>
<td>Auth Key ID Errors</td>
<td>Displays the number of key identification errors .</td>
</tr>
<tr>
<td>Auth Key Type Errors</td>
<td>Displays the number of authentication key type errors.</td>
</tr>
<tr>
<td>Reject</td>
<td>The peer is rejected and will not be used for synchronization. Rejection reasons could be the peer is unreachable, the peer is synchronized to this local server so synchronizing with it would create a sync loop, or the synchronization distance is too large. This is the normal startup state.</td>
</tr>
<tr>
<td>Invalid</td>
<td>The peer is not maintaining an accurate clock. This peer will not be used for synchronization.</td>
</tr>
<tr>
<td>Excess</td>
<td>The peer's synchronization distance is greater than ten other peers. This peer will not be used for synchronization.</td>
</tr>
<tr>
<td>Outlyer</td>
<td>The peer is discarded as an outlyer. This peer will not be used for synchronization.</td>
</tr>
<tr>
<td>Candidate</td>
<td>The peer is accepted as a possible source of synchronization.</td>
</tr>
<tr>
<td>Selected</td>
<td>The peer is an acceptable source of synchronization, but its synchronization distance is greater than six other peers.</td>
</tr>
<tr>
<td>Chosen</td>
<td>The peer is chosen as the source of synchronization.</td>
</tr>
<tr>
<td>ChosenPPS</td>
<td>The peer is chosen as the source of synchronization, but the actual synchronization is occurring from a pulse-per-second (PPS) signal.</td>
</tr>
<tr>
<td>Remote</td>
<td>The IP address of the remote NTP server or peer with which this local host is exchanging NTP packets.</td>
</tr>
<tr>
<td>Reference ID</td>
<td>When stratum is between 0 and 15 this field shows the IP address of the remote NTP server or peer with which the remote is exchanging NTP packets. For reference clocks, this field shows the identification assigned to the clock, such as, “.GPS.” For an NTP server or peer, if the client has not yet synchronized to a server/peer, the status cannot be determined and displays the following codes:</td>
</tr>
</tbody>
</table>
### System Commands

<table>
<thead>
<tr>
<th>Label</th>
<th>Description (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peer Codes:</td>
<td></td>
</tr>
<tr>
<td>ACST</td>
<td>The association belongs to any cast server.</td>
</tr>
<tr>
<td>AUTH</td>
<td>Server authentication failed. Please wait while the association is restarted.</td>
</tr>
<tr>
<td>AUTO</td>
<td>Autokey sequence failed. Please wait while the association is restarted.</td>
</tr>
<tr>
<td>BCST</td>
<td>The association belongs to a broadcast server.</td>
</tr>
<tr>
<td>CRPT</td>
<td>Cryptographic authentication or identification failed. The details should be in the system log file or the cryptostats statistics file, if configured. No further messages will be sent to the server.</td>
</tr>
<tr>
<td>DENY</td>
<td>Access denied by remote server. No further messages will be sent to the server.</td>
</tr>
<tr>
<td>DROP</td>
<td>Lost peer in symmetric mode. Please wait while the association is restarted.</td>
</tr>
<tr>
<td>RSTR</td>
<td>Access denied due to local policy. No further messages will be sent to the server.</td>
</tr>
<tr>
<td>INIT</td>
<td>The association has not yet synchronized for the first time.</td>
</tr>
<tr>
<td>MCST</td>
<td>The association belongs to a manycast server.</td>
</tr>
<tr>
<td>NKEY</td>
<td>No key found. Either the key was never installed or is not trusted.</td>
</tr>
<tr>
<td>RATE</td>
<td>Rate exceeded. The server has temporarily denied access because the client exceeded the rate threshold.</td>
</tr>
<tr>
<td>RMOT</td>
<td>The association from a remote host running ntpdc has had unauthorized attempted access.</td>
</tr>
<tr>
<td>STEP</td>
<td>A step change in system time has occurred, but the association has not yet resynchronized.</td>
</tr>
<tr>
<td>System Codes</td>
<td></td>
</tr>
<tr>
<td>INIT</td>
<td>The system clock has not yet synchronized for the first time.</td>
</tr>
<tr>
<td>STEP</td>
<td>A step change in system time has occurred, but the system clock has not yet resynchronized.</td>
</tr>
</tbody>
</table>

St	Stratum level of this node.
Auth	yes — Authentication is enabled.
	no — Authentication is disabled.
Poll	Polling interval in seconds.
R	yes — The NTP peer or server has been reached at least once in the last 8 polls.
	no — The NTP peer or server has not been reached at least once in the last 8 polls.
Offset	The time between the local and remote UTC time, in milliseconds.
**Sample Output**

```
A:pc-40>config>system>time>ntp# show system ntp

NTP Status

Enabled : Yes Stratum : 3
Admin Status : up Oper Status : up
Server enabled : No Server keyId : none
System Ref Id : 192.168.15.221 Auth Check : Yes

A:pc-40>config>system>time>ntp# show system ntp all

NTP Status

Enabled : Yes Stratum : 3
Admin Status : up Oper Status : up
Server enabled : No Server keyId : none
System Ref Id : 192.168.15.221 Auth Check : Yes

NTP Active Associations

State Remote Reference ID St Type Auth Poll R Offset

reject 192.168.15.221 192.168.14.50 2 srvr none 64 y 0.901
chosen 192.168.15.221 192.168.14.50 2 mclnt none 64 y 1.101

A:pc-40>config>system>time>ntp#

*A:pc-4.0# show system ntp detail

NTP Status

Enabled : Yes Stratum : 3
Admin Status : up Oper Status : up
Server enabled : No Server keyId : none
System Ref Id : 10.135.16.130 Auth Check : Yes
Auth Errors : 1 Auth Errors Ignored : 0
Auth Key Id Errors : 1 Auth Key Type Errors : 0

NTP Configured Broadcast Interfaces

vRouter Interface Address Type Auth Poll

Base new Host-ones bcast no off
Base direct Host-ones bclnt no n/a

A:pc-4.0# show system ntp detail all

NTP Status

Enabled : Yes Stratum : 3
Admin Status : up Oper Status : up
```
Server enabled : No     Server keyId : none
System Ref Id : 10.135.16.130  Auth Check : Yes
Auth Errors : 0     Auth Errors Ignored : 0
Auth Key Id Errors : 0     Auth Key Type Errors : 0

NTP Configured Broadcast Interfaces

vRouter     Interface     Address     Type    Auth    Poll
-------------------------------------------------------------------------------
Base        new             Host-ones    bcast   no      off
Base        direct          Host-ones    bclnt   no      n/a

NTP Active Associations

State    Remote     Reference ID    St Type  A    Poll Reach    Offset(ms)
-------------------------------------------------------------------------------
candidate 21.0.0.1        10.135.16.130   3  actpr y  64  YYYY.YY.  14.440
chosen    10.135.16.130   127.127.1.0     2  srvr  -  256  .Y.YYYYY  24.364
reject    10.135.16.130   127.127.1.0     2  bclnt -  64   .......Y  27.576

*A:pc-4.0#

resource-profile

Syntax resource-profile

Context show>system

Description This command displays the resource-profile protocol configuration and state.

Parameters active|configure — keyword - Displays active or configured values.

Output The following table describes resource-profile output fields.

Table 27: Show system resource-profile output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingress Internal CAM</td>
<td>Displays the applications sharing ingress CAM resource.</td>
</tr>
<tr>
<td>Sap Ingress ACL resource</td>
<td>Displays the resources configured for use by SAP Ingress ACL policies.</td>
</tr>
<tr>
<td>IPv4 Resource</td>
<td>Displays the resources configured for use by ingress ACL policies that use ipv4-criteria. Disable – No resources are allocated for use by this feature. Therefore, no policies of this type can be associated to a SAP.</td>
</tr>
</tbody>
</table>
IPv4-IPv6 Resource
Displays the resources configured for use by ingress ACL policies that use ipv6 128-bit address match-criteria. Disable – No resources are allocated for use by this feature. Hence, no policies of this type can be associated to a SAP.

Mac Resource
Displays the resources configured for use by ingress ACL policies that use mac-criteria. Disable – No resources are allocated for use by this feature. Hence, no policies of this type can be associated to a SAP.

IPv6-64 bit Resource
Displays the resources configured for use by ingress ACL policies that use ipv6 64-bit address match-criteria. Disable – No resources are allocated for use by this feature. Hence, no policies of this type can be associated to a SAP.

Eth CFM
Groups the context for resources consumed by Ethernet CFM applications.

up-mep
Displays the resources configured for use by UP MEP. Disable – No resources are allocated for use by this feature. Hence, no UP MEPs can be created.

Sap Ingress QoS resource
The total amount of ingress internal CAM chunks configured for use by SAP ingress classification.

Mac and IPv4 Resource
The total amount of egress internal CAM chunks configured for use by MAC and IPv4 egress ACL match criteria policies.

Mac-only Resource
The total amount of egress internal CAM chunks configured for use only by MAC egress ACL match criteria policies.

IPv6 128 bit Resource
The total amount of egress internal CAM chunks configured for use only by IPv6 egress ACL match criteria policies (128-bit IPv6 address can be specified in the match criteria).

Mac and IPv6 64 bit Resource
The total amount of egress internal CAM chunks configured for use by MAC and IPv6 egress ACL match criteria policies (only 64-bit higher order bits of the IPv6 address can be specified in the match criteria).

Sap Egress ACL resource
Displays the egress ACL resource allocation configured for various match criteria.

Egress Internal CAM
Displays the resource allocation configured for the egress internal CAM.

IPv6 FIB
Displays the amount of IPv6 FIB size configured for use by IPv6 routing.

Table 27: Show system resource-profile output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4-IPv6 Resource</td>
<td>Displays the resources configured for use by ingress ACL policies that use ipv6 128-bit address match-criteria. Disable – No resources are allocated for use by this feature. Hence, no policies of this type can be associated to a SAP.</td>
</tr>
<tr>
<td>Mac Resource</td>
<td>Displays the resources configured for use by ingress ACL policies that use mac-criteria. Disable – No resources are allocated for use by this feature. Hence, no policies of this type can be associated to a SAP.</td>
</tr>
<tr>
<td>IPv6-64 bit Resource</td>
<td>Displays the resources configured for use by ingress ACL policies that use ipv6 64-bit address match-criteria. Disable – No resources are allocated for use by this feature. Hence, no policies of this type can be associated to a SAP.</td>
</tr>
<tr>
<td>Eth CFM</td>
<td>Groups the context for resources consumed by Ethernet CFM applications.</td>
</tr>
<tr>
<td>up-mep</td>
<td>Displays the resources configured for use by UP MEP. Disable – No resources are allocated for use by this feature. Hence, no UP MEPs can be created.</td>
</tr>
<tr>
<td>Sap Ingress QoS resource</td>
<td>The total amount of ingress internal CAM chunks configured for use by SAP ingress classification.</td>
</tr>
<tr>
<td>Mac and IPv4 Resource</td>
<td>The total amount of egress internal CAM chunks configured for use by MAC and IPv4 egress ACL match criteria policies.</td>
</tr>
<tr>
<td>Mac-only Resource</td>
<td>The total amount of egress internal CAM chunks configured for use only by MAC egress ACL match criteria policies.</td>
</tr>
<tr>
<td>IPv6 128 bit Resource</td>
<td>The total amount of egress internal CAM chunks configured for use only by IPv6 egress ACL match criteria policies (128-bit IPv6 address can be specified in the match criteria).</td>
</tr>
<tr>
<td>Mac and IPv6 64 bit Resource</td>
<td>The total amount of egress internal CAM chunks configured for use by MAC and IPv6 egress ACL match criteria policies (only 64-bit higher order bits of the IPv6 address can be specified in the match criteria).</td>
</tr>
<tr>
<td>Sap Egress ACL resource</td>
<td>Displays the egress ACL resource allocation configured for various match criteria.</td>
</tr>
<tr>
<td>Egress Internal CAM</td>
<td>Displays the resource allocation configured for the egress internal CAM.</td>
</tr>
<tr>
<td>IPv6 FIB</td>
<td>Displays the amount of IPv6 FIB size configured for use by IPv6 routing.</td>
</tr>
</tbody>
</table>
### Sample Output for 7210 SAS-D

```
*A:7210SAS>show>system# resource-profile

Active System Resource Profile Information

IPv6 FIB

max-ipv6-routes : disable

Ingress Internal CAM

Sap Ingress Qos resource : 2 Sap Aggregate Meter : 1
IPv4 Resource : max Mac Resource : max
IPv4-IPv6 Resource : disable

Sap Ingress ACL resource : 1
IPv4 Resource : max Mac Resource : max
IPv4-IPv6 128 bit Resource : disable IPv6 64 bit Resource : disable

Eth CFM : disable
up-mep : disable

Egress Internal CAM

Sap Egress ACL resource : 2
Mac and IPv4 Resource : 2 Mac-only Resource : disable
IPv6 128 bit Resource : disable Mac and IPv6 64 bit Resource : disable

* indicates that the corresponding row element may have been truncated.

A:7210SAS>show>system#
```

### Sample Output for 7210 SAS-E

```
A:7210SAS>show>system# resource-profile

Active System Resource Profile Information

Ingress Internal CAM

Sap Ingress Qos resource : 6
```

---

**Note:** The output for 7210 SAS-E shows a different configuration compared to the 7210 SAS-D configuration.
IPv4 Resource: max       Mac Resource: max
IPv4-IPv6 Resource: disable

Sap Ingress ACL resource: 5

IPv4 Resource: max       Mac Resource: max
IPv4-IPv6 Resource: disable
IPv6 64 bit Resource: disable
IPv6 128 bit Resource: disable

Egress Internal CAM

Sap Egress ACL resource: 2

Mac and IPv4 Resource: 1       Mac-only Resource: 1
IPv6 128 bit Resource: disable       Mac and IPv6 64 bit Resource: disable

* indicates that the corresponding row element may have been truncated.
A:7210SAS>show>system#

ptp


Context show>system

Description

Sample Output:
A:7210SAS>show>system# ptp

IEEE 1588/PTP Clock Information

Local Clock

Clock Type: boundary
Domain: 0
Admin State: up
Clock Id: 4c5fd2fff29049e
Clock Accuracy: unknown
Clock Priority1: 128
PTP Recovery State: disabled
Frequency Offset: n/a

Parent Clock
IP Address        : 221.0.0.2
Parent Clock Id   : 4c5fd2ffee295072   Remote PTP Port    : 5
GM Clock Id       : 00b0aefffe2e5e5   GM Clock Class     : 6
GM Clock Accuracy : within 100 ns      GM Clock Variance  : 0x6400 (3.7E-09)
GM Clock Priority1: 128                GM Clock Priority2 : 128

-------------------------------------------------------------------------------

Time Information
-------------------------------------------------------------------------------
Timescale           : PTP
Current Time        : 2012/12/13 11:05:43 (UTC)
Frequency Traceable : yes
Time Traceable      : yes
Time Source         : GPS

-------------------------------------------------------------------------------

A:7210SAS>show>system#

snntp

Syntax   snntp
Context   show>system
Description This command displays SNTP protocol configuration and state.
Output    Show SNTP Output — The following table describes SNTP output fields.

Table 28: Show System SNTP Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNTP Server</td>
<td>The SNTP server address for SNTP unicast client mode.</td>
</tr>
<tr>
<td>Version</td>
<td>The SNTP version number, expressed as an integer.</td>
</tr>
<tr>
<td>Preference</td>
<td>Normal — When more than one time server is configured, one server can be configured to have preference over another. Preferred — Indicates that this server has preference over another.</td>
</tr>
<tr>
<td>Interval</td>
<td>The frequency, in seconds, that the server is queried.</td>
</tr>
</tbody>
</table>

Sample Output

*A:pc-4.0# show system sntp

SNTP Status
Admin Status : up           Oper Status : up           Mode : broadcast
SNTP Servers
SNTP Server            Version            Preference         Interval
-------------------------------------------------------------------------------
10.135.16.90           3                  Preferred          64
-------------------------------------------------------------------------------
No. of SNTP Servers: 1
*A:pc-4.0#

thresholds

Syntax thresholds
Context show>system
Description This command display system monitoring thresholds.
Output Thresholds Output — following table describes system threshold output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>Displays the variable OID.</td>
</tr>
<tr>
<td>Alarm Id</td>
<td>Displays the numerical identifier for the alarm.</td>
</tr>
<tr>
<td>Last Value</td>
<td>Displays the last threshold value.</td>
</tr>
<tr>
<td>Rising Event Id</td>
<td>Displays the identifier of the RMON rising event.</td>
</tr>
<tr>
<td>Threshold</td>
<td>Displays the identifier of the RMON rising threshold.</td>
</tr>
<tr>
<td>Falling Event Id</td>
<td>Displays the identifier of the RMON falling event.</td>
</tr>
<tr>
<td>Threshold</td>
<td>Displays the identifier of the RMON falling threshold.</td>
</tr>
<tr>
<td>Sample Interval</td>
<td>Displays the polling interval, in seconds, over which the data is sampled and compared with the rising and falling thresholds.</td>
</tr>
<tr>
<td>Sample Type</td>
<td>Displays the method of sampling the selected variable and calculating the value to be compared against the thresholds.</td>
</tr>
<tr>
<td>Startup Alarm</td>
<td>Displays the alarm that may be sent when this alarm is first created.</td>
</tr>
<tr>
<td>Owner</td>
<td>Displays the owner of this alarm.</td>
</tr>
<tr>
<td>Description</td>
<td>Displays the event cause.</td>
</tr>
<tr>
<td>Event Id</td>
<td>Displays the identifier of the threshold event.</td>
</tr>
<tr>
<td>Last Sent</td>
<td>Displays the date and time the alarm was sent.</td>
</tr>
</tbody>
</table>
System Commands

Sample Output

A:ALA-48# show system thresholds

Threshold Alarms

Variable: tmnxCpmFlashUsed.1.11.1
Alarm Id : 1 Last Value : 835
Rising Event Id : 1 Threshold : 5000
Falling Event Id : 2 Threshold : 2500
Sample Interval : 2147483* SampleType : absolute
Startup Alarm : either Owner : TiMOS CLI

Variable: tmnxCpmFlashUsed.1.11.1
Alarm Id : 2 Last Value : 835
Rising Event Id : 3 Threshold : 10000
Falling Event Id : 4 Threshold : 5000
Sample Interval : 2147483* SampleType : absolute
Startup Alarm : rising Owner : TiMOS CLI

Variable: sgiMemoryUsed.0
Alarm Id : 3 Last Value : 42841056
Rising Event Id : 5 Threshold : 4000
Falling Event Id : 6 Threshold : 2000
Sample Interval : 2147836 SampleType : absolute
Startup Alarm : either Owner : TiMOS CLI

* indicates that the corresponding row element may have been truncated.

Threshold Events

Description: TiMOS CLI - cflash capacity alarm rising event
Event Id : 1 Last Sent : 10/31/2006 08:47:59
Action Type : both Owner : TiMOS CLI

Description: TiMOS CLI - cflash capacity alarm falling event
Event Id : 2 Last Sent : 10/31/2006 08:48:00
Action Type : both Owner : TiMOS CLI

Description: TiMOS CLI - cflash capacity warning rising event
Event Id : 3 Last Sent : 10/31/2006 08:47:59
Action Type : both Owner : TiMOS CLI

Description: TiMOS CLI - cflash capacity warning falling event

---

**Action Type**

- **log** — An entry is made in the RMON-MIB log table for each event occurrence. This does not create a TiMOS logger entry. The RMON-MIB log table entries can be viewed using the `show>system>thresholds` CLI command.
- **trap** — A TiMOS logger event is generated. The TiMOS logger utility then distributes the notification of this event to its configured log destinations which may be CONSOLE, telnet session, memory log, cflash file, syslog, or SNMP trap destinations logs.
- **both** — Both a entry in the RMON-MIB logTable and a TiMOS logger event are generated.
- **none** — No action is taken

**Owner**

Displays the owner of the event.
Event Id : 4        Last Sent : 10/31/2006 08:47:59
Action Type : both    Owner : TiMOS CLI
Description: TiMOS CLI - memory usage alarm rising event
Event Id : 5        Last Sent : 10/31/2006 08:48:00
Action Type : both    Owner : TiMOS CLI
Description: TiMOS CLI - memory usage alarm falling event
Event Id : 6        Last Sent : 10/31/2006 08:47:59
Action Type : both    Owner : TiMOS CLI

Threshold Events Log

Description : TiMOS CLI - cflash capacity alarm falling event : value=835, <=2500 : alarm-index 1, event-index 2 alarm-variable OID tnmxCpmFlashUsed.1.11.1
Event Id : 2        Time Sent : 10/31/2006 08:48:00

Description : TiMOS CLI - memory usage alarm rising event : value=42841056, >=4000 : alarm-index 3, event-index 5 alarm-variable OID sgiMemoryUsed.0
Event Id : 5        Time Sent : 10/31/2006 08:48:00
time

Syntax  
```
time
```

Context  
```
show>system
```

Description  
This command displays the system time and zone configuration parameters.

Output  
**System Time Output** — The following table describes system time output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date &amp; Time</td>
<td>The system date and time using the current time zone.</td>
</tr>
<tr>
<td>DST Active</td>
<td>Yes — Daylight Savings Time is currently in effect.</td>
</tr>
<tr>
<td></td>
<td>No — Daylight Savings Time is not currently in effect.</td>
</tr>
<tr>
<td>Zone</td>
<td>The zone names for the current zone, the non-DST zone, and the DST zone if configured.</td>
</tr>
<tr>
<td>Zone type</td>
<td>Non-standard — The zone is user-defined.</td>
</tr>
<tr>
<td></td>
<td>Standard — The zone is system defined.</td>
</tr>
<tr>
<td>Offset from UTC</td>
<td>The number of hours and minutes added to universal time for the zone, including the DST offset for a DST zone.</td>
</tr>
<tr>
<td>Offset from Non-DST</td>
<td>The number of hours (always 0) and minutes (0—60) added to the time at the beginning of Daylight Saving Time and subtracted at the end Daylight Saving Time.</td>
</tr>
<tr>
<td>Starts</td>
<td>The date and time Daylight Saving Time begins.</td>
</tr>
<tr>
<td>Ends</td>
<td>The date and time Daylight Saving Time ends.</td>
</tr>
</tbody>
</table>

Sample Output

```
A:ALA-1# show system time
Date & Time

Current Date & Time : 2006/05/05 23:03:13 DST Active : yes
Current Zone : PDT Offset from UTC : -7:00

Non-DST Zone : PST Offset from UTC : -8:00
Zone type : standard
```
DST Zone: PDT  Offset from Non-DST: 0:60
Starts: first sunday in april 02:00
Ends: last sunday in october 02:00

A:ALA-1#

A:ALA-1# show system time (with no DST zone configured)

Current Date & Time: 2006/05/12 11:12:05  DST Active: no
Current Zone: APA  Offset from UTC: -8:00
Non-DST Zone: APA  Offset from UTC: -8:00
Zone Type: non-standard
No DST zone configured

A:ALA-1#

**time**

**Syntax**
time

**Context**
show

**Description**
This command displays the current day, date, time and time zone.
The time is displayed either in the local time zone or in UTC depending on the setting of the root level`time-display` command for the console session.

**Output**

Sample Output

A:ALA-49# show time
Tue Oct 31 12:17:15 GMT 2006
**tod-suite**

**Syntax**

tod-suite [detail]
tod-suite associations
tod-suite failed-associations

**Context**

show>cron

**Description**

This command displays information on the configured time-of-day suite.

**Output**

**CRON TOD Suite Output** — The following table describes TOD suite output fields:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associations</td>
<td>Shows which SAPs this tod-suite is associated with.</td>
</tr>
<tr>
<td>failed-associations</td>
<td>Shows the SAPs or Multiservice sites where the TOD Suite could not be applied successfully.</td>
</tr>
<tr>
<td>Detail</td>
<td>Shows the details of this tod-suite.</td>
</tr>
</tbody>
</table>

**Sample Output**

A:kerckhot_4# show cron tod-suite suite_sixteen detail

Cron tod-suite details

Name : suite_sixteen
Type / Id           Time-range	Prio	State
Ingress Qos Policy   |                         |      |       |
1160                 | day                     | 5    | Inact |
1190                 | night                   | 6    | Activ |
Ingress Scheduler Policy
SchedPolCust1_DAY    | day                     | 5    | Inact |
SchedPolCust1_Night  | night                   | 6    | Activ |
Egress Qos Policy    |                         |      |       |
1160                 | day                     | 5    | Inact |
1190                 | night                   | 6    | Activ |
Egress Scheduler Policy
SchedPolCust1Egress_DAY | day           | 5    | Inact |

A:kerckhot_4#

The following example shows output for TOD suite associations.

A:kerckhot_4# show cron tod-suite suite_sixteen associations

Cron tod-suite associations for suite suite_sixteen

Service associations
The following example shows output for TOD suite failed-associations.

```
A:kerckhot_4# show cron tod-suite suite_sixteen failed-associations
```

```
Cron tod-suite associations failed

tod-suite suite_sixteen : failed association for SAP
```

```
Service Id : 1 Type : VPLS
SAP 1/1/1:2
SAP 1/1/1:3
SAP 1/1/1:4
SAP 1/1/1:5
SAP 1/1/1:6
SAP 1/1/1:20
```

```
tod-suite suite_sixteen : failed association for Customer MSS

None
```

```
Number of tod-suites failed/total : 1/1
```

```
A:kerckhot_4#
```

Zooming in on one of the failed SAPs, the assignments of QoS and scheduler policies are shown as not as intended:

```
A:kerckhot_4# show service id 1 sap 1/1/1:2
```

```
Service Access Points(SAP)
```

```
Service Id : 1
SAP : 1/1/1:2 Encap : q-tag
Dot1Q Ethertype : 0x8100 QinQ Ethertype : 0x8100
Admin State : Up Oper State : Up
Flags : None
Last Status Change : 10/05/2006 18:11:34
Last Mgmt Change : 10/05/2006 22:27:48
Max Nbr of MAC Addr: No Limit Total MAC Addr : 0
```
Learned MAC Addr : 0                           Static MAC Addr : 0
Admin MTU : 1518                                Oper MTU : 1518
Ingress qos-policy : 1130                       Egress qos-policy : 1130
**Intend Ing qos-pol**: 1190                     **Intend Egr qos-po**: 1190
Shared Q plcy : n/a                              Multipoint shared : Disabled
Ingr IP Fltr-Id : n/a                            Egr IP Fltr-Id : n/a
Ingr Mac Fltr-Id : n/a                           Egr Mac Fltr-Id : n/a
Intend Ing qos-pol : 1190                       Intend Egr qos-po : 1190
Intend Egr qos-pol : 1190
Shared Q plcy : n/a                              Multipoint shared : Disabled
Ingr IP Fltr-Id : n/a                            Egr IP Fltr-Id : n/a
Ingr Mac Fltr-Id : n/a                           Egr Mac Fltr-Id : n/a
L2PT Termination : Disabled                     BPDU Translation : Disabled
Multi Svc Site : None
I. Sched Pol : SchedPolCust1                    E. Sched Pol : SchedPolCust1Egress
**Intend I Sched Pol** : SchedPolCust1_Night     **Intend E Sched Pol** : SchedPolCust1Egress_Night
Acct. Pol : None                                Collect Stats : Disabled
Anti Spoofing : None                            Nbr Static Hosts : 0
-------------------------------
A:kerckhot_4#
If a time-range is specified for a filter entry, use the **show filter** command to view results:
A:kerckhot_4# show filter ip 10
-------------------------------
**IP Filter**
-------------------------------
Filter Id : 10                                   Applied : No
Scope : Template                                 Def. Action : Drop
Entries : 2
-------------------------------
**Filter Match Criteria** : **IP**
-------------------------------
Entry : 1010                                     Cur. Status : Inactive
**time-range** : day                            Log Id : n/a
Src. IP : 0.0.0.0/0                              Src. Port : None
Dest. IP : 10.10.100.1/24                       Dest. Port : None
Protocol : Undefined                            Dscp : Undefined
ICMP Type : Undefined                           ICMP Code : Undefined
Fragment : Off                                   Option-present : Off
Sampling : Off                                   Int. Sampling : On
IP-Option : 0/0                                  Multiple Option: Off
TCP-syn : Off                                    TCP-ack : Off
Match action : Forward                           Next Hop : 138.203.228.28
Ing. Matches : 0                                Egr. Matches : 0
Entry : 1020                                     Cur. Status : Active
**time-range** : night                          Log Id : n/a
Src. IP : 0.0.0.0/0                              Src. Port : None
Dest. IP : 10.10.1.1/16                          Dest. Port : None
Protocol : Undefined                            Dscp : Undefined
ICMP Type : Undefined                           ICMP Code : Undefined
Fragment : Off                                   Option-present : Off
Sampling : Off                                   Int. Sampling : On
IP-Option : 0/0                              Multiple Option: Off
TCP-syn : Off                              TCP-ack : Off
Match action : Forward
Next Hop : 172.22.184.101
Ing. Matches : 0                                Egr. Matches : 0
===============================================================================
A:kerckhot_4#

If a filter is referred to in a TOD Suite assignment, use the show filter associations command to view
the output:
A:kerckhot_4# show filter ip 160 associations

===============================================================================
IP Filter
===============================================================================
Filter Id : 160                              Applied : No
Scope : Template                         Def. Action : Drop
Entries : 0
===============================================================================
Filter Association : IP
===============================================================================
Tod-suite "english_suite"
  - ingress, time-range "day" (priority 5)
===============================================================================
A:kerckhot_4#

time-range

Syntax   time-range name associations [detail]
Context   show>cron
Description  This command displays information on the configured time ranges.
Output  Time Range Output — The following table displays system time range output fields:

Table 31: Show System Time-range Output Fields

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associations</td>
<td>Shows the time-range as it is associated with the TOD suites and ACL</td>
</tr>
<tr>
<td></td>
<td>entries as well as the SAPs using them.</td>
</tr>
<tr>
<td>Detail</td>
<td>Shows the details of this time-range.</td>
</tr>
</tbody>
</table>

Sample Output

The following example shows time-range detail output.
A:ala# show cron time-range time-range2 detail

===============================================================================
Cron time-range
===============================================================================
Name : time-range1
Periodic : Start * * * * End * * *
The following example shows output for time-range associations with previously created IP and MAC filters.

A:ala# show cron time-range day associations
===============================================================================
Cron time-range associations
===============================================================================
Name          : day                            State  : Inactive
-------------------------------------------------------------------------------
IP Filter associations
-------------------------------------------------------------------------------
IP filter Id  : 10, entry 1010
-------------------------------------------------------------------------------
MAC Filter associations
None
-------------------------------------------------------------------------------
Tod-suite associations
-------------------------------------------------------------------------------
Tod-suite : suite_sixteen, for Ingress Qos Policy "1160"
Tod-suite : suite_sixteen, for Ingress Scheduler Policy "SchedPolCust1_Day"
Tod-suite : suite_sixteen, for Egress Qos Policy "1160"
Tod-suite : suite_sixteen, for Egress Scheduler Policy "SchedPolCust1Egress_Day"
===============================================================================

time

**Syntax**

```
uptime
```

**Context**

```
show
```

**Description**

This command displays the time since the system started.

**Output**

_Uptime Output_ — The following table describes uptime output fields.

**Table 32: System Timing Output Fields**

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Up Time</td>
<td>Displays the length of time the system has been up in days, hr:min:sec format.</td>
</tr>
</tbody>
</table>

**Sample Output**

```
A:ALA-1# show uptime
System Up Time : 11 days, 18:32:02.22 (hr:min:sec)

A:ALA-1#
```
sync-if-timing

**Syntax**
sync-if-timing

**Context**
show>system

**Description**
This command displays synchronous interface timing information.

**Output**
*System Timing Output* — The following table describes sync-if-timing output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Status CPM A</td>
<td>Indicates the system status of CPM A.</td>
</tr>
<tr>
<td>Reference Input Mode</td>
<td>Indicates the reference input mode.</td>
</tr>
<tr>
<td>Reference Order</td>
<td>Indicates the reference order.</td>
</tr>
<tr>
<td>Reference Input 1</td>
<td>Displays information about reference input 1</td>
</tr>
</tbody>
</table>
| Admin Status               | down — Indicates the ref1 or ref2 configuration is administratively shutdown.
|                            | up — Indicates the ref1 or ref2 configuration is administratively enabled.   |
|                            | diag — Indicates the reference has been forced using the force-reference command. |
| Qualified for Use          | Indicates if the reference input 1 (or input 2) is qualified for use.        |
| Selected for Use           | Indicates if reference input 1(or input 2) is selected for use.              |
| Source Port                | Displays the source port information.                                       |
| Reference Input 2          | Displays information about reference input 2.                               |
| Not Selected Due to        | Indicates the reason if reference input 2 is not selected.                  |
| Quality Level Selection    | Indicates whether the ql-selection command has been enabled or disabled. If this command is enabled, then the reference is selected first using the QL value, then by the priority reference order. If this command is not enabled, then the reference is selected by the priority reference order. |
| System Quality Level       | Indicates the quality level being generated by the system clock.            |
| Rx Quality Level           | Indicates the QL value received on the interface.                            |

*Note:* SSM supported only on 7210 SAS-D devices.

- **inv** - SSM received on the interface indicates an invalid code for the interface type.
- **unknown** - No QL value was received on the interface.
Sample Output

*A:7210-SAS># show system sync-if-timing

===============================================================================
System Interface Timing Operational Info
===============================================================================
System Status CPM A                : Master Locked
Reference Input Mode           : Non-revertive
Quality Level Selection        : Disabled
System Quality Level           : unknown
Reference Order                : ref1 ref2
Reference Input 1
  Admin Status                   : up
  Rx Quality Level               : unknown
  Quality Level Override        : none
  Qualified For Use              : Yes
  Selected For Use               : Yes
  Source Port                    : 1/1/4
Reference Input 2
  Admin Status                   : up
  Rx Quality Level               : unknown
  Quality Level Override        : none
  Qualified For Use              : Yes
  Selected For Use               : No
  Not Selected Due To           : on standby
  Source Port                    : 1/1/6
===============================================================================
*A:7210-SAS>#

Sample output for 7210 SAS-D:

*7210-SASD># show system sync-if-timing

===============================================================================
System Interface Timing Operational Info
===============================================================================
System Status CPM A                : Master Locked
Reference Input Mode           : Revertive
Quality Level Selection        : Enabled
System Quality Level           : prc
Reference Order                : ref1 ref2
Reference Input 1
  Admin Status                   : up
  Rx Quality Level               : prc
  Quality Level Override        : none
  Qualified For Use              : Yes
  Selected For Use               : Yes
  Source Port                    : 1/1/3
Reference Input 2
  Admin Status                   : up
  Rx Quality Level               : prc
  Quality Level Override        : none
chassis

Syntax      chassis [environment] [power-supply]
Context     show

Description This command displays general chassis status information.

NOTE: The 'environment' option is supported only on 7210 SAS-E and 7210 SAS-D. The 'power-supply' option is supported only on 7210 SAS-D ETR.

Parameters  environment — Displays chassis environmental status information.

            Default Display all chassis information.

            power-supply — Displays only power-supply information.

Chassis Output — The following table describes chassis output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The system name for the router.</td>
</tr>
<tr>
<td>Type</td>
<td>The router series model number.</td>
</tr>
<tr>
<td>Location</td>
<td>The system location for the device.</td>
</tr>
<tr>
<td>Coordinates</td>
<td>A user-configurable string that indicates the Global Positioning System (GPS) coordinates for the location of the chassis. For example: N 45 58 23, W 34 56 12  N37.37’ 00 latitude, W122 22’ 00 longitude  N36<em>39.246’  W121</em>40.121’</td>
</tr>
<tr>
<td>CLLI Code</td>
<td>The Common Language Location Identifier (CLLI) that uniquely identifies the geographic location of places and certain functional categories of equipment unique to the telecommunications industry.</td>
</tr>
<tr>
<td>Number of slots</td>
<td>The number of slots in this chassis that are available for plug-in cards. The total number includes card slots.</td>
</tr>
<tr>
<td>Number of ports</td>
<td>The total number of ports currently installed in this chassis.</td>
</tr>
<tr>
<td>Critical LED state</td>
<td>The current state of the Critical LED in this chassis.</td>
</tr>
<tr>
<td>Label</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Major LED state</td>
<td>The current state of the Major LED in this chassis.</td>
</tr>
<tr>
<td>Minor LED state</td>
<td>The current state of the Minor LED in this chassis.</td>
</tr>
<tr>
<td>Base MAC address</td>
<td>The base chassis Ethernet MAC address.</td>
</tr>
<tr>
<td>Part number</td>
<td>The part number.</td>
</tr>
<tr>
<td>CLEI code</td>
<td>The code used to identify the router.</td>
</tr>
<tr>
<td>Serial number</td>
<td>The part number. Not user modifiable.</td>
</tr>
<tr>
<td>Manufacture date</td>
<td>The chassis manufacture date. Not user modifiable.</td>
</tr>
<tr>
<td>Manufacturing string</td>
<td>Factory-inputted manufacturing text string. Not user modifiable.</td>
</tr>
<tr>
<td>Time of last boot</td>
<td>The date and time the most recent boot occurred.</td>
</tr>
<tr>
<td>Current alarm state</td>
<td>Displays the alarm conditions for the specific board.</td>
</tr>
<tr>
<td>Number of fan trays</td>
<td>The total number of fan trays installed in this chassis.</td>
</tr>
<tr>
<td>Number of fans</td>
<td>The total number of fans installed in this chassis.</td>
</tr>
<tr>
<td>Operational status</td>
<td>Current status of the fan tray.</td>
</tr>
<tr>
<td>Fan speed</td>
<td>Half speed — The fans are operating at half speed.</td>
</tr>
<tr>
<td></td>
<td>Full speed — The fans are operating at full speed.</td>
</tr>
<tr>
<td>Number of power supplies</td>
<td>The number of power supplies installed in the chassis.</td>
</tr>
<tr>
<td>Power supply number</td>
<td>The ID for each power supply installed in the chassis.</td>
</tr>
<tr>
<td>AC power</td>
<td>Within range — AC voltage is within range.</td>
</tr>
<tr>
<td></td>
<td>Out of range — AC voltage is out of range.</td>
</tr>
<tr>
<td>DC power</td>
<td>Within range — DC voltage is within range.</td>
</tr>
<tr>
<td></td>
<td>Out of range — DC voltage is out of range.</td>
</tr>
<tr>
<td>Over temp</td>
<td>Within range — The current temperature is within the acceptable range.</td>
</tr>
<tr>
<td></td>
<td>Out of range — The current temperature is above the acceptable range.</td>
</tr>
<tr>
<td>Status</td>
<td>Up — The specified power supply is up.</td>
</tr>
</tbody>
</table>
Sample Output

Note: This CLI output is obtained only if the hardware supports "DC source failure detection".

```
A:7210-SAS-E> show chassis
===
<table>
<thead>
<tr>
<th>Chassis Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name : STU2597</td>
</tr>
<tr>
<td>Type : 7210 SAS-E-1</td>
</tr>
<tr>
<td>Location :</td>
</tr>
<tr>
<td>Coordinates :</td>
</tr>
<tr>
<td>CLLI code :</td>
</tr>
<tr>
<td>Number of slots : 2</td>
</tr>
<tr>
<td>Number of ports : 24</td>
</tr>
<tr>
<td>Critical LED state : Red</td>
</tr>
<tr>
<td>Major LED state : Off</td>
</tr>
<tr>
<td>Minor LED state : Off</td>
</tr>
<tr>
<td>Over Temperature state: OK</td>
</tr>
<tr>
<td>Base MAC address : 00:25:ba:04:b9:bc</td>
</tr>
</tbody>
</table>

Hardware Data
- Part number: 3HE04410ABAC01
- CLEI code: IPMK310JRA
- Serial number: NS1026C0341
- Manufacture date: 06292010
- Time of last boot: 2010/11/09 16:12:40
- Current alarm state: alarm active

Environment Information
- Number of fan trays: 1
- Number of fans: 3
- Fan tray number: 1
- Status: up
- Speed: half speed

Power Supply Information
- Number of power supplies: 2
- Power supply number: 1
- Configured power supply type: dc
- Status: failed
- DC power: out of range
- Input power: out of range
```
Output power                  : within range  
Power supply number           : 2  
Configured power supply type  : dc  
Status                        : up  
DC power                      : within range  
Input power                   : within range  
Output power                  : within range  

-------------------------------------------------------------------------------
A:7210-SAS-E>

A:7210-SAS-D> show chassis

Chassis Information
-------------------------------------------------------------------------------
Name                          : 128sasdAc48v2573  
Type                          : 7210 SAS-D 6F4T ETR-1  
Location                      :  
Coordinates                   :  
CLLI code                     :  
Number of slots               : 2  
Number of ports               : 10  
Critical LED state            : Off  
Major LED state               : Off  
Minor LED state               : Off  
Over Temperature state        : OK  
Low Temperature state         : OK  
Base MAC address              : 4c:5f:d2:07:39:d0  

Hardware Data
Part number                   : 3HE05676ADAA01  
CLEI code                     : IPMSX10BRA  
Serial number                 : NS1139C0070  
Manufacture date              : 09242011  
Manufacturing string          :  
Manufacturing deviations      :  
Time of last boot             : 2012/04/19 10:44:51  
Current alarm state           : alarm active  
-------------------------------------------------------------------------------
Power Supply Information
Number of power supplies      : 2  
Power supply number           : 1  
Configured power supply type  : dc (-48V)  
Status                        : up  
Power supply number           : 2  
Status                        : failed  
Configured power supply type  : ac  

-------------------------------------------------------------------------------
A:7210-SAS-D>

A:7210SAS>show# chassis power-supply

-------------------------------------------------------------------------------
Chassis Information

Power Supply Information
Number of power supplies : 2
Power supply number 1: dc (-48V)
Status : up
Power supply number 2: ac
Status : failed

Environment Information
Number of fan trays : 1
Number of fans : 3
Fan tray number 1: Status : up
Speed : half speed

Output for older 7210 SAS-E devices without input-fail-detection)
*A:7210-SAS-E# show chassis power-supply

Power Supply Information
Number of power supplies : 2
Power supply number 1: Defaulted power supply type : none
Status : not equipped
Power supply number 2: Configured power supply type : dc (+24V)
Status : up

*A:7210-SAS-E#
### Status

- **Status**: up
- **AC power**: within range
- **Power supply number**: 2
- **Configured power supply type**: dc (-48V)
- **Status**: up

---

*A:7210-SAS-E#

---

*A:7210-SAS-E# show chassis power-supply*

---

### Chassis Information

---

### Power Supply Information

- **Number of power supplies**: 2
- **Power supply number**: 1
- **Configured power supply type**: dc (+48V)
- **Status**: up
- **DC power**: within range
- **Input power**: within range
- **Output power**: within range
- **Power supply number**: 2
- **Configured power supply type**: dc (+24V)
- **Status**: failed
- **DC power**: out of range
- **Input power**: out of range
- **Output power**: within range

---

*A:7210-SAS-E#

---

### alarm-contact-input

**NOTE:** This command is supported only on 7210 SAS-E devices.

#### Syntax

```
alarm-contact-input all
alarm-contact-input <alarm-contact-input-id> [detail]
```

#### Context

```
show>alarm-contact
```

#### Description

This command displays information of all the alarm contact input pins.

#### Output

**alarm-contact-input Output** — The following table describes alarm-contact-input output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm input pin Number</td>
<td>Indicates the pin alarm input pin number.</td>
</tr>
<tr>
<td>Alarm input pin Description</td>
<td>Describes the alarm indicating its usage or attribute.</td>
</tr>
<tr>
<td>Alarm input pin current state</td>
<td>Indicates the current state of the alarm contact input pin.</td>
</tr>
</tbody>
</table>

---

Page 386 7210 SAS D, E OS Basic System Configuration Guide
Sample Output

*A:7210-2# show alarm-contact-input 1
===============================================================================
Alarm Contact Input
===============================================================================
  Alarm Input Pin Number : 1
  Alarm Input Pin Current State : Disabled
  Alarm Output Pin Used : Major
===============================================================================

*A:7210-2#

*A:7210-2# show alarm-contact-input 1 detail
===============================================================================
Alarm Contact Input
===============================================================================
  Alarm Input Pin Number : 1
  Alarm Input Pin Description : 
  Alarm Input Pin Current State : Disabled
  Alarm Output Pin Used : Major
  Last State Change : 05/19/2010 11:28:09
===============================================================================

*A:7210-2#

*A:7210-2# show alarm-contact-input all
===============================================================================
Alarm Contact Input
===============================================================================
  Alarm Input Pin Number : 1
  Alarm Input Pin Description : 
  Alarm Input Pin Current State : Disabled
  Alarm Output Pin Used : Major
  Last State Change : 05/19/2010 11:28:09
  Alarm Input Pin Number : 2
  Alarm Input Pin Description : 
  Alarm Input Pin Current State : Disabled
  Alarm Output Pin Used : Major
  Last State Change : 05/19/2010 11:28:09
  Alarm Input Pin Number : 3
  Alarm Input Pin Description : 
  Alarm Input Pin Current State : Disabled
  Alarm Output Pin Used : Major
  Last State Change : 05/19/2010 11:28:09
  Alarm Input Pin Number : 4
  Alarm Input Pin Description : 
  Alarm Input Pin Current State : Disabled
  Alarm Output Pin Used : Major
  Last State Change : 05/19/2010 11:28:09
===============================================================================

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm output pin used</td>
<td>Indicates the alarm output pin used.</td>
</tr>
<tr>
<td>Last state change time</td>
<td>Indicates the previous state change time.</td>
</tr>
</tbody>
</table>
Debug Commands

sync-if-timing

Syntax: sync-if-timing

Context: debug

Description: The context to debug synchronous interface timing references.

force-reference

Syntax: force-reference (ref1 | ref2)

Context: debug>sync-if-timing

Description: This command allows an operator to force the system synchronous timing output to use a specific reference.

Note: This command should be used for testing and debugging purposes only. Once the system timing reference input has been forced, it will not revert back to another reference at anytime. The state of this command is not persistent between system boots.

When the debug force-reference command is executed, the current system synchronous timing output is immediately referenced from the specified reference input. If the specified input is not available (shutdown), or in a disqualified state, the timing output will enter the holdover state based on the previous input reference.

Parameters:
ref1 — The clock will use the first timing reference.
ref2 — The clock will use the second timing reference.

system

Syntax: [no] system

Context: debug

Description: This command displays system debug information.

ntp

Syntax: [no] router router-name interface ip-int-name
Context  debug>system

Description
This command enables and configures debugging for NTP.
The **no** form of the command disables debugging for NTP.

Parameters

- *router-name* — Base
  - **Default** Base

- *ip-int-name* — maximum 32 characters; must begin with a letter. If the string contains special characters (#, $, spaces, etc.), the entire string must be enclosed within double quotes.
Clear Commands

completed

Syntax: completed [action-name] [owner action-owner]
Context: clear>cron>action
Description: This command clears completed CRON action run history entries.
Parameters:
- action-name — Specifies the action name.
  Values: maximum 32 characters
- owner action-owner — Specifies the owner name.
  Default: TiMOS CLI

screen

Syntax: screen
Context: clear
Description: This command allows an operator to clear the Telnet or console screen.

sync-if-timing

Syntax: sync-if-timing {ref1 | ref2}
Context: clear>system
Description: This command allows an operator to individually clear (re-enable) a previously failed reference. As long as the reference is one of the valid options, this command is always executed. An inherent behavior enables the revertive mode which causes a re-evaluation of all available references.
Parameters:
- ref1 — clears the first timing reference
- ref2 — clears the second timing reference
**Fan Controller Debug Commands**

**fan-stats**

**Syntax**

fan-stats

**Context**

tools>dump

**Description**

This command provides details of the fan operation.

**Sample Output**

The following table describes fan-stats output fields.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan Configuration Mode</td>
<td>Displays the user configured mode for fan operation. It can be On/Off/Auto.</td>
</tr>
<tr>
<td>Fan Status</td>
<td>Displays the current status of the fan. It can be On / Off.</td>
</tr>
<tr>
<td>Auto Mode Duration</td>
<td>Displays the total duration since the fan has been in auto mode. Displayed in HH:MM format to indicate hours and minutes. Valid only when the Fan configuration mode is auto.</td>
</tr>
<tr>
<td>Fan ON count</td>
<td>Displays the total number of times the Fan has been switched 'ON' in auto mode. Valid only in auto mode.</td>
</tr>
</tbody>
</table>

A:7210SAS# tools dump system fan-stats

Fan Configuration Mode : Auto
Fan Status : Off
Auto Mode Duration : 70 hr:24 min
Fan ON Count : 2

**NOTE:** When the fan mode is changed by the user, the values displayed above are automatically reset by the software.
Standards and Protocol Support (7210 SAS D)

Standards Compliance
IEEE 802.1ab-REV/D3 Station
And Media Access Control
Connectivity Discovery
IEEE 802.1d Bridging
IEEE 802.1p/Q VLAN Tagging
IEEE 802.1w Rapid Spanning Tree
Protocol
IEEE 802.1x Port Based Network Access
Control
IEEE 802.1ad Provider Bridges
IEEE 802.1ag Service Layer OAM
IEEE 802.3ah Ethernet in the
First Mile
IEEE 802.3 10BaseT
IEEE 802.3ad Link Aggregation
IEEE 802.3ah Ethernet OAM
IEEE 802.3u 100BaseTX
IEEE 802.3z 1000BaseSX/LX
IANA-IFType-MIB
IEEE8023-LAG-MIB

Protocol Support
DIFFERENTIATED SERVICES
RFC 2474 Definition of the DS Field the
IPV4 and IPV6 Headers (Rev)
RFC 2597 Assured Forwarding PHB
Group (rev3260)
RFC 2598 An Expedited Forwarding
PHB
ITU-T X.721: Information technology-
OSI-Structure of Management
Information
ITU-T X.734: Information technology-
OSI-Systems Management: Event
Report Management Function
M.3100/3120 Equipment and Connection
Models
TMF 509/613 Network Connectivity
Model
RFC 1157 SNMPv1
RFC 1215 A Convention for Defining
Traps for use with the SNMP
RFC 1907 SNMPv2-MIB
RFC 2096 IP-FORWARD-MIB
RFC 2138 RADIUS
RFC 2571 SNMP-FRAMEWORKMIB
RFC 2572 SNMP-MPD-MIB
RFC 2573 SNMP-TARGET-&-
NOTIFICATION-MIB
RFC 2574 SNMP-USER-BASED-
SMMIB
RFC 2575 SNMP-VIEW-BASEDACM-
MIB
RFC 2576 SNMP-COMMUNITY-MIB
RFC 2665 EtherLike-MIB
RFC 2819 RMON-MIB
RFC 2863 IF-MIB
RFC 2864 INVERTED-STACK-MIB
RFC 3014 NOTIFICATION-LOGMIB
RFC 3164 Syslog
RFC 3273 HCRMON-MIB
RFC 3411 An Architecture for
Describing Simple Network
Management Protocol (SNMP)
Management Frameworks
RFC 3412 Message Processing and
Dispatching for the Simple Network
Management Protocol (SNMP)
RFC 3413 Simple Network Management
Protocol (SNMP) Applications
RFC 3414 User-based Security Model
(USM) for version 3 of the Simple
Network Management Protocol
(SNMPv3)
RFC 3418 SNMP MIB draft-ietf-disman-
alarm-mib-04.txt
RFC 3418 SNMP MIB

TCP/IP
RFC 768 UDP
RFC 1350 The TFTP Protocol (Rev.
RFC 791 IP
RFC 792 ICMP
RFC 793 TCP
RFC 826 ARP
RFC 854 Telnet
RFC 1519 C IDR
RFC 1812 Requirements for IPV4
Routers
RFC 2347 TFTP option Extension
RFC 2328 TFTP Blocksize Option
RFC 2349 TFTP Timeout Intervalland
Transfer Size option

RADIUS
RFC 2865 Remote Authentication Dial In
User Service
RFC 2866 RADIUS Accounting

SSH
draft-ietf-secsch-architecture.txt SSH
Protocol Architecture
draft-ietf-secsch-userauth.txt SSH
Authentication Protocol
draft-ietf-secsch-transport.txt SSH
Transport Layer Protocol
draft-ietf-secsch-connection.txt SSH
Connection Protocol
draft-ietf-secsch-newmodes.txt SSH
Transport Layer Encryption Modes

TACACS+
draft-grant-tacacs-02.txt

IPv6
RFC 2460 Internet Protocol, Version 6
(IPv6) Specification
RFC 2461 Neighbor Discovery for IPv6
RFC 2462 IPv6 Stateless Address Auto
configuration
RFC 2463 Internet Control Message
Protocol (ICMPv6) for the Internet
Protocol Version 6 Specification
RFC 2464 Transmission of IPv6 Packets
over Ethernet Networks
RFC 3587 IPv6 Global Unicast Address
Format
RFC 4007 IPv6 Scoped Address
Architecture
RFC 4193 Unique Local IPv6 Unicast
Addresses
RFC 4291 IPv6 Addressing Architecture
RFC 5095 Deprecation of Type 0 Routing
Headers in IPv6

Timing (Only on 7210 SAS-D ETR)
ITU-T G.781 Telecommunication
Standardization Section of ITU,
Synchronization layer functions, issued 09/2008
ITU-T G.813 Telecommunication Standardization Section of ITU, Timing characteristics of SDH equipment slave clocks (SEC), issued 03/2003.
ITU-T G.8264 Telecommunication Standardization Section of ITU, Distribution of timing information

NETWORK MANAGEMENT
ITU-T X.721: Information technology- OSI-Structure of Management Information
ITU-T X.734: Information technology- OSI-Systems Management: Event Report Management Function
M.3100/3120 Equipment and Connection Models
TMF 509/613 Network Connectivity Model
RFC 1157 SNMPv1
RFC 1215 A Convention for Defining Traps for use with the SNMP
RFC 1907 SNMPv2-MIB
RFC 2011 IP-MIB
RFC 2012 TCP-MIB
RFC 2013 UDP-MIB
RFC 2096 IP-FORWARD-MIB
RFC 2138 RADIUS
RFC 2571 SNMP-FRAMEWORKMIB
RFC 2572 SNMP-MPD-MIB
RFC 2573 SNMP-TARGET-&-NOTIFICATION-MIB
RFC 2574 SNMP-USER-BASED-SM-MIB
RFC 2575 SNMP-VIEW-BASEDACM-MIB
RFC 2576 SNMP-COMMUNITY-MIB
RFC 2665 EtherLike-MIB
RFC 2819 RMON-MIB
RFC 2863 IF-MIB
RFC 2864 INVERTED-STACK-MIB
RFC 3014 NOTIFICATION-LOGMIB
RFC 3164 Syslog
RFC 3273 HCRMON-MIB
RFC 3412 - Message Processing and Dispatching for the Simple Network Management Protocol (SNMP)
RFC 3413 - Simple Network Management Protocol (SNMP) Applications
RFC 3414 - User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)
RFC 3418 - SNMP MIB
draft-ietf-disman-alarm-mib-04.txt

PROPRIETARY MIBs
ALCATEL-IGMP-SNOOPING-MIB.mib
timetra-capability-7210-sas-D-V5v0.mib (Only for 7210 SAS-D)
timetra-chassismib.mib
timetra-clear-mib.mib
timetra-dot3-oam-mib.mib
timetra-filter-mib.mib
timetra-global-mib.mib
timetra-ieee8021-cfm-mib.mib
timetra-lag-mib.mib
timetra-log-mib.mib
timetra-mirror-mib.mib
timetra-ntp-mib.mib
timetra-oam-test-mib.mib
timetra-port-mib.mib
timetra-qos-mib.mib
timetra-sas-filter-mib.mib
timetra-sas-ieee8021-cfm-mib.mib
timetra-sas-global-mib.mib
timetra-sas-log-mib.mib.mib
timetra-sas-mirror-mib.mib
timetra-sas-port-mib.mib
timetra-sas-qos-mib.mib
timetra-sas-system-mib.mib
timetra-scheduler-mib.mib
timetra-security-mib.mib
Standards and Protocol Support

Standards Compliance
IEEE 802.1ab-REV/D3 Station And Media Access Control Connectivity Discovery
IEEE 802.1d Bridging
IEEE 802.1p/Q VLAN Tagging
IEEE 802.1w Rapid Spanning Tree Protocol
IEEE 802.1x Port Based Network Access Control
IEEE 802.1ad Provider Bridges
IEEE 802.1ag Service Layer OAM
IEEE 802.3ah Ethernet in the First Mile
IEEE 802.3 10BaseT
IEEE 802.3ad Link Aggregation
IEEE 802.3ah Ethernet OAM
IEEE 802.3u 100BaseTX
IEEE 802.3z 1000BaseSX/LX
ITU-T Y.1731 OAM functions and mechanisms for Ethernet based networks
IANA-IFType-MIB
IEEE8023-LAG-MIB
ITU-T G.8032 Ethernet Ring Protection Switching (version 1)

Protocol Support
DIFFERENTIATED SERVICES
RFC 2474 Definition of the DS Field the IPv4 and IPv6 Headers (Rev)
RFC 2597 Assured Forwarding PHB Group (rev3260)
RFC 2598 An Expedited Forwarding PHB
ITU-T X.721: Information technology-OSI-Structure of Management Information
ITU-T X.734: Information technology-OSI-Systems Management: Event Report Management Function
M.3100/3120 Equipment and Connection Models
TMF 509/613 Network Connectivity Model
RFC 1157 SNMPv1
RFC 1215 A Convention for Defining Traps for use with the SNMP
RFC 1907 SNMPv2-MIB
RFC 2011 IP-MIB
RFC 2012 TCP-MIB
RFC 2013 UDP-MIB
RFC 2096 IP-FORWARD-MIB
RFC 2138 RADIUS
RFC 2571 SNMP-FRAMEWORKMIB
RFC 2572 SNMP-MPD-MIB
RFC 2573 SNMP-TARGET-&-NOTIFICATION-MIB
RFC 2574 SNMP-USER-BASED-SMMIB
RFC 2575 SNMP-VIEW-BASED-ACM-MIB
RFC 2576 SNMP-COMMUNITY-MIB
RFC 2565 EtherLike-MIB
RFC 2819 RMON-MIB
RFC 2863 IF-MIB
RFC 2864 INVERTED-STACK-MIB
RFC 3014 NOTIFICATION-LOGMIB
RFC 3164 Syslog
RFC 3273 HCMON-MIB
RFC 3412 Message Processing and Dispatching for the Simple Network Management Protocol (SNMP)
RFC 3413 Simple Network Management Protocol (SNMP) Applications
RFC 3414 User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)
RFC 3418 SNMP MIB draft-ietf-disman-alarm-mib-04.txt
RFC 3418 SNMP MIB

IPv6
RFC 2460 Internet Protocol, Version 6 (IPv6) Specification
RFC 2461 Neighbor Discovery for IPv6
RFC 2462 IPv6 Stateless Address Auto configuration
RFC 2463 Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 Specification
RFC 2464 Transmission of IPv6 Packets over Ethernet Networks
RFC 3587 IPv6 Global Unicast Address Format
RFC 4007 IPv6 Scoped Address Architecture
RFC 4193 Unique Local IPv6 Unicast Addresses
RFC 4291 IPv6 Addressing Architecture
RFC 5095 Deprecation of Type 0 Routing Headers in IPv6

MULTICAST
RFC 1112 Host Extensions for IP Multicasting (Snooping)
RFC 2236 Internet Group Management Protocol, (Snooping)
RFC 3376 Internet Group Management Protocol, Version 3 (Snooping)

TCP/IP
RFC 768 UDP
RFC 1350 The TFTP Protocol (Rev.
RFC 791 IP
RFC 792 ICMP
RFC 793 TCP
RFC 826 ARP
RFC 854 Telnet
RFC 1519 CIDR
RFC 1812 Requirements for IPv4 Routers
RFC 2347 TFTP option Extension
RFC 2328 TFTP Blocksize Option
RFC 2349 TFTP Timeout Intervaland Transfer Size option

RADIUS
RFC 2865 Remote Authentication Dial In User Service
RFC 2866 RADIUS Accounting

SSH
draft-ietf-secsh-architecture.txt SSH Protocol Architecture
draft-ietf-secsh-userauth.txt SSH Authentication Protocol
draft-ietf-secsh-transport.txt SSH Transport Layer Protocol
Standards and Protocols

draft-ietf-secsh-connection.txt SSH Connection Protocol
draft-ietf-secsh-newmodes.txt SSH Transport Layer Encryption Modes

TACACS+
draft-grant-tacacs-02.txt

NETWORK MANAGEMENT
ITU-T X.721: Information technology-OSI-Structure of Management Information
ITU-T X.734: Information technology-OSI-Systems Management: Event Report Management Function
M.3100/3120 Equipment and Connection Models
TMF 509/613 Network Connectivity Model
RFC 1157 SNMPv1
RFC 1215 A Convention for Defining Traps for use with the SNMP
RFC 1907 SNMPv2-MIB
RFC 2011 IP-MIB
RFC 2012 TCP-MIB
RFC 2013 UDP-MIB
RFC 2096 IP-FORWARD-MIB
RFC 2138 RADIUS
RFC 2571 SNMP-FRAMEWORK-MIB
RFC 2572 SNMP-MPD-MIB
RFC 2573 SNMP-TARGET-&-NOTIFICATION-MIB
RFC 2574 SNMP-USER-BASED-SNMP
RFC 2575 SNMP-VIEW-BASED-ACM-MIB
RFC 2576 SNMP-COMMUNITY-MIB
RFC 2665 EtherLike-MIB
RFC 2819 RMON-MIB
RFC 2863 IF-MIB
RFC 2864 INVERTED-STACK-MIB
RFC 3014 NOTIFICATION-LOG-MIB
RFC 3164 Syslog
RFC 3273 HCRMON-MIB
RFC 3412 - Message Processing and Dispatching for the Simple Network Management Protocol (SNMP)

RFC 3413 - Simple Network Management Protocol (SNMP) Applications
RFC 3414 - User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)
RFC 3418 - SNMP MIB
draft-ietf-disman-alarm-mib-04.txt

PROPRIETARY MIBs
ALCATEL-IGMP-SNOOPING-MIB.mib
TIMETRA-CAPABILITY-7210-SAS-E-V5v0.mib (Only for 7210 SAS-E)
TIMETRA-CHASSIS-MIB.mib
TIMETRA-CLEAR-MIB.mib
TIMETRA-DOT3-OAM-MIB.mib
TIMETRA-FILTER-MIB.mib
TIMETRA-GLOBAL-MIB.mib
TIMETRA-IEEE8021-CFM-MIB.mib
TIMETRA-LAG-MIB.mib
TIMETRA-LOG-MIB.mib
TIMETRA-MIRROR-MIB.mib
TIMETRA-NTP-MIB.mib
TIMETRA-OAM-TEST-MIB.mib
TIMETRA-PORT-MIB.mib
TIMETRA-QOS-MIB.mib
TIMETRA-SAS-ALARM-INPUT-MIB.mib [Only for 7210 SAS-E]
TIMETRA-SAS-FILTER-MIB.mib
TIMETRA-SAS-IEEE8021-CFM-MIB.mib
TIMETRA-SAS-GLOBAL-MIB.mib
TIMETRA-SAS-LOG-MIB.mib.mib
TIMETRA-SAS-MIRROR-MIB.mib
TIMETRA-SAS-PORT-MIB.mib
TIMETRA-SAS-QOS-MIB.mib
TIMETRA-SAS-SYSTEM-MIB.mib
TIMETRA-SCHEDULER-MIB.mib
TIMETRA-SECURITY-MIB.mib
TIMETRA-SERV-MIB.mib
TIMETRA-SYSTEM-MIB.mib
TIMETRA-TC-MIB.mib
TIMETRA-VRTR-MIB.mib
INDEX

A
auto mode 106

B
BOF
overview
  image loading
  persistence 113
  saving a configuration 136
configuring
  accessing
    the CLI 131
    console connection 131
  basic 125
  BOF parameters 133
  command reference 141
  management tasks 134
  overview 124
  rebooting 139
  searching for BOF file 128

C
CLI
usage
  basic commands 22
  command prompt 29
  displaying context configurations 30, 27
  entering CLI commands 34, 25, 33
  monitor commands 26
  navigating 20
  structure 18

F
File system
overview
  compact flash devices 80
  URLs 82
configuring 84
  command reference 89, 86, 85
  displaying information 88

I
image loading 109

L
lldp 260

M
manual mode 105

S
System
  overview
    backup config files 232
    CLLI 170
    contact 168, 169
    location 169
    name 168
    saving configurations 204
    time 171
configuring
  basic 205
  command reference
    administration commands 257
    synchronization commands 259, 253, 254, 255
  revert 244
  system administration parameters 233, 207, 211
  timing 242

moving files 87
removing/deleting 87