Configuring IPSec with CLI

This section provides information to configure IPSec using the command line interface.

Topics in this section include:

- Provisioning a Tunnel ISA on page 475
- Configuring a Tunnel Group on page 476
- Configuring Router Interfaces for IPSec on page 477
- Configuring IPSec Parameters on page 478
- Configuring IPSec in Services on page 479
- Configuring X.509v3 Certificate Parameters on page 480
- Configuring MC-IPSec on page 483
- Configuring MC-IPSec on page 483
- Configuring and Using CMPv2 on page 486
- Configuring OCSP on page 487
- Configuring IKEv2 Remote-Access Tunnel on page 488
- Configuring IKEv2 Remote Access Tunnel with Local Address Assignment on page 491

Provisioning a Tunnel ISA

An IPSec ISA can only be provisioned on an IOM2. The following output displays a card and ISA configuration.

```
*A:ALA-49>config# info
...

card 1
card-type iom2-20g
mda 1
mda-type m10-1gb-sfp
exit
mda 2
mda-type isa-tunnel
exit
exit

exit

*A:ALA-49>config#
```

Configuring a Tunnel Group

The following output displays a tunnel group configuration in the ISA context. The **primary** command identifies the card/slot number where the IPSec ISA is the primary module for the IPSec group.

```
*A:ALA-49>config# info

...

isa

tunnel-group 1 create

primary 1/2

no shutdown

exit

exit

...

*A:ALA-49>config#
```

Configuring Router Interfaces for IPSec

The following output displays an interface "internet" configured using the network port (1/1/1).

```
*A:ALA-49>config# info

...

router
    interface "internet"
        address 10.10.7.118/24
        port 1/1/1
    exit
    interface "system"
        address 10.20.1.118/32
    exit
    autonomous-system 123
    exit
...

*A:ALA-49>config#
```

I

Configuring IPSec Parameters

The following output displays an IPSec configuration example.

```
*A:ALA-49>config# info

...

ipsec

ike-policy 1 create

ipsec-lifetime 300

isakmp-lifetime 600

pfs

auth-algorithm md5

dpd interval 10 max-retries 5

exit

ipsec-transform 1 create

esp-auth-algorithm shal

esp-encryption-algorithm aes128

exit

exit

...

*A:ALA-49>config#
```

Configuring IPSec in Services

The following output displays an IES and VPRN service with IPSec parameters configured.

```
*A:ALA-49>config# info
   service
       ies 100 customer 1 create
           interface "ipsec-public" create
              address 10.10.10.1/24
              sap tunnel-1.public:1 create
              exit
           exit
           no shutdown
       exit
      vprn 200 customer 1 create
           ipsec
               security-policy 1 create
                  entry 1 create
                      local-ip 172.17.118.0/24
                      remote-ip 172.16.91.0/24
                  exit
               exit
           exit
         route-distinguisher 1:1
           ipsec-interface "ipsec-private" tunnel create
               sap tunnel-1.private:1 create
                   ipsec-tunnel "remote-office" create
                      security-policy 1
                     local-gateway-address 10.10.10.118 peer 10.10.7.91 delivery-service
100
                       dynamic-keying
                          ike-policy 1
                          pre-shared-key "humptydumpty"
                          transform 1
                      exit
                      no shutdown
                   exit
               exit
           exit
           interface "corporate-network" create
              address 172.17.118.118/24
              sap 1/1/2 create
        static-route 172.16.91.0/24 ipsec-tunnel "remote-office"
           no shutdown
       exit
   exit
_____
*A:ALA-49>config#
```

Configuring X.509v3 Certificate Parameters

The following displays steps to configure certificate enrollment.

1. Generate a key.

admin certificate gen-keypair cf3:/key_plain_rsa2048 size 2048 type rsa

2. Generate a certificate request.

admin certificate gen-local-cert-req keypair cf3:/key_plain_rsa2048 subject-dn "C=US,ST=CA,CN=7750" file 7750_req.csr

note: since 12.0R1, the system encodes the common name field as UTF8 instead of a printable string format. If a printable string is required for compatibility add the option "use-printable" to the request for legacy behavior.

- 3. Send the certificate request to CA-1 to sign and get the signed certificate.
- 4. Import the key.

admin certificate import type key input cf3:/key_plain_rsa2048 output key1_rsa2048 format der

5. Import the signed certificate.

admin certificate import type cert input cf3:/7750_cert.pem output 7750cert format pem

The following displays steps to configure CA certificate/CRL import.

1. Import the CA certificate.

admin certificate import type cert input cf3:/CA 1 cert.pem output ca cert format pem

2. Import the CA's CRL.

admin certificate import type crl input cf3:/CA_1_crl.pem output ca_crl format pem

The following displays a certificate authentication for IKEv2 static LAN-to-LAN tunnel configuration.

```
config>system>security>pki# info
_____
              ca-profile "alu-root" create
                 cert-file "alu_root.cert"
                 crl-file "alu_root.crl"
                  no shutdown
config>ipsec# info
       ike-policy 1 create
          ike-version 2
          auth-method cert-auth
       exit
       ipsec-transform 1 create
      cert-profile "segw" create
           entry 1 create
              cert segw.cert
              key segw.key
           exit
           no shutdown
       exit.
       trust-anchor-profile "alu" create
          trust-anchor "alu-root"
config>service>vprn>if>sap
                  ipsec-tunnel "t50" create
                      security-policy 1
                      local-gateway-address 192.168.55.30 peer 192.168.33.100 delivery-
service 300
                      dynamic-keying
                          ike-policy 1
                          transform 1
                          cert
                             trust-anchor-profile "alu"
                             cert-profile "segw"
                          exit
                      exit
                      no shutdown
                  exit
```

Configuring X.509v3 Certificate Parameters

The following displays an example of the syntax to import a certificate from the pem format.

*A:SR-7/Dut-A# admin certificate import type cert input cf3:/pre-import/R1-0cert.pem output R1-0cert.der format pem

The following displays and example of the syntax to export a certificate to the pem format.

*A:SR-7/Dut-A# admin certificate export type cert input R1-0cert.der output cf3:/R1-0cert.pem format pem

Configuring MC-IPSec

Configuring MIMP

The following is an MIMP configuration example.

```
config>redundancy>multi-chassis

peer 2.2.2.2 create

mc-ipsec

bfd-enable

tunnel-group 1 create

peer-group 2

priority 120

no shutdown

exit

exit

no shutdown

exit

exit

no shutdown

exit
```

The peer's tunnel-group id is not necessarily the same as the local tunnel-group id With **bfd-enable**, the BFD parameters are specified under the interface that the MIMP source address resides on, which must be a loopback interface in the base routing instance. The default source address of MIMP is the system address.

The **keep-alive-interval** and **hold-on-neighbor-failure** define the MIMP alive parameter, however, BFD could be used for faster chassis failure detection.

The SR OS also provides a **tool** command to manually trigger the switchover such as:

tools perform redundancy multi-chassis mc-ipsec force-switchover tunnel-group 1

Configuring Multi-Chassis Synchronization

The following displays an MCS for MC-IPSec configuration.

The **sync-tag** must matched on both chassis for the corresponding tunnel-groups.

Configuring Routing for MC-IPSec

The following configuration is an example using a route policy to export /32 local tunnel address route:

```
config>router>policy-options>
           policy-statement "exportOSPF"
               entry 10
                       protocol ipsec
                       state ipsec-master-with-peer
                   exit
                   action accept
                       metric set 500
                   exit
               exit
               entry 20
                       protocol ipsec
                       state ipsec-non-master
                   action accept
                      metric set 1000
                   exit
               exit
               entry 30
                       protocol ipsec
                       state ipsec-master-without-peer
                    exit.
                    action accept
                       metric set 1000
                   exit
               exit
            exit
```

The following configuration shows shunting in public and private service.

Shunting in public service:

```
config>service>ies>
    interface "ipsec-pub" create
        address 172.16.100.254/24
        sap tunnel-1.public:100 create
        exit
        static-tunnel-redundant-next-hop 1.1.1.1
        exit
```

Shunting in private service:

Shunting is enabled by configuring redundant next-hop on a public or private IPsec interface static-tunnel-redundant-next-hop — Shunting nexthop for a static tunnel.

dynamic-tunnel-redundant-next-hop — Shunting next-hop for a dynamic tunnel.

I

Configuring and Using CMPv2

CMPv2 server information is configured under corresponding ca-profile by using following key commands:

```
config>system>security>pki>ca-profile
    cmpv2
    url <url-string> [service-id <service-id>]
    response-signing-cert <filename>
    key-list
    key <password> reference <reference-number>
```

The **url** command specifies the HTTP URL of the CMPv2 server, the service specifies the routing instance that the system used to access the CMPv2 server (if omitted, then system will use base routing instance).

Also note that the service ID is only needed for inband connections to the server via VPRN services. IES services are not to be referenced by the service ID as any of those are considered base routing instance.

The **response-signing-cert** command specifies a imported certificate that is used to verify the CMP response message if they are protected by signature. If this command is not configured, then CA's certificate will be used.

The **keylist** specifies a list of pre-shared-key used for CMPv2 initial registration message protection.

For example:

```
config>system>security>pki>ca-profile>
    cmpv2
    url "http://cmp.example.com/request" service-id 100
    key-list
        key passwordToBeUsed reference "1"
```

All CMPv2 operations are invoked by using the **admin certificate cmpv2** command.

If there is no **key-list** defined under the **cmpv2** configuration, the system will default to the **cmpv2** transaction input for the command line in regards to authenticating a message without a senderID. Also, if there is no senderID in the response message, and there IS a key-list defined, it will choose the lexicographical first entry only, if that fails, it will have a fail result for the transaction.

Refer to the command reference section for details about syntax and usage. The system supports optional commands (such as, **always-set-sender-ir**) to support inter-op with CMPv2 servers. Refer to CMPv2 Commands on page 505 for details.

Configuring OCSP

OCSP server information is configured under the corresponding ca-profile:

```
config>system>security>pki>ca-profile>
    ocsp
        responder-url <url-string>
        service <service-id>
```

The **responder-url** command specifies the HTTP URL of the OCSP responder. The **service** command specifies the routing instance that system used to access the OCSP responder.

Example:

```
config>system>security>pki>ca-profile>
    ocsp
        responder-url "http://ocsp.example.com/request"
        service 100
```

For a given ipsec-tunnel or ipsec-gw, the user can configure a primary method, a secondary method and a default result.

Example:

Configuring IKEv2 Remote-Access Tunnel

The following are configuration tasks for an IKEv2 remote-access tunnel:

- Create an ike-policy with one of the auth-methods that enabled the remote-access tunnel.
- Configure a tunnel-template/ipsec-transform This is the same as configuring a dynamic LAN-to-LAN tunnel.
- Create a radius-authentication-policy and optionally, a radius-accounting-policy (a radius-server-policy and a radius-server must be preconfigured)
- Configure a private VPRN service and private tunnel interface with an address on the interface. The internal address assigned to the client must come from the subnet on the private interface.
- Configure a public IES/VPRN service and an ipsec-gw under the public tunnel SAP.
- Configure the radius-authentication-policy and radius-accounting-policy (optional) under the ipsec-gw.
- Certificate the related configuration if cert-radius is used.

The following shows an example using cert-radius:

```
config>system>security>pki# info
             ca-profile "ALU-ROOT" create
                 cert-file "ALU-ROOT.cert"
                 crl-file "ALU-ROOT.crl"
                 no shutdown
             exit
A:SeGW>config>aaa# info
______
      radius-server-policy "femto-aaa" create
         servers
             router "management"
             server 1 name "svr-1"
      exit
A:SeGW>config>router# info
      radius-server
         server "svr-1" address 10.10.10.1 secret "KR35xB3W4aUXtL8o3WzPD." hash2 create
          exit
      exit
config>ipsec# info
       ike-policy 1 create
        ike-version 2
          auth-method cert-radius
      exit
      ipsec-transform 1 create
```

```
exit
       tunnel-template 1 create
          transform 1
       exit
       cert-profile "c1" create
           entry 1 create
               cert SeGW2.cert
               key SeGW2.key
           exit
           no shutdown
       exit
       trust-anchor-profile "tap-1" create
           trust-anchor "ALU-ROOT"
       radius-authentication-policy "femto-auth" create
           include-radius-attribute
               calling-station-id
               called-station-id
           password "DJzlyYKCefyhomnFcFSBuLZovSemMKde" hash2
           radius-server-policy "femto-aaa"
       exit
       radius-accounting-policy "femto-acct" create
           include-radius-attribute
               calling-station-id
               framed-ip-addr
           exit.
           radius-server-policy "femto-aaa"
       exit
______
config>service>ies# info
           interface "pub" create
               address 172.16.100.0/31
               tos-marking-state untrusted
               sap tunnel-1.public:100 create
                  ipsec-gw "rw"
                          trust-anchor-profile "tap-1"
                           cert-profile "c1"
                       exit
                       default-secure-service 400 interface "priv"
                       default-tunnel-template 1
                       ike-policy 1
                       local-gateway-address 172.16.100.1
                       radius-accounting-policy "femto-acct"
                       radius-authentication-policy "femto-auth"
                       no shutdown
                   exit
               exit
           exit
           no shutdown
A:SeGW>config>service>vprn# info
           route-distinguisher 400:11
           interface "priv" tunnel create
              address 20.20.20.1/24
               sap tunnel-1.private:200 create
               exit
```

Configuring IKEv2 Remote-Access Tunnel

```
exit
interface "11" create
  address 9.9.9.9/32
   loopback
exit
no shutdown
```

Configuring IKEv2 Remote — Access Tunnel with Local Address Assignment

The following are configuration tasks of IKEv2 remote-access tunnel:

- Create an ike-policy with any auth-method.
- Configure the **tunnel-template** or **ipsec-transform**. (This is the same as configuring a dynamic LAN-to-LAN tunnel.)
- Configure a private VPRN service and a private tunnel interface with an address on the
 interface. The internal address assigned to the client must come from the subnet on the
 private interface.
- Configure a local DHCPv4 or DHCPv6 server with address pool that from which the internal address to be assigned from.
- Configure public IES/VPRN service and ipsec-gw under public tunnel SAP.
- Configure the local address assignment under ipsec-gw.

The following output shows an example using cert-auth:

```
config>system>security>pki# info
              ca-profile "smallcell-root" create
                 cert-file "smallcell-root-ca.cert"
                 revocation-check crl-optional
                 no shutdown
config>ipsec# info
      ike-policy 3 create
          ike-version 2
          auth-method cert-auth
          nat-traversal
       exit
       ipsec-transform 1 create
       cert-profile "segw-mlab" create
          entry 1 create
              cert SeGW-MLAB.cert
              key SeGW-MLAB.key
          exit
          no shutdown
       exit
       trust-anchor-profile "sc-root" create
          trust-anchor "smallcell-root"
       tunnel-template 1 create
          transform 1
______
config>service>ies# info
          interface "pub" create
```

```
address 172.16.100.253/24
               tos-marking-state untrusted
               sap tunnel-1.public:100 create
                  ipsec-qw "rw"
                      default-secure-service 400 interface "priv"
                       default-tunnel-template 1
                       ike-policy 3
                       local-address-assignment
                          ipv6
                              address-source router 400 dhcp-server "d6" pool "1"
                          no shutdown
                       exit
                       local-gateway-address 172.16.100.1
                          trust-anchor-profile "sc-root"
                          cert-profile "segw-mlab"
                          status-verify
                             default-result good
                       exit
                       local-id type fqdn value segwmobilelab.alu.com
                      no shutdown
                   exit
               exit
           exit
           no shutdown
config>service>vprn# info
_____
           dhcp6
               local-dhcp-server "d6" create
                  use-pool-from-client
                   pool "1" create
                      options
                          dns-server 2001::808:808
                      exclude-prefix 2001:beef::101/128
                      prefix 2001:beef::/96 failover access-driven pd wan-host create
                   exit.
                  no shutdown
               exit
           route-distinguisher 400:1
           interface "priv" tunnel create
               ipv6
                  address 2001:beef::101/96
               exit
               sap tunnel-1.private:200 create
               exit
           exit
           no shutdown
```