Bi-Directional Forwarding Detection

In This Chapter

This section provides information about bi-directional forwarding (BFD) detection.

Topics in this section include:

- Applicability on page 1738
- Overview on page 1739
- Configuration on page 1741
- Conclusion on page 1784

Applicability

This section is applicable to all of the 7x50 and 7710 series but the timing differs among platforms and these will be indicated. Note that the centralized cpm-np type is only supported by 7750/7450s equipped with SF/CPM 2 or higher. The information contained in this section has been tested with Release 8.0.R4.

Overview

Bi-Directional Forwarding Detection (BFD) is a light-weight protocol which provides rapid path failure detection between two systems. It has been recently published as a series of RFCs (RFC 5880, *Bidirectional Forwarding Detection (BFD)*, to RFC 5884, *Bidirectional Forwarding Detection (BFD) for MPLS Label Switched Paths (LSPs)*.

If a system running BFD stops receiving BFD messages on an interface, it will determine that there has been a failure in the path and notifies other protocols associated with the interface. BFD is useful in situations where two nodes are interconnected through either an optical (DWDM) or Ethernet network. In both cases, the physical network has numerous extra hops which are not part of the Layer 3 network and therefore, the Layer 3 nodes are incapable of detecting failures which occur in the physical network on spans to which the Layer 3 devices are not directly connected.

BFD protocol provides rapid link continuity checking between network devices, and the state of BFD can be propagated to IP routing protocols to drastically reduce convergence time in cases where a physical network error occurs in a transport network.

RFC 5880 define two modes of operation for BFD:

- Asynchronous mode (supported by ALU routers covered in this section) Uses periodic BFD control messages to test the path between systems
- Demand mode (not supported by ALU router covered in this section)

In addition to the two operational modes, an echo function is defined (ALU routers covered by this section only support response, looping back received BFD messages to the original sender).

The goal of this section is to describe the configuration and troubleshooting for BFD on a link between two peers in the following scenarios:

- BFD for ISIS
- BFD for OSPF
- BFD for PIM
- BFD for Static route
- BFD IES
- BFD for RSVP
- BFD for T-LDP
- BFD support of OSPF CE-PE adjacencies
- BFD over IPSec tunnel
- BFD over VRRP

Figure 265 provides an overview of the possible BFD implementations and shows all protocols that can be bound to a BFD session.

Configuration

BFD packets are processed both locally (processed on IOM CPU) and centrally (processed on the CPM).

Starting with Release 8, the CPM is able to centrally generate the BFD packets at a sub second interval as low as 10 msec. However it should be noted that the BFD state machine is still implemented in software. It is the BFD packet generation that can be now selectively delegated to CPM hardware as needed. This is applicable where sub second operational requirements for BFD or scaling the number of BFD sessions beyond 250 are required.

Centralized sessions are processed:

- in software by 7x50 SR-1 and ESS-1, 7710 c4 and c12 and 7x50 equipped with SF/CPM 1.
- in hardware by 7x50 equipped with SF/CPM 2 or higher.

Minimum transmitting and receiving Intervals are as follows:

- Centralized sessions:
 - \rightarrow Minimum 300 ms in 7x50 SR-1 and ESS-1, 7710 c4 and c12
 - \rightarrow Minimum 100 ms in 7x50 equipped with SF/CPM 1 and in every 7x50 up to Release 7.0
 - \rightarrow Minimum 10 ms in 7x50 equipped with SF/CPM 2 or higher
- Local sessions:
 - \rightarrow Minimum 100 ms

The following applications require BFD to run centrally on the SF/CPM and a centralized session will be created independently of the type explicitly declared by the user:

- BFD for IES/VPRN over Spoke SDP
- BFD over LAG and VSM Interfaces
- Protocol associations using loopback and system interfaces (e.g. BFD for T-LDP)
- BFD over IPSec sessions
- BFD sessions associated with multi-hop peering

Figure 266 shows the most relevant scenarios where BFD centralized sessions are used.

Figure 266: BFD Centralized Sessions

On the other end, when the two peers are directly connected, the BFD session is local by default, but in a 7x50 equipped with SF/CPM 2 or higher, the user can choose which session (local or centralized) to implement.

As general rule, the following steps are required to configure and enable a BFD session when peers are directly connected:

- 1. Configure BFD parameters on the peering interfaces.
- 2. Check that the Layer 3 protocol, that is to be bound to BFD, is up and running.
- 3. Enable BFD under the Layer 3 protocol interface.

Since most of the following procedures share the same first step, it is described only once in the next paragraph and then referred to in the following paragraphs.

BFD Base Parameter Configuration and Troubleshooting

The reference topology for the generic configuration of BFD over two local peers is shown in Figure 267.

Figure 267: BFD Interface Configuration

To configure BFD between two peers, the user should firstly enable base level BFD on interfaces between PE-1 and PE-2.

On PE1:

```
configure
router
interface PE-1-PE-2
address 192.168.1.1/30
port 1/1/1
bfd 100 receive 100 multiplier 3
exit
exit
```

On PE2:

```
configure
router
interface PE-2-PE-1
address 192.168.1.2/30
port 1/1/1
bfd 100 receive 100 multiplier 3
exit
exit
exit
```

The following **show** commands are used to verify the BFD configuration on the router interfaces on PE1 and PE2.

On PE1:

A:PE1# show router bfd interface BFD Interface Interface name Tx Interval Rx Interval Multiplier PE-1-PE-2 100 100 3 No. of BFD Interfaces: 1 A:PE1#

On PE2:

A:PE2# show router bfd interface					
BFD Interface					
Interface name	Tx	Interval	Rx	Interval	Multiplier
PE-2-PE-1		100		100	3
No. of BFD Interfaces: 1					
A:PE2#					

Note that, BFD being an asynchronous protocol, it is possible to configure different tx and rx intervals on the two peers. This is because BFD rx/tx interval values are signaled in the BFD packets while establishing the BFD session.

In 7x50s equipped with SF/CPM 2 or higher, configurable BFD parameters are as follows:

Note that it is possible to force the BFD session to be centrally managed by the CPM hardware.

As regards the echo function, it is possible to set the minimum echo receive interval, in milliseconds, for the BFD session. The default value is 100 ms.

If a BFD session is running, it is possible to modify its parameters but to change its type the session must be previously shut down manually. Note that this causes the upper layer protocols bound to it to be brought down as well.

```
configure
  router
    interface PE-2-PE-1
        bfd 10 receive 10 multiplier 3 type cpm-np
        exit
    exit
  exit
exit
```

Forcing a centralized session in the case of directly connected peers can be useful when:

- Lower Tx and Rx intervals are requested (up to 10 ms instead of 100 ms supported by local sessions)
- There are no more available local sessions
- Max limit of 500 packet per second per IOM has been reached

The instructions illustrated in following paragraphs are required to complete the configuration and enable BFD.

The BFD session should come up. To verify it, execute a **show router bfd session** command (bound to OSPF in the following example).

A:PE1# show router bfd se	ssion			
BFD Session				
Interface Remote Address	State Protocol	Tx Intvl Tx Pkts	Rx Intvl Rx Pkts	Multipl Type
PE-1-PE-2 192.168.1.2	Up (3) ospf	100 165	100 174	3 iom
No. of BFD sessions: 1				
A:PE1#				

If the command gives a negative output, troubleshoot it by firstly checking that the protocol that is bound to it is up: for instance, check the OSPF neighbor adjacency as shown in following example.

A:PE-1# show router ospf neighbo	r 				
OSPF Neighbors					
Interface-Name	Rtr Id	State	Pri	RetxQ	TTL
PE-1-PE-2	192.0.2.1	Full	1	0	34
======================================					

Then check whether a BFD resource limit has been reached (maximum number of local/ centralized sessions or maximum number of packet per second per IOM).

If the overloaded limit is the maximum supported number of sessions, the cause is shown by logid 99. In the reported example, the maximum number of sessions per slot has been reached.

In this case, when one of the running sessions is manually removed or goes down, then the additional configured session will come up. If the limit reached is local (on IOM) it is possible to bring up the session by re-configuring it as centralized, by changing the type.

To check if IOM CPU is able to start more local BFD sessions, execute a **show router BFD** session summary command.

A:PE2# show router bfd session summary BFD Session Summary Termination Session Count central 0 cpm-np 1 iom, slot 1 250 iom, slot 2 0 iom, slot 3 0 iom, slot 4 0 iom, slot 5 0 Total 251

If the **show router bfd session** command reports that the BFD session is down, the check the BFD peer's configuration and state.

The following **log 99** output reports PE-1 logs after a misconfiguration of PE-2 (disabling BFD on the OSPF interface).

As soon as BFD is shutdown on the OSPF interface PE-2-PE-1 of PE-2, the BFD session in PE-1 goes to the down state, then the OSPF adjacency is brought down for approximately 2.8 secs and finally the OSPF state goes back to full, while the BFD session stays in down state.

This state will last until BFD is re-enabled on PE-2 interface.

BFD: The protocols using BFD session on node 192.168.1.2 have changed.

The 2nd column reports the current BFD session state. Possible values are:

- 0 AdminDown
- 1 Down
- 2 Init
- 3 Up

The **show router bfd session src** *<ip-address>* **detail** command can help in debugging the BFD session.

```
A:PE-1# show router bfd session src 192.168.1.1 detail
_____
BFD Session
_____
Remote Address : 192.168.1.2
                               Oper State : Up (3)
Admin State : Up
Protocols
          : ospf2 pim isis static
Rx Interval : 100
                              Tx Interval
                                           : 100
                              Echo Interval : 0
Multiplier : 3
          : 24046
Recd Msgs
                              Sent Msgs : 25723
          : 24046
: 0d 00:40:05
Down Transitions : 0
Up Time
Down Time
          : None
                               Version Mismatch : 0
Forwarding Information
Local Discr : 4002
Local Diag : 0 (None)
                              Local State : Up (3)
                              Local Mode : Async
Local Mult : 3
Local Min Tx : 100
Last Sent : 10/08/2010 20:30:27 Local Min Rx : 100
           : iom
Tvpe
Remote Discr: 4001Remote State: Up (3)Remote Diag: 0 (None)Remote Mode: AsyncRemote Min Tx: 100Remote Mult: 3
Last Recv : 10/08/2010 20:30:27 Remote Min Rx : 100
                                        _____
```

BFD for IS-IS

The goal of this section is to configure BFD on a network interlink between two 7750 nodes that are IS-IS peers. The topology referred to in this paragraph is shown in Figure 268.

For the base BFD configuration, please refer to BFD Base Parameter Configuration and Troubleshooting on page 1743.

Apply BFD on the ISIS Interfaces.

On PE1:

```
configure
router
isis
interface PE-1-PE-2
bfd-enable ipv4
exit
exit
exit
exit
```

On PE2:

```
configure
router
isis
interface PE-2-PE-1
bfd-enable ipv4
exit
exit
exit
exit
```

Finally, verify that the BFD session is operational between PE1 and PE2.

On PE1:

A:PE1# show router bfd session

BFD Session				
Interface	State	Tx Intvl	Rx Intvl	Multipl
Remote Address	Protocol	Tx Pkts	Rx Pkts	Туре
PE-1-PE-2	Up (3)	100	100	3
192.168.1.2	isis	165	174	iom
No. of BFD sessions: 1				
A:PE1#				

On PE2:

A:PE2# show router bfd session _____ BFD Session State Interface Tx Intvl Rx Intvl Multipl Remote Address Protocol Tx Pkts Rx Pkts Type _____ Up (3) 100 100 3 isis 496 487 iom PE-2-PE-1 192.168.1.1 _____

No. of BFD sessions: 1

A:PE2#

BFD for OSPF

The goal of this section is to configure BFD on a network interlink between two 7750 nodes that are OSPF peers.

For this scenario, the topology is shown in Figure 269.

Figure 269: BFD for OSPF

For the base BFD configuration, refer to BFD Base Parameter Configuration and Troubleshooting on page 1743.

Apply BFD on the OSPF Interfaces.

On PE1:

```
configure
router
ospf
interface PE-1-PE-2
bfd-enable
exit
exit
exit
exit
```

On PE2:

```
configure
router
ospf
interface PE-2-PE-1
bfd-enable
exit
exit
exit
```

Verify that the BFD session is operational between PE1 and PE2.

On PE1:

A:PE1# show router bfd session

BFD Session							
Interface	State	Tx Intvl	Rx Intvl	Multipl			
Remote Address	Protocol	Tx Pkts	Rx Pkts	Туре			
PE-1-PE-2	Up (3)	100	100	3			
192.168.1.2	ospf	170	179	iom			
No. of BFD sessions: 1							

A:PE1#

On PE2:

A:PE2# show router bfd se	ession			
BFD Session				
Interface Remote Address	State Protocol	Tx Intvl Tx Pkts	Rx Intvl Rx Pkts	Multipl Type
PE-2-PE-1 192.168.1.1	Up (3) ospf	100 501	100 492	3 iom
No. of BFD sessions: 1				
A:PE2#				

BFD for PIM

Since the implementation of PIM uses an Interior Gateway Protocol (IGP) in order to determine its Reverse Path Forwarding (RPF) tree, BFD configuration to support PIM will require BFD configuration of both the IGP protocol and the PIM protocol. Let's assume that IGP protocol is OSPF and that the starting configuration is as described in the previous section.

In this paragraph, configure and enable BFD for PIM on the same interfaces that were previously configured with BFD for OSPF, in reference to the topology shown in Figure 270.

Figure 270: BFD for OSPF and PIM

Since BFD has been already configured on the router interfaces, let's start by applying BFD on the PIM Interface.

On PE1:

```
configure
router
pim
interface PE-1-PE-2
bfd-enable
exit
exit
exit
exit
```

On PE2:

configure router pim

```
interface PE-2-PE-1
bfd-enable
exit
exit
exit
exit
```

The final step is to verify whether the BFD Session is operational between PE1 and PE2 for PIM.

On PE1:

A:PE1# show router bfd sessio	nc			
BFD Session				
Interface Remote Address	State Protocol	Tx Intvl Tx Pkts	Rx Intvl Rx Pkts	Multipl Type
PE-1-PE-2 192.168.1.2	Up (3) ospf2 pim	100 3874	100 3845	3 iom
No. of BFD sessions: 1				
A:PE1#				

On PE2:

A:PE2# show router bfd sess	ion			
BFD Session				
Interface Remote Address	State Protocol	Tx Intvl Tx Pkts	Rx Intvl Rx Pkts	Multipl Type
PE-1-PE-2 192.168.1.1	Up (3) ospf2 pim	100 3137	100 3145	3 iom
No. of BFD sessions: 1				
A:PE2#				=

BFD for Static Routes

The following procedures will go through the necessary steps to configure the base level BFD configuration and then apply BFD to the static routes between PE1 and PE2, referring to topology shown in Figure 271.

Figure 271: BFD for Static Routes

First, create the static routes for the remote networks both in PE-1 and PE-2.

```
On PE1:
```

```
configure
   router
   static-route 10.1.2.0/24 next-hop 192.168.1.2
   exit
exit
```

On PE2:

```
configure
   router
   static-route 10.1.1.0/24 next-hop 192.168.1.1
   exit
exit
```

Next, verify that static routes are populated in the routing table.

On PE1:

A:PE1#	show	router route-table				
Route 1	[able	(Router: Base)				
Dest Pi	refix Next	Hop[Interface Name]	Туре	Proto	Age Metr:	Pref ic
10.1.2.	.0/24 192.1	68.1.2	Remote	Static	00h20m55s 1	5

On PE2:

A:PE2# s	show	router route-table					
Route Ta	uble	(Router: Base)					
Dest Pre N	efix Next	Hop[Interface Name]	Туре	Proto	Age	Metric	Pref
10.1.1.0)/24 .92 . 1	68.1.1	Remote	Static	00h21	.m15s 1	5

The next step is to configure the base level BFD on PE1 and PE2.

Refer to paragraph BFD Base Parameter Configuration and Troubleshooting on page 1743.

Then apply BFD to the static routing entries using the BFD interfaces as next-hop.

On PE1:

```
configure
   router
    static-route 10.1.2.0/24 next-hop 192.168.1.2 bfd-enable
    exit
exit
```

On PE2:

```
configure
   router
   static-route 10.1.1.0/24 next-hop 192.168.1.1 bfd-enable
   exit
exit
```

Note that BFD cannot be enabled if the next hop is indirect or the **blackhole** keyword is specified.

Finally, show the BFD session status.

On PE1:

A:PE1# show router bfd session

BFD Session				
Interface Remote Address	State Protocol	Tx Intvl Tx Pkts	Rx Intvl Rx Pkts	Multipl Type
PE-1-PE-2 192.168.1.2	Up (3) static	100 699	100 661	3 iom
No. of BFD sessions: 1				

On PE2:

A:PE2# show router bfd session					
BFD Session					
Interface Remote Address	State Protocol	Tx Intvl Tx Pkts	Rx Intvl Rx Pkts	Multipl Type	
PE-2-PE-1 192.168.1.1	Up (3) static	100 691	100 729	3 iom	
No. of BFD sessions: 1					

7750 SR Advanced Configuration Guide

BFD for IES

The goal of this section is to configure BFD for one IES service over a spoke SDP.

The IES service is configured in both 7750 nodes, PE1 and PE2, and their interfaces are connected by spoke SDP's. The topology is shown in Figure 272.

Figure 272: BFD for IES over Spoke SDP

Note that in this scenario BFD is run between the IES interfaces independent of the SDP/LSP paths.

The first step is to configure the IES service on both nodes.

On PE-1:

```
configure
service
ies 2 customer 1 create
interface IES_PE-1-PE-2 create
address 192.168.3.1/30
spoke-sdp 1020:1 create
exit
exit
no shutdown
exit
exit
exit
```

On PE-2:

```
configure
service
ies 2 customer 1 create
interface IES_PE-2-PE-1 create
```

```
address 192.168.3.2/30
spoke-sdp 2010:1 create
exit
exit
no shutdown
exit
exit
exit
```

The next step is to add the IES interfaces to the OSPF area domain.

```
On PE-1:

configure

router

ospf

traffic-engineering

area 0.0.0.0

interface IES-PE-1-PE-2

exit

exit

exit

exit

exit
```

On PE-2:

```
configure
router
ospf
traffic-engineering
area 0.0.0.0
interface IES-PE-2-PE-1
exit
exit
exit
exit
exit
```

Then verify that OSPF and the services are up using show commands on both routers.

On PE-1:

```
A:PE-1# show service id 1 base
   _____
Service Basic Information
_____
Service Id : 2
Service Type : IES
Customer Id : 1
                Vpn Id : 0
Last Status Change: 09/30/2010 08:09:22
Last Mgmt Change : 09/30/2010 08:08:31
Admin State : Up
                 Oper State
                       : Up
SAP Count
       : 0
. . .
_____
A:PE-1#
A:PE-1# show router ospf neighbor
_____
OSPF Neighbors
_____
             Rtr Id State Pri RetxQ TTL
Interface-Name
_____
             192.0.2.2 Full 1 0 34
TES-PE-1-PE-2
 _____
_____
A: PE-1#
On PE-2:
A:PE-2# show service id 2 base
  _____
Service Basic Information
_____
Service Id : 2 Vpn Id : 0
Service Type : IES
Customer Id : 1
Customer Id
       : 1
Last Status Change: 09/30/2010 08:16:50
Last Mgmt Change : 09/30/2010 08:16:50
Admin State : Up
SAP Count : 0
            Oper State : Up
. . .
_____
A:PE-2#
A:PE-2# show router ospf neighbor
_____
OSPF Neighbors
_____
             Rtr Id State Pri RetxQ TTL
Interface-Name
  _____
TES-PE-2-PE-1
             192.0.2.1 Full 1 0 33
_____
_____
A:PE-2#
```

Then configure BFD on the IES interfaces.

On PE-1:

```
configure service ies 2
interface IES-PE-1-PE-2
bfd 100 receive 100 multiplier 3
exit
no shutdown
exit
```

On PE-2:

```
configure service ies 2
interface IES-PE-2-PE-1
bfd 100 receive 100 multiplier 3
exit
no shutdown
exit
```

Finally, enable BFD on the interfaces under OSPF area 0.

On PE-1:

A:PE-1# configure router ospf area 0.0.0.0 interface IES-PE-1-PE-2 bfd-enable

On PE-2:

A:PE-2# configure router ospf area 0.0.0.0 interface IES-PE-2-PE-1 bfd-enable

Note that in case of BFD over spoke SDP, a centralized BFD session is created even if a physical link exists between the two nodes. In fact, the next output shows that BFD session type is cpm-np. This is because the spoke SDP is terminated at the CPM. This is also true for BFD running over LAG bundles.

The cpm-np type only exists in 7x50 SR/ESS systems equipped with SF/CPM 2 or higher. When other network elements run centralized BFD sessions like this one, the BFD type is shown as **central**.

A:PE-1# show router bfd	session			
BFD Session				
Interface Remote Address	State Protocols	Tx Intvl Tx Pkts	Rx Intvl Rx Pkts	Multipl Type
IES-PE-1-PE-2 192.168.3.2	Up (3) ospf2	100 N/A	100 N/A	3 cpm-np
No. of BFD sessions: 1				

A:PE-2# show router bfd se	ssion			
BFD Session				
Interface Remote Address	State Protocols	Tx Intvl Tx Pkts	Rx Intvl Rx Pkts	Multipl Type
IES-PE-2-PE-1 192.168.3.1	Up (3) ospf2	100 N/A	100 N/A	3 cpm-np
No. of BFD sessions: 1				

Note that in the case of centralized BFD sessions, transmitted and received packet counters are not shown.

BFD for RSVP

The goal of this section is to configure BFD between two RSVP interfaces configured in two 7750 nodes.

For this scenario, the topology is shown in Figure 273.

Figure 273: BFD for RSVP

To enable the BFD session between the two RSVP peers, the user should follow these steps:

First, configure BFD on interfaces between PE-1 and PE-2 as described in BFD Base Parameter Configuration and Troubleshooting on page 1743.

Next, configure MPLS, creating the path, the LSP and the interfaces within MPLS (and RSVP).

On PE-1:

```
configure router
       mpls
            interface system
            exit
            interface PE-1-PE-2
            exit
        exit
        rsvp
            interface system
            exit
            interface PE-1-PE-2
            exit
            no shutdown
        exit
        mpls
            path dyn
               no shutdown
            exit
            lsp LSP-PE-1-PE-2
                to 192.0.1.2
                cspf
```

```
primary dyn
exit
no shutdown
exit
no shutdown
exit
exit
```

On PE-2:

```
configure router
       mpls
          interface system
          exit
           interface PE-2-PE-1
           exit
       exit
       rsvp
          interface system
          exit
          interface PE-2-PE-1
          exit
          no shutdown
       exit
       mpls
          path dyn
              no shutdown
           exit
           lsp LSP-PE-2-PE-1
              to 192.0.1.1
              cspf
              primary dyn
              exit
              no shutdown
           exit
          no shutdown
       exit
exit
```

Next, verify that the RSVP session is up.

```
A:PE-1# show router rsvp session
_____
RSVP Sessions
_____
           Tunnel LSP Name
From
     То
                           State
           ID ID
_____
192.0.2.2192.0.2.12516LSP-PE-2-PE-1::dyn192.0.2.1192.0.2.2161446LSP-PE-1-PE-2::dyn
                           Up
                           Up
_____
Sessions : 2
_____
```

A:PE-1#

Then, apply BFD on the RSVP Interfaces.

```
On PE1:
```

```
configure
router
rsvp
interface PE-1-PE-2
bfd-enable
exit
no shutdown
exit
exit
```

On PE2:

```
configure
router
rsvp
interface PE-2-PE-1
bfd-enable
exit
no shutdown
exit
exit
exit
```

Finally, verify that the BFD session is operational between PE1 and PE2.

On PE1:

======================================				
Interface	State	Tx Intvl	Rx Intvl	Multipl
Remote Address	Protocols	Tx Pkts	Rx Pkts	Туре
PE-1-PE-2	Up (3)	100	100	3
192.168.1.2	rsvp	31515	31506	iom

On PE2:

BFD Session				
Interface	State	Tx Intvl	Rx Intvl	Multipl
Remote Address	Protocols	Tx Pkts	Rx Pkts	Type
PE-2-PE-1	Up (3)	100	100	3
192.168.1.1	rsvp	31563	31572	iom
No. of BFD sessions: 1				

BFD for T-LDP

BFD tracking of an LDP session associated with a T-LDP adjacency allows for faster detection of the liveliness of the session by registering the transport address of an LDP session with a BFD session.

The goal of this paragraph is to configure BFD for T-LDP, referring to the scheme shown in Figure 274.

Figure 274: BFD for T-LDP

The parameters used for the BFD session are configured under the loopback interface corresponding to the LSR-ID (by default, the LSR-ID matches the system interface address).

```
configure
router
interface system
address 192.0.2.1/32
bfd 3000 receive 3000 multiplier 3
exit
exit
exit
```

By enabling BFD for a selected targeted session, the state of that session is tied to the state of the underlying BFD session between the two nodes.

When using BFD over other links with the ability to reroute, such as spoke-SDPs, the interval and multiplier values configuring BFD should be set to allow sufficient time for the underlying network to re-converge before the associated BFD session expires. A general rule of thumb should be that the expiration time (interval * multiplier) is three times the convergence time for the IGP network between the two endpoints of the BFD session.

Before enabling BFD, ensure that the T-LDP session is up.

```
On PE-1:
B:PE-1# show router ldp session
LDP Sessions
Peer LDP Id Adj Type State Msg Sent Msg Recv Up Time
192.0.2.2 Targeted Established 35 41 Od 00:02:50
```

On PE-2:

```
B:PE-2# show router ldp session

LDP Sessions

Peer LDP Id Adj Type State Msg Sent Msg Recv Up Time

192.0.2.1 Targeted Established 27 23 0d 00:01:32
```

Then, enable the BFD session.

```
configure
router
ldp
targeted-session
peer 192.0.2.2
bfd-enable
exit
exit
exit
exit
exit
```

Note that the loopback interface can be used to source BFD sessions to many peers in the network.

Finally, check that the BFD session is up.

On PE-1:

A:PE-1# show router bfd sessi	lon			
BFD Session				
Interface Remote Address	State Protocols	Tx Intvl Tx Pkts	Rx Intvl Rx Pkts	Multipl Type
system	Up (3)	100	100	3

192.0.2.2	ldp	N/A	N/A	cpm-np
On PE-2:				
A:PE-1# show router b:	fd session			
BFD Session				
Interface Remote Address	State Protocols	Tx Intvl Tx Pkts	Rx Intvl Rx Pkts	Multipl Type
system 192.0.2.1	Up (3) ldp	100 N/A	100 N/A	3 cpm-np

When the T-LDP session comes up, a centralized BFD session is always created even if the local interface has a direct link to the peer.

BFD Support of OSPF PE-CE Adjacencies

This feature, introduced with Release 8.0, extends BFD support to OSPF within a VPRN context when OSPF is used as the PE-CE protocol. In this section, the topology shown in Figure 275.

Figure 275: BFD for OSPF PE-CE I/F

First, configure the VPRN service interface PE-1-CE-1 on PE-1 with BFD parameters.

```
config
      service
           vprn 1 customer 1 create
             route-distinguisher 1:1
              vrf-target target:1:1
              interface PE-1-CE-1 create
                  address 172.16.0.1/24
                  bfd 100 receive 100 multiplier 3
                  sap 1/1/1:1 create
                  exit
              exit
              ospf
                  area 0.0.0.0
                      interface PE-1-CE-1
                      exit
                  exit
              exit
              no shutdown
           exit
      exit
exit
```

Next, configure the router interface on CE-1 and add it to the OSPF area 0 domain.

```
configure
    router
    interface CE-1-PE-1
        address 172.16.0.2/24
        port 1/1/1:1
        bfd 100 receive 100 multiplier 3
        exit
        ospf
        area 0.0.0.0
            interface CE-1-PE-1
            exit
        exit
```

Then, ensure that OSPF adjacency is up.

On PE-1:

A:PE-1>config>service>vprn# show	router 1 ospf n	eighbor			
OSPF Neighbors					
Interface-Name	Rtr Id	State	Pri	RetxQ	TTL
PE-1-CE-1	192.0.2.5	Full	1	2	33
No. of Neighbors: 1					

On CE-1:

A:CE-1# show router ospf neighbo	r				
OSPF Neighbors					
Interface-Name	Rtr Id	State	Pri	RetxQ	TTL
CE-1-PE-1	192.0.2.1	Full	1	0	31
No. of Neighbors: 1					

Then, enable BFD on the PE-1-CE-1 interface on PE-1.

configure service vprn 1 ospf area 0.0.0.0 interface PE-1-CE-1 bfd-enable

Enable BFD on the CE-1-PE-1 interface on CE-1.

configure router ospf area 0.0.0.0 interface CE-1-PE-1 bfd-enable

Finally, check that the BFD sessions are up in both PE-1 and CE-1.

A:PE-1# show router 1 bfd ses	sion 			
BFD Session				
Interface	State	Tx Intvl	Rx Intvl	Multipl
Remote Address	Protocols	Tx Pkts	Rx Pkts	Type
PE-1-CE-1	Up (3)	100	100	3
172.16.0.2	ospf2	6331	6340	iom

No. of BFD sessions: 1

A:CE-1# show router bfd session

State	Tx Intvl	Rx Intvl	Multipl
Protocols	Tx Pkts	Rx Pkts	Type
Up (3)	100	100	3
ospf2	6691	6682	iom
	State	State Tx Intvl	State Tx Intvl Rx Intvl
	Protocols	Protocols Tx Pkts	Protocols Tx Pkts Rx Pkts
	Up (3)	Up (3) 100	Up (3) 100 100
	ospf2	ospf2 6691	ospf2 6691 6682

No. of BFD sessions: 1

BFD within IPSec Tunnels

The ability to assign a BFD session to a given static LAN-to-LAN IPSec tunnel that provides heart-beat mechanism for fast failure detection has been introduced in Release.8.0.

IPSec needs a Multi-service Integrated Service Adapter (MS-ISA) installed, so this scenario is only applicable to 7750 SR-7/12 equipped with IOM-2 or 3.

In this section, the topology is shown in Figure 276.s

Figure 276: BFD Sessions within IPSec Tunnels

The first step is to configure MS-ISA card as type isa-tunnel.

```
configure
    card 1
        card-type iom3-xp
        mda 1
            mda-type isa-tunnel
        exit
        mda 2
            mda-type m10-1gb-sfp-b
        exit
    exit
exit
```

Next, instantiate the tunnels t1, t2 and t3 from the private service (in this example, VPRN 2) to the peers passing through the public service (in this example VPRN 1, but it could be instead an IES).

Since the configuration of IPSec tunnels is out of the scope of this section, only relevant command lines are reported to configure the interfaces shown in Figure 276.

```
configure service
       vprn 1 customer 1 create
           route-distinguisher 1:1
           interface toInternet create
               address 192.168.1.1/24
               sap 1/2/1 create
               exit
            exit
            interface public-ipsec create
               address 192.168.2.1/24
               sap tunnel-1.public:1 create
               exit
           exit
           no shutdown
       exit
       vprn 2 customer 1 create
           ipsec
               security-policy 1 create
                   entry 10 create
                       local-ip 192.168.3.1/32
                       remote-ip any
                    exit
               exit
            exit.
            route-distinguisher 1:2
            interface private-ipsec tunnel create
                sap tunnel-1.private:1 create
                   ipsec-tunnel t1 create
                    local-gateway-address 192.168.2.254 peer 172.16.1.1 delivery-service 1
                       exit
                   exit
                   ipsec-tunnel t2 create
                    local-gateway-address 192.168.2.254 peer 172.16.1.2 delivery-service 1
                       exit
                   exit
                    ipsec-tunnel t3 create
                    local-gateway-address 192.168.2.254 peer 172.16.1.2 delivery-service 1
                       exit
                   exit
                exit
            exit
            interface loop create
               address 172.16.2.1/32
               loopback
            exit
            static-route 10.1.1.0/24 ipsec-tunnel t1
            static-route 10.1.2.0/24 ipsec-tunnel t2 metric 1
           static-route 10.1.2.0/24 ipsec-tunnel t3 metric 5
           no shutdown
```

Then configure the BFD parameters within loopback interface loop (refer to BFD Base Parameter Configuration and Troubleshooting on page 1743).

```
configure service vprn 2
           interface loop
             bfd 100 receive 100 multiplier 3
           exit
exit
And finally enable BFD within the tunnels.
configure service
        vprn 2
           interface private-ipsec tunnel
               sap tunnel-1.private:1
                   ipsec-tunnel t1
                       bfd-enable service 2 interface loop dst-ip 172.16.1.1
                    exit
                    ipsec-tunnel t2
                       bfd-enable service 2 interface loop dst-ip 172.16.1.2
                       bfd-designate
                    exit
                    ipsec-tunnel t3
                       bfd-enable service 2 interface loop dst-ip 172.16.1.2
exit all
```

The BFD-enable parameters are as follows:

- service <*service-id*> Specifies the service-id where the BFD session resides.
- interface <interface-name> Specifies the name of the interface used by the BFD session.
- **dst-ip** <*ip-address*> Specifies the destination address to be used for the BFD session.

The following statements are to be taken into consideration to correctly configure BFD in this environment:

- BFD over IPSec sessions are centralized, managed by the hardware on the CPM.
- Only BFD over static lan-to-lan tunnel is supported in Release 8.0 (not dynamic).
- Only one BFD session is allowed between a given source/destination address pair.
- Each tunnel can be associated to only one BFD session but multiple tunnels can be associated to the same BFD session.
- In case of multiple tunnels sharing the same BFD session, one IPSec tunnel carries BFD traffic: the BFD-DESIGNATED tunnel.

Referring to Figure 276 and to the above configuration, the tunnels t2 and t3 share the same BFDsession. Tunnel t2 is the bfd-designated tunnel, the BFD session runs within it and the other tunnel t3 shares its BFD session. If the BFD session goes down, the system will bring down both the designated tunnel t2 and the associated tunnel t3.

The state machine in Figure 277 shows the decision process in case of shared BFD sessions.

Figure 277: Logic for Shared BFD Sessions

BFD for VRRP

This feature assigns a BFD session to provide a heart-beat mechanism for the given VRRP/SRRP instance. It should be noted that there can be only one BFD session assigned to any given VRRP/SRRP instance, but there can be multiple SRRP/VRRP sessions using the same BFD session.

In this section, the topology is shown in Figure 278.

Figure 278: BFD for VRRP

First, create the LAN subnet. Two PE routers are connected by IES or VPRN services (in following examples IES 10 is created in both routers).

```
On PE-1:
```

```
configure service ies 10 customer 1 create
    interface vrrp_ies_PE1 create
    address 192.168.1.1/24
    sap 1/1/3:10 create
    exit
    exit
    no shutdown
```

exit

On PE-2:

```
configure service ies 10 customer 1 create
    interface vrrp_ies_PE2 create
    address 192.168.1.2/24
    sap 1/1/3:10 create
    exit
    exit
    no shutdown
    exit
```

Verify that the IES services are operational (**show service service-using**) and verify that you can ping the remote interface IP address.

Next, configure the VRRP parameters for both PE-1 and PE-2, enable VRRP on the IES interface that connects to the 192.168.1.0/24 subnet.

In this section, the configurations are shown for the VRRP owner mode for master but any other scenario for VRRP can be configured (non owner mode for master).

In the following examples two VRRP instances are created on the 192.168.1.0/24 subnet:

```
VRID = 10 \qquad Master (owner) = PE-1 \\Backup = PE-2 \\VRRP IP = 192.168.1.1 \\VRID = 30 \qquad Master (owner) = PE-2 \\Backup = PE-1 \\VRRP IP = 192.168.1.2 \\Host 1 is configured with default gateway = 192.168.1.1 \\Host 2 is configured with default gateway = 192.168.1.2
```

On PE-1:

```
configure service ies 10 interface vrrp_ies_PE1
vrrp 10 owner
backup 192.168.1.1
exit
vrrp 30
backup 192.168.1.2
ping-reply
telnet-reply
ssh-reply
exit
```

On PE-2:

```
configure service ies 10 interface vrrp_ies_PE2

vrrp 10

backup 192.168.1.1

ping-reply

telnet-reply

ssh-reply

exit

vrrp 30 owner

backup 192.168.1.2

exit
```

To bind the VRRP instances with a BFD session, add the following command under any VRRP instance: **bfd-enable** *service-id* **interface** *interface-name* **dst-ip** *ip-address*.

Note that the IES service-id must be declared where the interface is configured.

On PE-1:

```
configure service ies 10 interface vrrp_ies_PE1
            vrrp 10 owner
            bfd-enable 10 interface vrrp_ies_PE1 dst-ip 192.168.1.2
            exit
            vrrp 30
            bfd-enable 10 interface vrrp_ies_PE1 dst-ip 192.168.1.2
            exit
```

On PE-2:

```
configure service ies 10 interface vrrp_ies_PE2
            vrrp 10 owner
            bfd-enable 10 interface vrrp_ies_PE2 dst-ip 192.168.1.1
            exit
            vrrp 30
            bfd-enable 10 interface vrrp_ies_PE2 dst-ip 192.168.1.1
            exit
```

The parameters used for the BFD are set by the BFD command under the IP interface.

Note that unlike the previous scenarios, the user can enter the commands above, enabling the BFD session, even if the specified interface (vrrp_ies_PE1) has not been configured with BFD parameters.

If it has not been configured yet, the BFD session will be initiated only after the following configuration.

On PE-1:

```
configure service ies 10 interface vrrp_ies_PE1
bfd 1000 receive 1000 multiplier 3
```

On PE-2:

configure service ies 10 interface vrrp_ies_PE2 bfd 1000 receive 1000 multiplier 3

Finally, verify that the BFD session is up (for instance on PE-1):

```
A:PE1>show router bfd session src 192.168.1.1 detail
```

BFD Session					
Remote Address Admin State Protocols Rx Interval Multiplier Recd Msgs Up Time Down Time	:::::::::::::::::::::::::::::::::::::::	192.168.1.2 Up vrrp 100 3 7404 0d 00:04:26 None	Oper State Tx Interval Echo Interval Sent Msgs Up Transitions Down Transitions	:	Up (3) 100 0 7412 2 1
Forwarding Info	ori :	nation 4006	Version Mismatch Local State	:	U Up (3)
Local Diag Local Min Tx Last Sent	: : :	1 (Detect time expired) 100 12/14/2010 17:44:34	Local Mode Local Mult Local Min Rx	: : :	Async 3 100
Type Remote Discr Remote Diag Remote Min Tx Last Recv	: : : :	iom 4003 1 (Detect time expired) 100 12/14/2010 17:44:34	Remote State Remote Mode Remote Mult Remote Min Rx	::	Up (3) Async 3 100

This session is shared by all the VRRP instances configured between the specified interfaces.

When BFD is configured in a VRRP instance, the following command gives details of BFD related to every instance:

_____ : Yes VRRP State : Master Owner Primary IP of Master: 192.168.1.1 (Self) Primary IP : 192.168.1.1 Standby-Forwarding: Disabled VRRP Backup Addr : 192.168.1.1 . Un Oper State : UpOper State: UpUp Time: 12/14/2010 16:47:47 Virt MAC Addr: 00:00:5e:00:01:0aAuth Type: NoneConfig Mesg Intvl: 1In-Use Mesg Intvl: 1Base Priority: 255In-Use Priority: 255Init Delay: 0Init Timer Expires:0.000 secCreation State: Active BFD Interface _____ service ID : 10 Interface Name : vrrp_ies_PE1 Src IP : 192.168.1.1 Dst IP : 102.100 Session Oper State : connected _____ Master Information _____ Primary IP of Master: 192.168.1.1 (Self) Addr List Mismatch : No Master Priority : 255 Master Since : 12/14/2010 16:47:47 _____ Masters Seen (Last 32) _____ Primary IP of Master Last Seen Addr List Mismatch Msq Count _____ 192.168.1.1 12/14/2010 16:47:47 No 0 192.168.1.2 12/14/2010 17:39:57 No 5 Statistics _____ Become Master : 7 Adv Sent : 34 Master Changes : 7 : 347577 Adv Received Adv Sent : 5 Pri Zero Pkts Sent : 6 Pri Zero Pkts Rcvd: 0 Preempt Events : 0 Preempted Events : 0 Mesg Intvl Discards : O Mesg Intvl Errors : 0 Addr List Discards : 0 Addr List Errors : 0 Auth Type Mismatch : 0 Auth Failures : 0 Invalid Pkt Type : 0 Invalid Auth Type : 0 IP TTL Errors : 0 Total Discards : 0 Pkt Length Errors : 0 _____ VRTD 30 _____ Owner : No VRRP State : Backup Primary IP of Master: 192.168.1.2 (Other) Primary IP: 192.100.1.2 (Other)Primary IP: 192.168.1.1Standby-Forwarding: DisabledVRRP Backup Addr: 192.168.1.2Admin State: UpOper State: UpUp Time: 12/14/2010 17:39:49 Virt MAC Addr: 00:00:5e:00:01:1eAuth Type: None Config Mesg Intvl : 1 In-Use Mesg Intvl : 1 Master Inherit Intvl: No

```
Base Priority : 100
Policy ID : n/a
Ping Reply : Yes
                          In-Use Priority : 100
                          Preempt Mode : Yes
Telnet Reply : Yes
Init Delay
           : Yes
                          Traceroute Reply : No
Creation State : Ac+3
                          Init Timer Expires: 0.000 sec
            : Active
                    _____
BFD Interface
_____
Service ID : 10
Interface Name : vrrp_ies_PE1
Src IP
Dst IP
           : 192.168.1.1
            : 192.168.1.2
Session Oper State : connected
 _____
Master Information
 _____
Primary IP of Master: 192.168.1.2 (Other)
Addr List Mismatch : No
                           Master Priority : 255
Master Since : 12/14/2010 17:39:57
Master Down Interval: 3.609 sec (Expires in 3.000 sec)
  _____
Masters Seen (Last 32)
_____
Primary IP of Master Last Seen
                            Addr List Mismatch Msg Count
 _____
              -----
192.168.1.112/14/2010 17:39:57No192.168.1.212/14/2010 17:54:03No
                                                 0
                                             342583
_____
Statistics
_____
Become Master : 6
Adv Sent : 4441
                   Master Changes : 11
                          Adv Received : 342583
                          Pri Zero Pkts Rcvd: O
Pri Zero Pkts Sent : 1
                          Preempted Events : 5
Mesg Intvl Errors : 0
Preempt Events : 0
Mesg Intvl Discards : 0
                          Addr List Errors : 338989
Addr List Discards : 0
                          Auth Failures
Auth Type Mismatch : 0
                                       : 0
                          Invalid Pkt Type : 0
Invalid Auth Type : 0
IP TTL Errors : 0
Total Discards : 0
                          Pkt Length Errors : 0
            : 0
_____
```

Finally, for troubleshooting: it could be that the BFD session between the two IP interfaces is up but (in one or both peers) the command **show router vrrp instance interface** *interface-name* gives the following output regarding BFD for one or more VRID's.

```
BFD Interface

Service ID : None

Interface Name : vrrp_ies_PE2

Src IP : 0.0.00

Dst IP : 192.168.1.1

Session Oper State : notConfigured
```

To fix this, check that BFD has been correctly configured for the VRRP istances.

For instance, in the following example, the cause of the misconfiguration is that the IES service-id is not declared in the bfd-enable command:

configure service ies 10 interface vrrp_ies_PE2
 vrrp 10 owner
 bfd-enable interface vrrp_ies_PE2 dst-ip 192.168.1.1
 exit

Conclusion

BFD is a light-weight protocol which provides rapid path failure detection between two systems and it is useful in situations where the physical network has numerous intervening hops which are not part of the Layer 3 network.

BFD is linked to a protocol state. For BFD session to be established, the prerequisite condition is that the protocol to which the BFD is linked must be operationally active. Once the BFD session is established, the state of the protocol to which BFD is tied to is then determined based on the BFD session's state. This means that if the BFD session goes down, the corresponding protocol will be brought down.

In this section every scenario where BFD could be implemented has been described, including the configuration, show output and troubleshooting hints.