In This Chapter

This section provides information about L2TP for subscriber access. Topics in this section include:

- Applicability on page 2450
- Overview on page 2451
- Configuration on page 2462
- Conclusion on page 2509
Applicability

This example is applicable to the 7750 SR-c4/c12, SR-7/12 with IOM3/IMMs (LNS facing port) and describes L2TP Access Concentrator (LAC) support for the L2TP Aggregation Architecture (LAA) model and was tested on SROS-11.0.R4. PPP hosts are supported in a Routed CO model (with IES or VPRN services) using ATM, Ethernet or Ethernet over Pseudo wire SAPs. A description of the L2TP Tunnel Switch (LTS) and L2TP Network Server (LNS) functions are out of the scope of this example.
Overview

PPP Access Architectures (PTA versus LAA)

The Broadband Forum proposes two architectures for Point-to-Point Protocol (PPP) access.

- The PPP Termination Aggregation Architecture (PTA)
- The L2TP Aggregation Architecture (LAA)

The PTA architecture (local-access model) uses the Broadband Network Gateway (BNG) to terminate user PPP sessions (see scenario PPPoE-5 in Figure 375).

The LAA architecture (which is a tunneled-access model) uses a LAC to transport PPP sessions from the LAC to an LNS which performs tunnel termination (see scenario PPPoE-1 and PPPoE-2 in Figure 375).

Optionally an LTS can be used in the transport network to perform the grooming of traffic between tunnels (see scenarios PPPoE-3 and PPPoE-4 in Figure 375).

The LNS is the logical termination point of the PPP sessions originated by the remote clients and tunneled by the LAC/LTS.

Figure 375: Network Topology
Supported L2TP Encapsulations

The router instance where the L2TP tunnel starts and where ESM is handled can be one and the same but does not need to be the same. The LNS peer address can be reachable via IP, BGP/IGP shortcuts, over a spoke SDP (GRE/MPLS), RFC 4364 VPRNs (*BGP/MPLS IP Virtual Private Networks*), but cannot be an address belonging to a directly connected interface. See Figure 376.

![Figure 376: Supported L2TP Encapsulations](image-url)
Recap of the L2TPv2 Protocol

L2TPv2 is a client-server protocol that encapsulates Layer 2 packets such as PPP, for transmission across a network and uses two different UDP message types:

- Control messages—L2TP passes control and data messages over separate control and data channels. The in-band control channel passes sequenced control connection management, call management, error reporting and session control messages. Optionally a shared-secret challenge authentication method can be used between the tunnel endpoints. The following messages are used for L2TP tunnel session setup, teardown and keepalive.
 - Tunnel setup (Control Connection Management)
 - Start-Control-Connection-Request (SCCRQ)
 - Start-Control-Connection-Reply (SCCRP)
 - Start-Control-Connection-Connected (SCCCN)
 - Stop-Control-Connection-Notification (StopCCN)
 - Tunnel keepalive
 - Hello (HELLO)
 - Session setup (Call management) over an existing tunnel
 - Incoming-Call-Request (ICRQ)
 - Incoming-Call-Reply (ICRP)
 - Incoming-Call-Connected (ICCN)
 - Call-Disconnect-Notify (CDN)

The Zero-Length Body (ZLB) message is a control packet with only an L2TP header. ZLB messages are used for explicitly acknowledging packets on the reliable control channel.

To maximize extensibility while still permitting interoperability, a uniform method for encoding message types and bodies is used throughout L2TP via Attribute Value Pairs (AVP).

- Data messages — Data messages are used to encapsulate PPP frames that are sent into the L2TP tunnel.

L2TPv2 sessions run over an L2TP tunnel and are referenced by an L2TP session-id. An L2TP tunnel can carry none, one or multiple L2TP sessions. An L2TP session corresponds to a PPPoE session. L2TPv3 for LAC-LNS dynamic tunnel setup is not supported.
Recap of the L2TPv2 Protocol

L2TP Header and AVP Layout

The L2TPv2 header consists of following fields (RFC 2611, *URN Namespace Definition Mechanisms*):

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>Type of L2TP message (1 bit): 0—data message 1—control message</td>
</tr>
<tr>
<td>L</td>
<td>Indicates if the optional Length field is present in the message (1 bit): 0—the field is left out of the message entirely 1—the field is included (must be included in control messages)</td>
</tr>
<tr>
<td>-</td>
<td>Reserved for future use, must be set to zero.</td>
</tr>
<tr>
<td>S</td>
<td>Indicates if the Ns and Nr fields are present (1 bit): 0—the fields are left out of the message entirely 1—the fields are included (must be included in control messages)</td>
</tr>
<tr>
<td>O</td>
<td>Indicates if the Offset field is present (1 bit): 0—the field is left out of the message entirely (must be left out of control messages) 1—the field is included</td>
</tr>
<tr>
<td>P</td>
<td>Used with data messages only. Indicates priority of the data message (1 bit): 0—no (this value is used for all control messages) 1—yes</td>
</tr>
<tr>
<td>Version</td>
<td>The version of the message (4 bits): 2—this is the latest version of the L2TP data message header 1—indicates an L2F packet as described in RFC 2341 Packets with an unknown version number are discarded.</td>
</tr>
<tr>
<td>Length</td>
<td>The total length (in bytes) of the L2TP message (16 bits).</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>Tunnel-ID</td>
<td>Identifies the L2TP tunnel (that is, the control connection). This number has local significance — each end gives the same tunnel different tunnel IDs. The ID refers to the receiver, not the sender, and is assigned during tunnel creation (16 bits).</td>
</tr>
<tr>
<td>Session-ID</td>
<td>Identifies the PPP session within a tunnel. This number has local significance — each end gives the same session different session IDs. The ID refers to the receiver, not the sender, and is assigned during session creation (16 bits).</td>
</tr>
<tr>
<td>Ns</td>
<td>The sequence number of the message. This is mandatory for control messages (to enable re-transmission of lost messages) but optional for data messages (to re-order data messages that were mis-sequenced during forwarding). The number, which starts at 0 and increments by 1, is assigned by an L2TP peer for each session in a tunnel (16 bits).</td>
</tr>
<tr>
<td>Nr</td>
<td>The sequence number of the next control message expected to be received. This is equal to the sequence number of last received control message plus 1. Used by the receiving peer to ensure that control messages are sent in order without duplication. In data messages, the field (if present as indicated by the S bit) is ignored (16 bits).</td>
</tr>
<tr>
<td>Offset Size</td>
<td>The location of the L2TP payload, expressed as the number of octets from the start of the message header (16 bits).</td>
</tr>
<tr>
<td>Offset pad</td>
<td>User-defined bytes used to pad the message header so that the payload starts at the location indicated by the Offset Size field (16 bits).</td>
</tr>
</tbody>
</table>
The AVP header consists of following fields (RFC2611):

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Mandatory bit — If the M bit is set on an unrecognized AVP within a message associated with a particular session, the session associated with this message MUST be terminated (1 bit).</td>
</tr>
<tr>
<td>H</td>
<td>Hidden bit — Identifies the hiding of data in the Attribute-Value field of an AVP. This capability can be used to avoid the passing of sensitive data, such as user passwords, as clear text in an AVP. The H-bit MUST only be set if a shared secret exists between the LAC and LNS. The shared secret is the same secret that is used for tunnel authentication. If the H-bit is set in any AVP(s) in a given control message, a Random Vector AVP must also be present in the message and MUST precede the first AVP having an H bit of 1 (1 bit).</td>
</tr>
<tr>
<td>-</td>
<td>Reserved for future use, must be set to zero (4 bits).</td>
</tr>
<tr>
<td>Length</td>
<td>Indicates the total number of bytes (including the overall length and bitmask fields) contained in this AVP (10 bits).</td>
</tr>
<tr>
<td>Vendor-id</td>
<td>Any vendor wishing to implement their own L2TP extensions can use their own Vendor ID along with private Attribute values. Vendor-ID=0 means that the standard AVP’s are used (2 bytes).</td>
</tr>
<tr>
<td>Attribute Type</td>
<td>A value with a unique interpretation across all AVPs defined under a given Vendor (2 bytes).</td>
</tr>
<tr>
<td>Attribute Value</td>
<td>This is the actual value as indicated by the Vendor ID and Attribute Type (2 bytes).</td>
</tr>
</tbody>
</table>
RADIUS-Triggered Tunnel/Session Setup without LNS Renegotiation

Figure 377 depicts the complete PPP session setup, using RADIUS authentication on both LAC and LNS. After the discovery phase (PADI/PADO/PADR/PADS) and LCP negotiation phase (LCP config_request/Ack), the LAC initiates the L2TP tunnel setup based on Radius authentication information (Radius Request/Accept) and includes the negotiated PPP user-LAC information (called LCP proxy information). The LNS replies directly with a successful CHAP authentication if it agrees with the received proxy information. IP negotiation (IPCP config_request/Ack) is further handled between the user and the LNS and therefore the LAC has no IP knowledge of this PPP session.

Figure 377: RADIUS Triggered Tunnel/Session Setup without LNS Renegotiation
RADIUS-Triggered Tunnel/Session Setup with LNS Renegotiation

Figure 378 shows the scenario were the LNS does not agree with the received LCP proxy information and (re)starts the LCP phase (LCP config_request/Ack) directly with the PPP user. The rest of this scenario is the same as shown in Figure 377.
Running Multiple PPP Sessions Over a Single L2TP Tunnel

Figure 379 shows multiple PPP sessions tunneled over a single L2TP Tunnel. The LAC encapsulates each PPP session with a different L2TP session-id (SID) but with the same L2TP Tunnel-id (TID).

Figure 379: Running Multiple PPP Sessions Over a Single L2TP Tunnel
PPP User-Initiated Release/Terminate

Figure 380 shows the user initiated terminate_request tunneled by the LAC followed by the user initiated PADT terminated on the LAC. The LAC informs the LNS about the termination of the session via the L2TP CDN message. The L2TP tunnel can be optionally (idle-timeout) terminated via the L2TP StopCCN message.

![Diagram of PPP User Initiated Release/Terminate]

Figure 380: PPP User Initiated Release/Terminate
L2TP Tunnel/Session State Diagram

Figure 381 gives an overview of the main L2TP tunnel and session states. An L2TP tunnel in the establishedIdle state is a tunnel without sessions. A tools command (see Advanced Topics on page 2490) can put an L2TP tunnel in a draining state (this prevents adding new sessions on tunnel but the leaves the current sessions intact) or in a drained state (moved from draining to drained when all sessions terminated). The draining and drained state are not shown in the state diagram.

The L2TP tunnel setup occurs first with the triggers being: session activation, auto-establish and a tools start command (see the advanced section). An L2TP session setup trigger is always session based.
Scenario 1: RADIUS-Derived L2TP Parameters

- LAC in the Base Routing Context (base) with Single Endpoint/Single Tunnel on page 2465
- LAC in the Base Routing Context with Multiple Endpoints on page 2467
- LAC in a VRF on page 2469

In this example the LAC receives an incoming connection and contacts the LAC RADIUS server. The RADIUS server retrieves the attributes for the user’s domain (for example @wholesale.com) and passes the tunnel attributes to the LAC. Based on these RADIUS provided tunnel attributes, the LAC selects or initiates a new tunnel to the LTS or directly to the LNS. Once the tunnel is established, the LNS authenticates the end user using its own RADIUS server. Configuring the LNS and the LTS are out of the scope of this example.

In a RADIUS driven L2TP setup either all or some of the required L2TP attributes are returned via RADIUS. If the RADIUS server returns only the L2TP [67] Tunnel-Server-Endpoint attributes then the L2TP tunnel/session is established using the ‘node parameter values’ for the other required L2TP parameters. The ‘l2tp node parameters’ are defined under the configure router/service l2tp hierarchy. If the RADIUS server does not return all of the L2TP attributes and the node values are not configured, then the system falls back to default settings for these L2TP parameters.

The standard and vendor specific [26-6572] L2TP RADIUS attributes are listed in the tables below, together with the corresponding l2tp node parameters and defaults.

<table>
<thead>
<tr>
<th>Attribute ID</th>
<th>Attribute Name</th>
<th>Mandatory</th>
<th>CLI Node Parameter</th>
<th>Corresponding Defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>Tunnel-Type</td>
<td>Y</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>65</td>
<td>Tunnel-Medium-Type</td>
<td>Y</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>66</td>
<td>Tunnel-Client-Endpoint[:0-31]</td>
<td>N</td>
<td>local-address</td>
<td>no local-address</td>
</tr>
<tr>
<td>67</td>
<td>Tunnel-Server-Endpoint</td>
<td>N</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>69</td>
<td>Tunnel-Password</td>
<td>N</td>
<td>password</td>
<td>no password</td>
</tr>
<tr>
<td>82</td>
<td>Tunnel-Assignment-ID:0</td>
<td>N</td>
<td>-</td>
<td>default_radius_group</td>
</tr>
<tr>
<td>Attribute ID</td>
<td>Attribute Name</td>
<td>Mandatory</td>
<td>CLI Node Parameter</td>
<td>Corresponding Defaults</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-----------</td>
<td>--------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>82</td>
<td>Tunnel-Assignment-ID:[1..31]</td>
<td>N</td>
<td>-</td>
<td>Unnamed</td>
</tr>
<tr>
<td>83</td>
<td>Tunnel-Preference</td>
<td>N</td>
<td>preference</td>
<td>no preference</td>
</tr>
<tr>
<td>90</td>
<td>Tunnel-Client-Auth-ID</td>
<td>N</td>
<td>local-name</td>
<td>no local-name</td>
</tr>
<tr>
<td>91</td>
<td>Tunnel-Server-Auth-ID</td>
<td>N</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Mandatory</th>
<th>CLI Node Parameter</th>
<th>Corresponding Defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>26-6527</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-46 Alc-Tunnel-Group</td>
<td>N</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-47 Alc-Tunnel-Algorithm</td>
<td>N</td>
<td>session-assign-method</td>
<td>no session-assign-method</td>
</tr>
<tr>
<td>-48 Alc-Tunnel-Max-Sessions:0</td>
<td>N</td>
<td>-</td>
<td>group-session-limit</td>
</tr>
<tr>
<td>-48 Alc-Tunnel-Max-Sessions:[1..31]</td>
<td>N</td>
<td>-</td>
<td>tunnel-session-limit</td>
</tr>
<tr>
<td>-49 Alc-Tunnel-Idle-Timeout</td>
<td>N</td>
<td>idle-timeout</td>
<td>no idle-timeout</td>
</tr>
<tr>
<td>-50 Alc-Tunnel-Hello-Interval</td>
<td>N</td>
<td>hello-interval</td>
<td>no hello-interval</td>
</tr>
<tr>
<td>-51 Alc-Tunnel-Destruct-Timeout</td>
<td>N</td>
<td>destruct-timeout</td>
<td>no destruct-timeout</td>
</tr>
<tr>
<td>-52 Alc-Tunnel-Max-Retries-Estab</td>
<td>N</td>
<td>max-retries-estab</td>
<td>no max-retries-estab</td>
</tr>
<tr>
<td>-54 Alc-Tunnel-AVP-Hiding</td>
<td>N</td>
<td>avp-hiding</td>
<td>no avp-hiding</td>
</tr>
<tr>
<td>-97 Alc-Tunnel-Challenge</td>
<td>N</td>
<td>challenge</td>
<td>no challenge</td>
</tr>
<tr>
<td>-104 Alc-Tunnel-Serv-Id</td>
<td>N</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-120 Alc-Tunnel-Rx-Window-Size</td>
<td>N</td>
<td>receive-window-size</td>
<td>no receive-window-size</td>
</tr>
</tbody>
</table>
Scenario 1: RADIUS-Derived L2TP Parameters

<table>
<thead>
<tr>
<th>26-6527</th>
<th>Attribute Name</th>
<th>Mandatory</th>
<th>CLI Node Parameter</th>
<th>Corresponding Defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>-144</td>
<td>Alc-Tunnel-Acct-Policy</td>
<td>N</td>
<td>radius-accounting-policy</td>
<td>no radius-accounting-policy</td>
</tr>
</tbody>
</table>
LAC in the Base Routing Context (base) with Single Endpoint/Single Tunnel

Using the mandatory L2TP RADIUS attributes (see the RADIUS user file below) the LAC establishes an L2TP tunnel. The tunnel endpoint IP addresses used are the Base router system interface IPv4 address (LAC tunnel endpoint) and the address indicated by the Tunnel-Server-Endpoint RADIUS attribute [67], which serves as the peer tunnel LNS endpoint address.

The PPPoE user terminates on IES service 1, sap 1/1/2:100.1, and is authenticated via RADIUS authentication-policy authentication-1 which provides wholesale/retail (L2TP) information.

```
configure service ies 1
  subscriber-interface "sub-lt2p"
  unnumbered "system"
  group-interface "grp-l2tp"
    authentication-policy "authentication-1"  #Radius authentication
    sap 1/1/2:100.1
    sub-sla-mgmt
    sub-ident-policy "sub-ident-1"
    no shutdown
  exit
  exit
  pppoe
  no shutdown
  exit
  exit
  service-name "L2TP"
  no shutdown
```
The excerpt from the FreeRADIUS users file below shows the attributes to be returned.

```
user1@wholesale.com  Cleartext-Password := "ALU" ,NAS-Identifier == "pe1"
    Alc-Subsc-ID-Str = "%{User-name}",
    Alc-Subsc-Prof-Str = "sub-func1",
    Alc-SLA-Prof-Str = "sla-func1",
# Tunnel 1 related (tag 1)                               #Tunnel 1
    Tunnel-Type:1 += L2TP,
    Tunnel-Medium-Type:1 += IP,
    Tunnel-Server-Endpoint:1 += 192.168.2.6,       #LNS peer address
```

L2TP is enabled (no shutdown) in the related service instance.

- The L2TP tunnel is setup in the base instance and not in a VRF because the attribute Alc-Tunnel-Serv-Id is not returned from RADIUS.
- Missing L2TP parameters are taken from defaults from router l2tp.

```
configure router l2tp
    calling-number-format "%s %s"  # L2TP AVP 22 format
        # Default format 'system-name sap-id'
        <snip>
    no local-name                  # default name equals system-name
    no max-retries-estab          # default value equals 5
        <snip>
    no shutdown                    # enable L2TP
```

This scenario shows the PPPoE session termination (base IES service 1) and the L2TP tunnel setup in the same base router instance.
The excerpt from the FreeRADIUS users file below shows that user1@wholesale.com has 4 possible endpoints (LNS), each with its own tunnel preference. The LAC selects one L2TP endpoint out of these 4 tunnel specifications according the configured L2TP selection process. This example uses weighted load balancing between LNS-T1 and LNS-T2 (tunnels LNS1-T1 and LNS2-T2 have best (lowest) and equal preference).

Note: The L2TP tunnel selection process is out of the scope of this example.

user1@wholesale.com Cleartext-Password := "ALU", NAS-Identifier == "pe1"
Alc-Subsc-ID-Str = "%{User-name}",
Alc-Subsc-Prof-Str = "sub-func1",
Alc-SLA-Prof-Str = "sla-func1",
group related (tag 0) parameters applicable for all tunnels
Tunnel-Client-Endpoint:0 = 192.168.2.2, # LAC L2TP source IP
Alc-Tunnel-Algorithm:0 = weighted-access, # tunnel selection
Tunnel-Assignment-Id:0 = "l2tp-functional-radius", # L2TP group name
Tunnel-Client-Auth-Id:0 = "lac-pe1", # LAC name
Alc-Tunnel-Max-Retries-Estab:0 = 2,
Tunnel 1 related (tag 1) # Tunnel 1
Tunnel-Type:1 += L2TP, # Tunnel Type
Tunnel-Medium-Type:1 += IP, # Tunnel Medium Type
Tunnel-Server-Endpoint:1 += 192.168.2.6, # LNS peer address
Tunnel-Assignment-Id:1 += "lns1-T1", # tunnel name
Tunnel-Preference:1 += 100, # preference 100
Tunnel 2 related (tag 2) # Tunnel 2
Tunnel-Type:2 += L2TP, # Tunnel Type
Tunnel-Medium-Type:2 += IP, # Tunnel Medium Type
Scenario 1: RADIUS-Derived L2TP Parameters

Tunnel-Server-Endpoint:2 += 192.168.2.7,
Tunnel-Assignment-Id:2 += "LNS2-T2",
Tunnel-Preference:2 += 100,

Tunnel 3 related (tag 3)
Tunnel-Type:3 += L2TP,
Tunnel-Medium-Type:3 += IP,
Tunnel-Server-Endpoint:3 += 192.168.2.8,
Tunnel-Assignment-Id:3 += "LNS3-T3",
Tunnel-Preference:3 += 120,

Tunnel 4 related (tag 4)
Tunnel-Type:4 += L2TP,
Tunnel-Medium-Type:4 += IP,
Tunnel-Server-Endpoint:4 += 192.168.2.9,
Tunnel-Assignment-Id:4 += "LNS4-T4",
Tunnel-Preference:4 += 140,

This scenario also shows the PPPoE session termination (base IES service 1) and the L2TP tunnel setup in the same base router instance.
LAC in a VRF

Figure 384 shows the PPPoE session termination (base IES service 1) and the L2TP tunnel setup in a different router instance (VPRN 65536).

Using the L2TP RADIUS attributes indicated below, the LAC initiates an L2TP tunnel in VPRN 65536. The PPPoE session is still terminated in base IES service 1, which proves that both router instances can be different. (See use-case A for configuration details IES service 1).

```
user1@wholesale.com  Cleartext-Password := "ALU" ,NAS-Identifier == "pe1"
  ALC-Subsc-ID-Str = "%{User-name}",
  ALC-Subsc-Prof-Str = "sub-func1",
  ALC-SLA-Prof-Str = "sla-func1",
  ALC-Tunnel-Serv-Id = 65536,                    #L2TP starts in VRF 65536
  Tunnel-Assignment-Id:0 = "l2tp-functional-radius",
  Tunnel-Client-Auth-Id:0 = "lac-pe1",
  Tunnel-Type:1 += L2TP,
  Tunnel-Medium-Type:1 += IP,
  Tunnel-Server-Endpoint:1 += 192.168.2.6,
  Tunnel-Assignment-Id:1 += "LNS1-T1",
```

If RADIUS does not return the L2TP source IP address (Tunnel-Client-Endpoint) then the IP address from the VPRN 65536 interface named ‘system’ is taken as the L2TP source address. The tunnel-setup fails if this system interface is not created.

```
configure service vprn 65536
<snip>
interface "system"                     #source IP for tunnel
  address 192.168.2.2/32
```

Figure 384: LAC in a VRF
Scenario 2: Node-Derived L2TP Parameters

- RADIUS Returns L2TP Group on page 2470
- RADIUS-Less Setup (LUDB Returns L2TP Group) on page 2472

In this example, the LAC receives the incoming connection and an ‘L2TP tunnel-group-name’ is assigned during LUDB or RADIUS authentication. This tunnel-group-name refers to the CLI preconfigured tunnel-group name context (configure router <router-name> l2tp group <tunnel-group-name>), which provides the context for all relevant tunnel attributes.

Based on these attributes, the LAC selects and initiates a tunnel to the LTS or directly to the LNS as in Scenario 2: Node-Derived L2TP Parameters on page 2470.

RADIUS Returns L2TP Group

In this example, the L2TP tunnel-group-name is assigned during RADIUS authentication.

Figure 385: RADIUS Returns L2TP Group
user1@wholesale.com Cleartext-Password := "ALU", NAS-Identifier == "pe1"
 Alc-Subsc-ID-Str = "@{User-name}",
 Alc-Subsc-Prof-Str = "sub-func1",
 Alc-SLA-Prof-Str = "sla-func1",
 Alc-Tunnel-Serv-Id = 65536, #LAC in VRF
 Alc-Tunnel-Group = wholesale.com, #points to L2TP node group name

The L2TP tunnel is setup in VPRN 65536 (Alc-Tunnel-Serv-Id) and all L2TP tunnel information
is taken from the l2tp group wholesale.com hierarchy (Alc-Tunnel-Group) as defined on the node.

 configure service vprn 65536
 <snip>
 interface "system" #interface with name system is
 address 192.168.2.2/32 #used as LAC L2TP source ip-address
 loopback
 exit
 l2tp
 group "wholesale.com" #corresponds with Alc-Tunnel-Group
 tunnel "wholesale.com"
 local-address 192.168.2.2 #optional since system itf exists
 local-name "lac-pe1"
 peer 192.168.2.6
 no auto-establish #use session-trigger iso auto-establish
 no shutdown
 exit
 no shutdown
 exit
 no shutdown
 exit

An L2TP tunnel is set up by either a PPP session-trigger, a tools command or by the l2tp group
tunnel auto-establish parameter configuration. See the advanced section below for the non-
session-triggered tunnel setup.
Scenario 2: Node-Derived L2TP Parameters

RADIUS-Less Setup (LUDB Returns L2TP Group)

In this example, the L2TP tunnel-group-name is assigned during LUDB authentication.

The PPPoE user enters on an IES service 1, sap 1/1/2:100.1, and is authenticated via the LUDB which provides L2TP wholesale/retail and ESM information. No RADIUS authentication is required in this example, as the PPPoE context refers to a local-user database **l2tp** to provide the subscriber authentication and the tunnel set-up parameters.

```
configure service ies 1
  subscriber-interface "sub-lt2p"
  unnumbered "system"
  group-interface "grp-l2tp"
    sap 1/1/2:100.1
    sub-sla-mgmt
    sub-ident-policy "sub-ident-1"
    no shutdown
exit
exit
pppoe
  no shutdown
user-db "l2tp"
exit
exit
service-name "L2TP"
no shutdown
```

The referenced local user database **l2tp** configuration provides all of the required L2TP and ESM information.

```
configure subscriber-mgmt local-user-db "l2tp"
PPP
  match-list username
  host "wholesale.com" create
  host-identification
    username "wholesale.com" domain-only
  exit
  password ignore
  identification-strings 254 create
    subscriber-id "user1@wholesale.com"
    sla-profile-string "sla-func1"
    sub-profile-string "sub-func1"
  exit
l2tp
  group "wholesale.com" service-id 65536 "points to L2TP group"
  #name and LAC in VRF
exit
no shutdown
exit
exit
```
Operation and Troubleshooting

This chapter explains how the use cases A to E described in the configuration section are verified using show, debug and tools commands.

The standard router debugging tools can be used to monitor and troubleshoot the L2TP tunnel and session setup.

Overview of Debug and Show Commands

useful show commands
show service id <service-id> ppp session [detail]
show router l2tp tunnel [detail]
show router l2tp session [detail]
show router l2tp peer [ip-address]

debug to show PPPoE packet interaction
debug service id <service-id> ppp packet mode egr-ingr-and-dropped
debug service id <service-id> ppp packet detail-level medium

debug to show RADIUS authentication interaction
debug router radius packet-type authentication

#debug to show LUDP authentication interaction
debug subscriber-mgmt local-user-db <local-user-db-name> detail all

debug to show LAC Tunnel selection process and L2TP state-machine
debug router l2tp event lac-session-setup
debug router l2tp event finite-state-machine

debug to show L2TP Tunnel and session setup
debug router l2tp packet direction both
debug router l2tp packet detail-level high
Understanding the Debug l2tp Command Output

The L2TP ICRQ message extract shown below (debug router l2tp packet) is used to explain how the displayed debug output should be interpreted. See Recap of the L2TPv2 Protocol on page 2453 - L2TP Header and AVP Layout on page 2454 for more details.

```
<date> <time> CEST MINOR: DEBUG #2001 Base L2TP(v2, ctrl, egress)
"L2TP(v2, ctrl, egress): UDP 192.0.2.2:1701 -> 192.168.2.6:1701
  tunnel 1240 session 0, ns 2 nr 1, flags:, reserved=0
  AVP MessageType(0,0), flags: mandatory, reserved=0
  IncomingCallRequest(10)

  AVP CallingNumber(0,22), flags: mandatory, reserved=0
  "pe1 1/1/2:100.1"
  AVP AgentCircuitId(3561,1), flags:, reserved=0
  "circuit0"

<snip>
```

- L2TP(v2, ctrl, egress): UDP 192.0.2.2:1701 -> 192.168.2.6:1701
 - version: v2
 - type field (T-bit): control message (ctrl)
 - 192.0.2.2:1701 -> 192.168.2.6:1701
 - 192.0.2.2:1701 - source tunnel-end-point: source udp port
 - 192.168.2.6:1701 - destination tunnel-end-point: destination udp port
- tunnel 1240 session 0, ns 2 nr 1, flags:, reserved=0
 - tunnel-id:1240
 - session-id:0
 - ns:2
 - nr:1
 - flags: 0 (refers to T/L/S/O/P bits L2TP header)
 - reserved field:0
- AVP CallingNumber(0,22), flags: mandatory, reserved=0
 - AVP Message(0,22): "pe1 1/1/2:100.1"
 - Vendor-id: 0 - Standard Attribute
 - Attribute Type: 22 – Calling Number AVP
 - Attribute Value: "pe1 1/1/2:100.1"
Scenario 1: RADIUS-Derived L2TP Parameters

- LAC in Base Routing Context (base) with Single Endpoint/Single Tunnel on page 2475

LAC in Base Routing Context (base) with Single Endpoint/Single Tunnel

The ‘debug service id <service-id> ppp packet mode egr-ingr-and-dropped’ command shows PPPoE packet interaction. Below is a snapshot from the PADI packet showing the service, SAP and received PPPoE Tags. The received PPPoE DSL forum tags are by default copied during the LAC L2TP tunnel setup into the Incoming Call Request (ICRQ) DSL Forum AVP’s (RFC 5515).

<date> <time> CEST MINOR: DEBUG #2001 Base PPPoE
"PPPoE: RX Packet
IES 1, SAP 1/1/2:100.1
DMAC: ff:ff:ff:ff:ff:ff
SMAC: 00:00:00:01:01:01
Ether Type: 0x8863 (Discovery)
PPPoE Header:
Version: 1 Type : 1
Code : 0x09 (PADI) Session-Id: 0x0000 (0)
Length : 58
PPPoE Tags:
[0x01] Service-Name: "AGILENT"
[0x03] Host-Uniq: len = 4, value = 00 0f 00 00
[0x05] Vendor-Specific: vendor-id = 0x0de9 (ADSL Forum)
[0x01] Agent-Circuit-Id: "circuit0" #copied in ICRQ DSL forum AVP’s
[0x02] Agent-Remote-Id: "remote0" #copied in ICRQ DSL forum AVP’s
[0x81] Actual-Upstream: 2000 #copied in ICRQ DSL forum AVP’s
[0x82] Actual-Downstream: 4000" #copied in ICRQ DSL forum AVP’s

The debug router radius packet-type authentication command shows the actual authentication parameters returned by RADIUS. This example returns the minimum set of L2TP related RADIUS attributes.

<date> <time> CEST MINOR: DEBUG #2001 Base RADIUS
"RADIUS: Receive Access-Accept(2) id 165 len 103 from 172.16.1.1:1812 vrid 1 pol subscr-mgmt
VSA [26] 21 Alcatel(6527)
SUBSC ID STR [11] 19 user1@wholesale.com
VSA [26] 11 Alcatel(6527)
SUBSC PROF STR [12] 9 sub-func1
VSA [26] 11 Alcatel(6527)
SLA PROF STR [13] 9 sla-func1
TUNNEL TYPE [64] 4 1 L2TP(3) # L2TP
TUNNEL MEDIUM TYPE [65] 4 1 IPv4(1) # IPv4
TUNNEL SERVER ENDPOINT [67] 8 1 192.168.2.6 # L2TP peer LNS address
Understanding the Debug l2tp Command Output

The `debug router l2tp event lac-session-setup` command shows the LAC tunnel selection for this example. An L2TP group-name `default_radius_group` with tunnel-name `unnamed` is created in this case.

```
<date> <time> CEST MINOR: DEBUG #2001 Base PPPoE 29->L2TP
"PPPoE 29->L2TP: UDP 0.0.0.0:1701 -> 192.168.2.6:1701
pref 50 tunnel default_radius_group:unnamed #group-name=default_radius_group
request to open new tunnel 3288" #tunnel-name=unnamed

<date> <time> CEST MINOR: DEBUG #2001 Base PPPoE 29->L2TP
"PPPoE 29->L2TP: UDP 0.0.0.0:1701 -> 192.168.2.6:1701
pref 50 tunnel default_radius_group:unnamed
create session 215482368"
```

The `debug router l2tp packet detail-level` command shows the L2TP tunnel and session setup for this example.

Tunnel setup: The LAC sends a Start-Control-Connection-Request (SCCRQ) containing the assigned tunnel-id (no tunnel authentication in the example). The tunnel is now in a wait-reply state.

```
<date> <time> CEST MINOR: DEBUG #2001 Base L2TP(v2, ctrl, egress)
"L2TP(v2, ctrl, egress): UDP 192.0.2.2:1701 -> 192.168.2.6:1701
tunnel 0 session 0, ns 0 nr 0, flags:, reserved=0
AVP MessageType(0,0), flags: mandatory, reserved=0
StartControlConnectionRequest(1) #SCCRQ
AVP ProtocolVersion(0,2), flags: mandatory, reserved=0
    version=1, revision=0
AVP HostName(0,7), flags: mandatory, reserved=0 #default=system-name
    "pe1"
AVP WindowSize(0,10), flags: mandatory, reserved=0
    64 #default=64
AVP FramingCapabilities(0,3), flags: mandatory, reserved=0
    sync=no, async=no
AVP BearerCapabilities(0,4), flags: mandatory, reserved=0
    digital=yes, analogue=no
AVP FirmwareRevision(0,6), flags:, reserved=0
    2816
AVP VendorName(0,8), flags:, reserved=0
    "Alcatel-Lucent"
AVP AssignedTunnelId(0,9), flags: mandatory, reserved=0 #LAC Tunnel-id 3288"
```

Tunnel setup: The LNS can bring up the tunnel, so the LNS replies with a Start-Control-Connection-Reply (SCCRP) including the assigned tunnel-id.

```
<date> <time> CEST MINOR: DEBUG #2001 Base L2TP(v2, ctrl, ingress)
"L2TP(v2,ctrl,ingress): UDP 192.168.2.6:1701 -> 192.0.2.2:1701 #LNS TO LAC
tunnel 3288 session 0, ns 0 nr 1, flags:, reserved=0
AVP MessageType(0,0), flags: mandatory, reserved=0
StartControlConnectionReply(2) #SCCRP
AVP ProtocolVersion(0,2), flags: mandatory, reserved=0
    version=1, revision=0
AVP HostName(0,7), flags: mandatory, reserved=0
```
Tunnel setup: The LAC responds with a Start-Control-Connection-Connected (SCCCN) message. After an LNS ZLB acknowledgment, the tunnel is in the establishedIdle state.

Session setup: Now the tunnel exists, a three-way exchange for session establishment within the tunnel is performed. The LAC sends an Incoming-Call-Request (ICRQ) with the parameter information for the session. The session is now in the wait-reply state.

Session setup: The LNS sends an Incoming-Call-Reply (ICRP) that contains the assigned session-id. The session is now in the connect state.
Session setup: The LAC sends an Incoming Call Connected (ICCN) and provides the LNS with additional information from the user initiated session. This information includes the LCP information from the negotiation that the LAC and remote user performed. This information is used by the LNS to decide whether to start LCP re-negotiation and/or Authentication re-negotiation with the PPP user or not. After an LNS ZLB acknowledgment the session is in the established state.

Session: LAC sends an Incoming Call Connected (ICCN) and provides the LNS with additional information from the user initiated session.
The PPPoE session operational information for IES 1/base instance is shown below.

```
show service id 1 ppp session
==============================================================================
PPP sessions for service 1
==============================================================================
User-Name    Descri.       Up Time       Type  Termination     IP/L2TP-Id/Interface-Id
------------------------------------------------------------------------------
user1@wholesale.com svc:1 sap:1/1/2:100.1 mac:00:00:00:01:01:01 sid:1
  0d 00:00:14   oE    lac             215482624  #L2TP session-id
------------------------------------------------------------------------------
No. of PPP sessions: 1
```

The tunnel operational information in base instance shows that the tunnel is established.

```
show router l2tp tunnel
==============================================================================
Conn ID    Loc-Tu-ID Rem-Tu-ID State          Blacklist-state  Ses Active
Group     Assignment                                                             Ses Total
------------------------------------------------------------------------------
215482368  3288      1240      established        not-blacklisted   1
  default_radius_group                                              1
    unnamed
------------------------------------------------------------------------------
No. of tunnels: 1
```

Detailed tunnel operational information is obtained using following command.

```
show router l2tp tunnel detail
==============================================================================
L2TP Tunnel Status
==============================================================================
Connection ID: 215482368
State       : established
IP          : 192.0.2.2
UDP         : 1701
Peer IP     : 192.168.2.6
Peer UDP    : 1701
Tx dst-IP   : 192.168.2.6
Tx dst-UDP  : 1701
Rx src-IP   : 192.168.2.6
Rx src-UDP  : 1701
Name        : pe1
Remote Name : pe3
Assignment ID: unnamed
Group Name  : default_radius_group
Acct. Policy : N/A
Error Message: N/A
Remote Conn ID : 81264640
Remote Tunnel ID : 1240
```
The session operational information shows the session is established.

show router l2tp session
detailed operational session information use the following command.
show router l2tp session detail

Connection ID: 215482624
State: established
Tunnel Group: default_radius_group
Assignment ID: unnamed
Error Message: N/A

Control Conn ID: 215482368
Remote Conn ID: 81295874
Tunnel ID: 3288
Remote Tunnel ID: 1240
Session ID: 256
Remote Session ID: 31234
Time Started: 10/04/2013 15:37:10
Time Established: 10/04/2013 15:37:10
Time Closed: N/A
CDN Result: noError
General Error: noError

No. of sessions:
LAC in Base Routing Context with Multiple Endpoints (Tunnel Selection Process)

The **debug router radius packet-type authentication** command shows the actual RADIUS authentication parameters returned. This example returns multiple tunnel endpoints from which the LAC selects one. This example uses weighted load balancing. (The L2TP tunnel selection process is out of the scope of this example).

The **debug router l2tp event lac-session-setup** command shows the LAC tunnel LNS1-T1 is selected for this example.
Understanding the Debug l2tp Command Output

request to open new tunnel 11212"

<date> <time> CEST MINOR: DEBUG #2001 Base PPPoE 15-->L2TP
"PPPoE 15-->L2TP: UDP 192.168.2.2:1701 --> 192.168.2.7:1701 #end 192.168.2.7
preference 100 tunnel l2tp-functional-radius:LNS2-T2 #preference 100
skipped as another tunnel was selected"

<date> <time> CEST MINOR: DEBUG #2001 Base PPPoE 15-->L2TP
"PPPoE 15-->L2TP: UDP 192.168.2.2:1701 --> 192.168.2.6:1701
preference 100 tunnel l2tp-functional-radius:LNS1-T1 #selects 192.168.2.6
create session 734820645"

The operational PPPoE session information in IES 1/base instance is shown as follows.

show service id 1 ppp session
--
<table>
<thead>
<tr>
<th>PPP sessions for service 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>User-Name Descr.</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Up Time Type Termination IP/L2TP-Id/Interface-Id</td>
</tr>
<tr>
<td>--</td>
</tr>
</tbody>
</table>
user1@wholesale.com svc:1 sap:1/1/2:100.1 mac:00:00:00:01:01:01 sid:1 0d 00:00:20 oE lnc 734820645
--
No. of PPP sessions: 1

The operational tunnel information (base instance) is shown below.

show router l2tp tunnel
--
<p>| Conn ID Loc-Tu-ID Rem-Tu-ID State Blacklist-state Ses Active |</p>
<table>
<thead>
<tr>
<th>Group Assignment Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>734789632 11212 13723 established not-blacklisted 1 l2tp-functional-radius LNS1-T1</td>
</tr>
<tr>
<td>734820645 11212 31013 established</td>
</tr>
</tbody>
</table>
--
No. of tunnels: 1

Operational session information (base instance) shows the session is in the established state.

show router l2tp session
--
<table>
<thead>
<tr>
<th>L2TP Session Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID Control Conn ID Tunnel-ID Session-ID State</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>734820645 734789632 11212 31013 established</td>
</tr>
</tbody>
</table>
--
No. of sessions: 1
The L2TP endpoint/peer information shows there is one single tunnel for tunnel endpoint 192.168.2.6.

show router l2tp peer
===
L2TP Peers
===
<table>
<thead>
<tr>
<th>Peer IP</th>
<th>Port</th>
<th>Tun Active</th>
<th>Ses Active</th>
<th>Drain Reachability Tun Active</th>
<th>Ses Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.2.6</td>
<td>1701</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>192.168.2.7</td>
<td>1701</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>192.168.2.8</td>
<td>1701</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>192.168.2.9</td>
<td>1701</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

No. of peers: 4

The following command gives a system overview of subscriber session related data. This system overview shows the current and peak values per session type (local PTA, LAC, LTS, LNS) and an overview of the number of originated or terminated L2TP tunnels. Peak values can be cleared via the clear subscriber-mgmt peakvalue-stats command.

show subscriber-mgmt statistics session system
===
Subscriber Management Statistics for System
===
<table>
<thead>
<tr>
<th>Type</th>
<th>Current</th>
<th>Peak</th>
<th>Peak Timestamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session Statistics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPP Sessions - PPPoE</td>
<td>0</td>
<td>1</td>
<td>11/13/2013 17:04:23</td>
</tr>
<tr>
<td>PPP Sessions - PPPoEoA</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PPP Sessions - PPPoA</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PPP Sessions - L2TP (LNS)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LAC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPP Sessions - PPPoE</td>
<td>1</td>
<td>1</td>
<td>11/19/2013 15:46:40</td>
</tr>
<tr>
<td>PPP Sessions - PPPoEoA</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PPP Sessions - PPPoA</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PPP Sessions - L2TP (LTS)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPP Sessions - established</td>
<td>1</td>
<td>2</td>
<td>11/19/2013 15:46:40</td>
</tr>
<tr>
<td>PPP Sessions - in setup</td>
<td>0</td>
<td>1</td>
<td>11/19/2013 15:46:39</td>
</tr>
<tr>
<td>PPP Sessions - local</td>
<td>0</td>
<td>1</td>
<td>11/13/2013 17:04:23</td>
</tr>
<tr>
<td>PPP Sessions - LAC</td>
<td>1</td>
<td>1</td>
<td>11/19/2013 15:46:40</td>
</tr>
<tr>
<td>L2TP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2TP Tunnels - originator</td>
<td>1</td>
<td>2</td>
<td>11/19/2013 15:40:13</td>
</tr>
<tr>
<td>L2TP Tunnels - receiver</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total L2TP Tunnels</td>
<td>1</td>
<td>2</td>
<td>11/19/2013 15:40:13</td>
</tr>
</tbody>
</table>

Peak values last reset at : n/a
This example returns VPRN 65536 as the L2TP service instance [26-6527-104 Alc-Tunnel-Serv-Id]. The VPRN 65536 interface system address is used as the L2TP source address since the attribute Tunnel-Client-Endpoint is not returned.

The ip-address 192.168.2.6 (Tunnel-Server-Endpoint) needs to be routable in VRF 65536 over a SAP or to a remote PE. This example uses BGP/MPLS IP Virtual Private Networks (VPNs) (RFC4364) to access the remote PE.

```
show router 65536 route-table
```

<table>
<thead>
<tr>
<th>Dest Prefix[Flags]</th>
<th>Type</th>
<th>Proto</th>
<th>Age</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Local</td>
<td>Local</td>
<td>11h10m45s</td>
<td>0</td>
</tr>
<tr>
<td><snip></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.2.2/32</td>
<td>Local</td>
<td>BGP</td>
<td>11h10m12s</td>
<td>170</td>
</tr>
</tbody>
</table>

Operational PPPoE session information for IES 1 (base instance) is shown using following command.

```
show service id 1 ppp session
```

<table>
<thead>
<tr>
<th>User-Name</th>
<th>Descr.</th>
<th>Up Time</th>
<th>Type</th>
<th>Termination</th>
<th>IP/L2TP-Id/Interface-Id</th>
</tr>
</thead>
<tbody>
<tr>
<td>user1@wholesale.com</td>
<td>svc:1 sap:1/l/2:100.1 mac:00:00:01:01:01:01 sid:1</td>
<td>0d 00:00:12</td>
<td>oE</td>
<td>lac</td>
<td>718372593</td>
</tr>
</tbody>
</table>

No. of PPP sessions: 1

Operational tunnel information for VPRN 65536 is displayed as follows.

```
show router 65536 l2tp tunnel
```

<table>
<thead>
<tr>
<th>Conn ID</th>
<th>Loc-Tu-ID</th>
<th>Rem-Tu-ID</th>
<th>State</th>
<th>Blacklist-state</th>
<th>Ses Active</th>
<th>Ses Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>718340096</td>
<td>10961</td>
<td>15559</td>
<td>established</td>
<td>not-blacklisted</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

No. of tunnels: 1
Operational session information for VPRN 65536 is displayed using following command, and shows that the session is established.

```
show router 65536 l2tp session
L2TP Session Summary
ID                   Control Conn ID     Tunnel-ID   Session-ID  State
718372593            718340096           10961       32497       established
```

No. of sessions: 1
Scenario 2: Node-Derived L2TP Parameters

RADIUS Returns L2TP Group

This example returns VPRN 65536 as the L2TP service instance [26-6527-104] Alc-Tunnel-Serv-Id and an l2tp group-name wholesale.com [26-6527-46] Alc-Tunnel-Group.

For operational PPPoE session information in IES 1/base instance, use following command.

*A:pe1# show service id 1 ppp session
==
User-Name Descr. Up Time Type Termination IP/L2TP-Id/Interface-Id
--
user1@wholesale.com svc:1 sap:1/1:2/100.1 mac:00:00:00:01:01:01 sid:1
 0d 00:00:11 oE lac 768347764
--
No. of PPP sessions: 1

Operational tunnel information for VPRN 65536 shows the tunnel is in the established state.

show router 65536 l2tp tunnel
==
Conn ID Loc-Tu-ID Rem-Tu-ID State Blacklist-state Ses Active Ses Total
Group Assignment
--
768344064 11724 14445 established not-blacklisted 1
wholesale.com
--
No. of tunnels: 1

The operational session information for VPRN 65536 shows the session is in the established state.

show router 65536 l2tp session

L2TP Session Summary

<table>
<thead>
<tr>
<th>ID</th>
<th>Control Conn ID</th>
<th>Tunnel-ID</th>
<th>Session-ID</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>768347764</td>
<td>768344064</td>
<td>11724</td>
<td>3700</td>
<td>established</td>
</tr>
</tbody>
</table>

No. of sessions: 1
Scenario 2: Node-Derived L2TP Parameters

LUDB Returns L2TP Group

This example returns VPRN 65536 as the L2TP service instance and l2tp group-name wholesale.com (LUDB l2tp group "wholesale.com" service-id 65536).

The `debug subscriber-mgmt local-user-db "l2tp" detail all` command shows the LUDB authentication access (The returned parameter details are not shown).

```
<date> <time> CET MINOR: DEBUG #2001 Base LUDB
"LUDB: User lookup success - host found
user-name:
   original:  user1@wholesale.com
   masked:    user1@wholesale.com
Host wholesale.com found in user data base l2tp   #host found
```

To show the operational data from LUDB l2tp, use the following command.

```
show subscriber-mgmt local-user-db "l2tp" ppp-host "wholesale.com" | match N/A invert-match | match none invert-match
==============================================================================
PPP Host "wholesale.com"
==============================================================================
Admin State          : Up
Last Mgmt Change     : 11/22/2013 17:35:28
Host Identification
User Name           : wholesale.com (domain only)
Matched Objects      : userName
Password Type        : ignore
PADO Delay           : 0msec
Force IPv6 CP        : Disabled
Identification Strings (option 254)
Subscriber Id       : user1@wholesale.com
SLA Profile String  : sla-func1
Sub Profile String  : sub-func1
L2TP
Service             : 65536                      #LAC in VRF
Tunnel Group        : wholesale.com              #points to L2TP group name
```

The `debug router l2tp event lac-session-setup` command shows the LAC tunnel selected for this example.

```
<date> <time> CET MINOR: DEBUG #2001 vprn65536 PPPoE 28->L2TP
"PPPoE 28->L2TP: UDP 192.168.2.2:1701 -> 192.168.2.6:1701
preference 50 tunnel wholesale.com:wholesale.com #group and tunnel name
   request to open new tunnel 15501"
```

"PPPoE 28->L2TP: UDP 192.168.2.2:1701 -> 192.168.2.6:1701
preference 50 tunnel wholesale.com:wholesale.com
create session 1015877546"

For the operational PPPoE session information in IES 1/base instance, use the following command.

show service id 1 ppp session

PPP sessions for service 1

User-Name Descr. Up Time Type Termination IP/L2TP-Id/Interface-Id
user1@wholesale.com svc:1 sap:1/1/2:100.1 mac:00:00:00:01:01:01 sid:1 0d 00:00:10 oE lac 1015877546

No. of PPP sessions: 1

Operational tunnel information for VPRN 65536 can be obtained using following command.

show router 65536 l2tp tunnel

Conn ID Loc-Tu-ID Rem-Tu-ID State Blacklist-state Ses Active Ses Total
Group Assignment
1015873536 15501 11826 established not-blacklisted 1 1
wholesale.com wholesale.com

No. of tunnels: 1

The operational session information for VPRN 65536 shows the session is in the established state.

show router 65536 12tp session

L2TP Session Summary

ID Control Conn ID Tunnel-ID Session-ID State
1015877546 1015873536 15501 4010 established

No. of sessions: 1
Non-Session-Triggered L2TP Tunnel Setup

In addition to the ppp-session-triggered setup, an L2TP tunnel can also be setup via a tools command or an auto-establish command. These non-session-triggers are useful, for example, during the initial configuration phase where the LAC-LNS tunnel setup can be tested without any other user interaction. The PPP user still triggers the L2TP session-setup over this L2TP tunnel and RADIUS needs to return an l2tp group-name with the relevant name during authentication.

Auto-Establish

Every one minute a check is performed to determine if tunnels need to be established (a process referred to as scan auto-establish). The tunnel state is establishedIdle when the tunnel is setup, and becomes established when user triggered sessions are setup over this tunnel.

```
configure service vprn 65536
<snip>
12tp
  group "wholesale.com"
  tunnel "wholesale.com"
    local-address 192.168.2.2
    local-name "lac-pe1"
    peer 192.168.2.6
    auto-establish        #triggers tunnel setup
    no shutdown
    exit
    no shutdown
    exit
    no shutdown
    exit

There is no difference in operational behavior for a tunnel setup via a session-trigger or an auto-establish command. Removing the auto-establish parameter has no impact on active tunnels (establishedIdle or established).

show router 65536 12tp tunnel
==============================================================================
Conn ID    Loc-Tu-ID Rem-Tu-ID State              Blacklist-state   Ses Active
Group Assignment
==============================================================================
960495616  14656     721       establishedIdle    not-blacklisted   0
wholesale.com
wholesale.com
==============================================================================
No. of tunnels: 1
Tools Tunnel Start

An alternative for auto-establish is the tools start command.

```
configure service vprn 65536
 <snip>
 12tp
 group "wholesale.com"
 tunnel "wholesale.com"
 local-address 192.168.2.2
 local-name "lac-pe1"
 peer 192.168.2.6
 no auto-establish #no triggers tunnel setup
 no shutdown
 exit
 exit
 exit
 no shutdown
 exit
 no shutdown
 exit
```

tools perform router 65536 l2tp group wholesale.com tunnel wholesale.com start
A persistent tunnel is a tunnel that remains available after the last session over that tunnel is closed. To create a persistent tunnel, the idle-timeout parameter must be set to infinite.

A non-persistent tunnel is torn down immediately (idle-timeout zero) after the last session over that tunnel is closed or after a configurable delay. The idle-timeout parameter is set via the RADIUS [26-6527-49] Alc-Tunnel-Idle-Timeout attribute or the corresponding node parameter. The default value for this parameter is infinite (persistent).

### Idle-Timeout

```text
configure router l2tp | configure service vprn l2tp
 idle-timeout [0..3600]seconds
 <snip>
group <tunnel-group-name>
 idle-timeout [0..3600]seconds | infinite
 <snip>
tunnel <tunnel-name>
 idle-timeout [0..3600]seconds | infinite
 <snip>
```

The following shows an example of a persistent tunnel (idle-timeout infinite).

```text
show router l2tp tunnel detail # Example persistent tunnel
==
Connection ID: 111804416
State : establishedIdle
 # moves from established to establishedIdle
 # after last session is closed
<snip>
Assignment ID: unnamed
Group Name : default_radius_group
Error Message: N/A
Remote Conn ID : 586874880
Remote Tunnel ID : 8955
Receive Window : 64
Destruct TO (s) : 60
```

The following shows an example of a non-persistent tunnel (idle-timeout 10 seconds).

```text
show router l2tp tunnel detail # Example non-persistent tunnel
==
Connection ID: 1039335424
State : closed
 # moves from established to establishedIdle
 # after last session is terminated. Ten seconds later state becomes closed(tunnel destroyed). Operational tunnel data stays available (trouble shooting)
```
Tools Tunnel Stop

In addition to the idle-timeout used for tunnel termination, a tools stop command is also available that can be used to terminate persistent and non-persistent tunnels at any moment in time. Be aware that this command is very destructive and destroys all sessions carried over the closed tunnel.

Following command shows the tunnel is in the establishedIdle state.

```
show router 65536 l2tp tunnel
```

```
==
 Conn ID Loc-Tu-ID Rem-Tu-ID State Blacklist-state Ses Active
 Group Ses Total
 Assignment
--
462749696 7061 9070 establishedIdle not-blacklisted 0
 wholesale.com 0
 wholesale.com 0
--
No. of tunnels: 1
```

The command below terminates the l2tp tunnel. The tunnel is aborted (the LAC sends StopCCN) using the <connection-id> or <tunnel-group-name>+<tunnel-name> as input. This StopCCN indicates "operator request" as the error reason.

```
tools perform router 65536 l2tp group wholesale.com tunnel wholesale.com stop
```

The trace and debug output below shows the tunnel being aborted.

```
<date> <time> CET MINOR: DEBUG #2001 vpsn65536 L2TP(v2, ctrl, egress)
"L2TP(v2, ctrl, egress): UDP 192.168.2.2:1701 -> 192.168.2.6:1701
tunnel 9070 session 0, ns 2 nr 1, flags:, reserved=0
AVP MessageType(0,0), flags: mandatory, reserved=0
StopControlConnectionNotification(4)
AVP ResultCode(0,1), flags: mandatory, reserved=0
 result-code: "generalRequestToClearControlConnection"(1), error-code:
```
How Long Does a Tunnel Remain Idle Before Being Torn Down?

"noGeneralError"(0)
error-msg: "operator request"
AVP AssignedTunnelId(0,9), flags: mandatory, reserved=0 7061"
Keepalive (hello)

A keepalive mechanism is employed by L2TP in order to differentiate tunnel outages from extended periods of no control or data activity on a tunnel. This is accomplished by injecting Hello control messages after a specified period of time has elapsed since the last data or control message (ZLB not included) was received on a tunnel. As for any other L2TP control message, if the Hello message is not reliably delivered then the tunnel is declared down and reset, as defined in RFC 2661, *Layer Two Tunneling Protocol “L2TP”*. This means that the 7x50 does not initiate hello packets if session control traffic is handled over this tunnel. The 7x50 resets the hello timer if the system transmits any control packet over this tunnel (ZLB packets and data traffic are not taken into account).

The keepalive function is disabled (not recommended) using RADIUS [26-6527-50] Alc-Tunnel-Hello-Interval -1 or hello-interval infinite. The number of retries for unsuccessful Hello packet delivery equals RADIUS [26-6527-52] Alc-Tunnel-Max-Retrries-Estab or node parameter max-retries-estab (default 5). The retry interval is initially set to 1 second and doubles on each retry with a maximum interval of 8 seconds. Using a max-retries-estab 7 results in a retry of [1,2,4,8,8,8,8 seconds].

configure router 12tp | configure service vprn 12tp
  hello-interval [60..3600]seconds | infinite  #default 300s
  max-retries-estab [2..7]                     #default 5
  <snip>
  group <tunnel-group-name>
    hello-interval [60..3600]seconds | infinite
    max-retries-estab [2..7]
    <snip>
  tunnel <tunnel-name>
    hello-interval [60..3600]seconds | infinite
    max-retries-estab [2..7]
    <snip>

For example, the LAC can be configured with an hello-timer of 1 minute and the LNS with an hello-timer of 2 minutes. The hello-timer interval for LAC and LNS do not have to be same as the keepalive mechanism works asynchronous. See L2TP Keepalive Mechanism on page 2496.

LAC > show router 12tp tunnel
==============================================================================
Conn ID Loc-Tu-ID Rem-Tu-ID State             Blacklist-state Ses Active
Group Assignment
------------------------------------------------------------------------------
148635648 2268 13918 established not-blacklisted 1
  12tp-functional-radius  LNS1-T1
Keepalive (hello)

Figure 386 shows the tunnel being closed after 5 unsuccessful Hello deliveries with error-message connection with peer lost.

LAC > show router l2tp tunnel detail
===================================================================================================
| L2TP Tunnel Status                                                                                   |
|=================================================================================================== |
| Connection ID: 148635648                                                                            |
| State : closed                                                                                       |
| <snip>                                                                                               |
| Error Message: connection with peer lost                                                             |
| Tunnel ID : 2268                                                                                     |
| Preference : 100                                                                                    |
Hello Interval(s) : 60	Remote Conn ID : 912130048
	Remote Tunnel ID : 13918
	Receive Window : 64

Keepalive Successful

Keepalive Failure

Figure 386: L2TP Keepalive Mechanism
Does L2TP Keeps Info About Closed Tunnels, Sessions?

The destruct-timeout parameter (expressed in seconds) controls the period of time that the tunnel, or session data related to a closed (disconnected) tunnel, or session persists before being removed. The destruct_timeout is a debugging aid by saving underlying memory structures after the tunnel, or session is terminated. It is configured via the RADIUS [26-6527-51] Alc-Tunnel-Destruct-Timeout attribute or the corresponding node parameter. Default value for this parameter is 60 seconds.

```config
configure router l2tp | configure service vprn l2tp
 destruct-timeout [60..86400]
 <snip>
 group <tunnel-group-name>
 destruct-timeout [60..86400]
 <snip>
 tunnel <tunnel-name>
 destruct-timeout [60..86400]
```

The following output shows a session that is closed and the reason for it being terminated.

```output
show router l2tp session detail
==
L2TP Session 228095933
==
Connection ID: 228095933
State : closed #session destroyed but data still available
Tunnel Group : default_radius_group
Assignment ID: unnamed
Error Message: Terminated by PPPoE: RX PADT
Control Conn ID : 228065280 Remote Conn ID : 609491118
Tunnel ID : 3480 Remote Tunnel ID : 9300
Session ID : 30653 Remote Session ID : 6318
Time Started : 10/08/2013 17:14:36 Time Established : 10/08/2013 17:14:36
Time Closed : 10/08/2013 17:14:43 CDN Result : generalError General Error : vendorSpecific
```

The following output shows a tunnel that is closed and the reason for it being closed.

```output
show router l2tp tunnel detail
==
L2TP Tunnel Status
==
Connection ID: 228065280
State : closed #tunnel destroyed but data still available
Assignment ID: unnamed
Group Name : default_radius_group
Error Message: idle timeout (0 seconds) expired
Remote Conn ID : 609484800
Tunnel ID : 3480 Remote Tunnel ID : 9300
```
Does L2TP Keeps Info About Closed Tunnels, Sessions?

Preference	: 50	Receive Window	: 64
Hello Interval (s)	: 300		
Idle TO (s)	: 0	Destruct TO (s)	: 60
Max Retr Estab	: 5	Max Retr Not Estab	: 5
Session Limit	: 32767	AVP Hiding	: never
Transport Type	: udpIp	Challenge	: never
Time Started	: 10/08/2013 17:14:36	Time Idle	: 10/08/2013 17:14:36
Time Established	: 10/08/2013 17:14:36	Time Closed	: 10/08/2013 17:14:43
Stop CCN Result	: generalReq	General Error	: noError
Blacklist-state	: not-blacklisted		
Floating Peers

A floating peer exists if the peer LNS address indicated in the source address of the SCCRQ is different from the peer address known on the LAC. Floating peer allowance is configuration driven and is rejected by default.

The parameter `peer-address-change-policy` specifies whether the LAC accepts, ignores or rejects requests from a peer to change the destination IP address or UDP port.

```
configure router l2tp | configure service vprn l2tp
peer-address-change-policy accept | ignore | reject #default reject
```

- **accept** — Specifies that this system accepts any source IP address change for received L2TP control messages related to a locally originated tunnel in the state `wait-reply` and rejects any peer address change for other tunnels. In case the new peer IP address is accepted, it is learned and used as destination address in subsequent L2TP messages.

- **Ignore** — Specifies that this system ignores any source IP address change for received L2TP control messages, does not learn any new peer IP address and does not change the destination address in subsequent L2TP messages.
Floating Peers

• Reject — Specifies that this system rejects any source IP address change for received L2TP control messages and drops those messages.

The values Peer IP, Tx dst-IP and Rx src-IP in the `show router l2tp tunnel detail` command indicates if floating peers are used or not.

An example of a floating peer (peer-address-change-policy accept) is shown below.

```plaintext
show router l2tp tunnel detail
=======================================
L2TP Tunnel Status
=======================================
Connection ID: 897122304
State : established
IP : 192.0.2.2
UDP : 1701
Peer IP : 192.168.2.6 # (1) peer address used in SCCRQ
Peer UDP : 1701
Tx dst-IP : 192.168.2.7 # (3) peer address used in SCCCN
```

Figure 388: Floating Peers Ignore

Figure 389: Floating Peers Reject
Tx dst-UDP : 1701
Rx src-IP  : 192.168.2.7 # (2) SCCRP different IP received
Rx src-UDP : 1701
<snip>
Tx Connect Speed AVP 24 and Rx Connect Speed AVP 38

The Connect Speed (TX AVP 24 and RX AVP 38) is passed in the ICCN messages sent from the LAC to the LNS. The L2TP AVP 24 defines the (Tx) connect speed in bps from the perspective of traffic flowing from the LAC towards the subscriber (BNG downstream rate). The L2TP AVP 38 defines the (Rx) connect speed in bps from the perspective of traffic flowing from the subscriber towards the LAC (BNG upstream rate).

The report-rate configuration option indicates what rate is reported to the LNS when creating an L2TP session.

configure subscriber-mgmt
sla-profile <sla-profile-name>
ingress
report-rate agg-rate-limit|scheduler|pppoe-actual-rate|rfc5515-actual-rate
egress
report-rate agg-rate-limit|scheduler|pppoe-actual-rate|rfc5515-actual-rate

- agg-rate-limit — Take the aggregate rate as received from the RADIUS Access-Accept message in VSA Alc-Subscriber-QoS-Override. When this RADIUS VSA is not present in the Access-Accept, or when RADIUS is not used, then take the configured aggregate rate limit. In the case where this is not configured then take the port rate.
- scheduler <scheduler-name> — Take the rate of the specified scheduler. In case the scheduler is not linked with the scheduler-policy from the subscriber-profile then take the port rate.
- pppoe-actual-rate — Take the rate from the DSL-Forum Vendor-Specific PPPoE Tag when available, otherwise take the port rate.
- rfc5515-actual-rate — Put the same value as the transmitted Actual-Data-Rate-Upstream AVP in the Rx-Connect-Speed AVP, and the same value as the transmitted Actual-Data-Rate-Downstream AVP in the Tx-Connect-Speed AVP.
Calling Number AVP 22 Format

The format of AVP 22 Calling Number in the ICRQ message is configurable via the parameter calling-number-format. The default format is "%S<space>%s" and corresponds to the concatenation of system-name<space>sap-id. Available parameters are %S (system-name), %c (Agent Circuit Id), %r Agent Remote Id, %s (sap-id), %l (Logical Line ID) and fixed strings. A combination can be configured from any of these parameters, but the total configured format cannot exceed 255 characters.

Example 1: Default configuration.

configure router l2tp
  calling-number-format "%S %s"     #default configuration

Example 2: Customized configuration and all parameters (%S %s %c) are available to construct the requested AVP 22.

configure router l2tp
  calling-number-format "start-%S###%s###%c-end"

Example 3: Customized configuration and not all parameters are available to construct the requested AVP 22. Option-82 circuit-id (%c) and LLID (%l) information are missing and therefore missing (skipped) in the formatted attribute.

configure router l2tp
  calling-number-format "%S#%c#%r#%l%#s"
IncomingCallRequest(10)

<snip>

AVP CallingNumber(0,22), flags: mandatory, reserved=0
"pe1##remote0##1/1/2:100.1"
Prevent LAC from transmitting Calling Number AVP 22 to LNS

By default, the LAC includes the Calling Number AVP 22 in the L2TP incoming-call-request (ICRQ) packets transmitted to LNS. This AVP identifies the interface that is connected to the customer in the access network. Network access interface information can be hidden by configuring the LAC not to send the Calling Number AVP to the LNS.

Use the command below to disable the sending of L2TP Calling Number AVP 22.

```plaintext
configure router l2tp
 exclude-avps calling-number
```

cisco-nas-port AVP 100

Interoperation with a Cisco LNS requires that the LAC communicates a NAS port type to the LNS via the L2TP ICRQ ‘Cisco Nas Port Info AVP (100)’. This AVP (100) includes information that identifies the NAS port and indicates whether the port type is Ethernet or ATM and is configured via the cisco-nas-port parameter.

Cisco AVP 100 format

- First 5 bytes are NAS-Port-Type:
  - 0f10090203 (Ethernet)
  - 0f10090201 (ATM)
- Remaining 4 bytes corresponds with the configured cisco-nas-port value

Example:

- Ethernet 12b s-vlan-id; 10b c-vlan-id; 3b slot number; 2b MDA nbr; 5b port
- ATM 12b VPI; 10b VCI; 3b slot number; 2b MDA nbr; 5b port

```plaintext
configure router l2tp
cisco-nas-port ethernet "*12o*10i*3s*2m*5p" atm "*12v*10c*3s*2m*5p"
```

nas-port 1/1/2:100.1 corresponds to 1100100 000000001 001 01 00010 = 104858786

```
<date> <time> CEST MINOR: DEBUG #2001 Base L2TP(v2, ctrl, egress)
"L2TP(v2, ctrl, egress): UDP 192.0.2.2:1701 -> 192.168.2.6:1701
tunnel 10948 session 0, ns 2 nr 1, flags:, reserved=0
 AVP MessageType(0,0), flags: mandatory, reserved=0
 IncomingCallRequest(10)
 AVP CiscoNasPort(9,100), flags:, reserved=0
 104858786 type=ethernet(0f:10:9:02:03) "1/1/2:100.1" = 104858786
t AVP AssignedSessionId(0,14), flags: mandatory, reserved=0
 7556
```

AVP CallSerialNumber(0,15), flags: mandatory, reserved=0
AVP CallingNumber(0,22), flags: mandatory, reserved=0
"pel 1/1/2:100.1"

<snip>
L2TP Group/Peer/Tunnel Draining

When the LAC has established sessions, the LAC can avoid the creation of new sessions for a specific group, peer, or tunnel, via the **drain** command.

No new sessions are created for a group, peer or tunnel that is being drained (draining state) but the current sessions are left intact.

After the **drain** command is issued, the group, peer, or tunnel moves from a draining to drained state when the last session is closed. A drained group, peer, or tunnel can then be managed (reconfigured, deleted) without any user impact.

Be aware that a group, peer, or tunnel in a draining or drained state is skipped in the tunnel selection process. The next example shows a tunnel draining; group and peer draining works according in the same way.

A tunnel has 1 session and is in established state.

```
show router 65536 12tp tunnel
Conn ID Loc-Tu-ID Rem-Tu-ID State Blacklist-state Ses Active Ses Total
 Group Assignment
--
270073856 4121 3238 established not-blacklisted 1 1
 wholesale.com wholesale.com
--
No. of tunnels: 1
```

The following tools **drain** command puts the tunnel in a draining state and leaves the sessions intact.

```
tools perform router 65536 12tp tunnel 270073856 drain
```

Initially the tunnel is in the draining state.

```
show router 65536 12tp tunnel
Conn ID Loc-Tu-ID Rem-Tu-ID State Blacklist-state Ses Active Ses Total
 Group Assignment
--
270073856 4121 3238 draining not-blacklisted 1 1
 wholesale.com wholesale.com
--
No. of tunnels: 1
```
The tunnel moves to the drained state at the moment the last session is closed. Debugging shows that a drained tunnel is also not used as last resort and is skipped during the tunnel selection process.

```
show router 65536 l2tp tunnel
```

<table>
<thead>
<tr>
<th>Conn ID</th>
<th>Loc-Tu-ID</th>
<th>Rem-Tu-ID</th>
<th>State</th>
<th>Blacklist-state</th>
<th>Session Active</th>
<th>Session Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>270073856</td>
<td>4121</td>
<td>3238</td>
<td>drained</td>
<td>not-blacklisted</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

```
show router 65536 l2tp tunnel
```

The output below shows new sessions cannot select a drained tunnel.

```
<date> <time> CET MINOR: DEBUG #2001 vprn65536 PPPoE 30->L2TP
"PPPoE 30->L2TP: UDP 192.168.2.2:1701 -> 192.168.2.6:1701
preference 50 tunnel wholesale.com:wholesale.com #tunnel is drained
no additional session can be created in tunnel 4121"
```

```
<date> <time> CET MINOR: DEBUG #2001 vprn65536 PPPoE 30->L2TP
"PPPoE 30->L2TP:
stop: no more tunnels can be tried"
```

The drained tunnel can then be closed without user impact.

```
tools perform router 65536 l2tp tunnel 270073856 stop
```
Conclusion

This example provides the LAC L2TP access server configuration and troubleshooting commands for the LAA architecture (tunneled-access) model.