
7750 SR Advanced Configuration Guide Page 2605

RADIUS-Triggered Dynamic Data
Service Provisioning

In This Chapter

This section describes advanced RADIUS-triggered dynamic data service provisioning

configurations.

Topics in this section include:

• Applicability on page 2606

• Overview on page 2607

• Configuration on page 2610

• Conclusion on page 2649

Applicability

Page 2606 7750 SR Advanced Configuration Guide

Applicability

This example is applicable to all 7750 SR-7/12 and 7450 ESS-7/12 in mixed mode with multicore

CPM (CPM-3 and later) and ESM capability.

This feature is not supported on the 7950 XRS, 7750 SR-1, 7450 in pure ESS-mode or 7710 SR.

The configuration was tested on release 11.0R2.

RADIUS-Triggered Dynamic Data Service Provisioning

7750 SR Advanced Configuration Guide Page 2607

Overview

RADIUS-triggered dynamic data services enables a zero touch, single-ended provisioning model

for business services on the basis of Enhanced Subscriber Management functionality.

Triggered by the authentication of a single or dual stack PPPoE session or single stack IPv4 host

as the “control channel” from the business CPE, parameters are passed in a RADIUS Access

Accept or Change of Authorization (CoA) message to set up one or multiple Layer 2 or Layer 3

data services.

This concept removes the need to have an Operations Support System (OSS) responsible for the

service provisioning and is particularly beneficial in a highly dynamic network environment,

where physical network topologies – especially in the access – change frequently. With a regular

service provisioning, frequent changes would be hard to keep track of. In the RADIUS-based

model the service gets instantiated wherever it “pops-up” in the network. Even planned customer

moves to a different office would not require advanced notifications and lead times but could be

instantaneous, assuming the pure physical connectivity is given.

A variation of the current service offering will only require one or a few modified service

parameters in the RADIUS user database and does not require timely and costly IT changes (for

RADIUS those service parameters are just attributes; the RADIUS server does not check the

logic). This speeds up the time-to-market for new service offerings, which is another big

advantage.

Taking this logic to its full extent, it becomes immediately clear that the managed business CPE

terminating the carrier service (and being responsible for the PPP or DHCP control channel) also

needs to be provisioned in the most flexible way. Through the control channel or a dedicated

management channel instantiated as the first dynamic data service, the business CPE should get its

full configuration from a configuration server via a pre-populated configuration file. The details of

the CPE provisioning are outside of the scope of this example and therefore not discussed further.

As the whole approach is centered around the principle of “highly flexible in a highly dynamic

environment”, it is naturally required to maintain as little state information about connections in

the RADIUS parameter attributes as possible. For example, fixed remote peer IP-addresses for the

SDPs used in a VPLS service in the RADIUS parameter lists would remove all the flexibility and

would not allow access services to be moved dynamically. As such the allowed data services for

this functionality focuses on those types where a control protocol like BGP is used to exchange

VPN membership information. Dynamic data services supported in this release include local

Epipe VLL services, Epipe VLL services with dynamic Multi-Segment PseudoWires (MS-PWs)

(FEC129), VPLS services with BGP-AD PWs, IES, and VPRN services.

A Python script interface adds a flexible abstraction layer so that only the business user specific

service parameters (service type, IP address, QoS and filter parameters, etc.) are required from

RADIUS and are then used in a CLI template to set up the target service.

Overview

Page 2608 7750 SR Advanced Configuration Guide

The setup sequence is shown in Figure 398 with the example of a VPLS service.

Figure 398: Principle Model of Dynamic Data Services

1. Business CPE initiates a PPP or DHCP “control channel” session. This session is important

to let the BNG and RADIUS understand the existence of a new access circuit and the loca-

tion of the service endpoint.

2. BNG sends an Access-Request with all user credentials to RADIUS.

3. RADIUS replies using an Access-Accept with attributes for the PPP/DHCP control channel

and attributes for the dynamic data service (Service-type, SAP-VLAN, QoS, Filter, etc.).

4. BNG creates a dynamic data service instance (if it is first access-circuit for this service) and

a SAP, thus completing the service configuration.

5. BNG sends an Accounting Start for PPP/DHCP control channel session and also for the

dynamic data service session (and subsequently interim accountings and accounting stop for

both).

6. BNG advertises VPLS instance-ID (123) via BGP-AD to other PEs/BNGs.

7. PEs/BNGs with same service instance will auto-establish SDPs to the BNG.

The result is a fully functional service which is the same as a traditionally configured service.

The lifetime of the dynamic data services are bound to the existence of the control channel

session. If, for whatever reason, the control channel session is torn down all associated dynamic

data services will also be terminated.

Dynamic data service SAPs have to be located on dot1q or qinq encapsulated Ethernet ports and

can be part of a LAG.

al_0286

DCN

Access-request with
All User Credentials

Send Accounting Information
for Trigger Session and
Data Channel

Access-accept with Service Information
for Trigger Session (IP@, Assign to DCN, etc.)
and Service Information for Dynamic Data Service
(VPLS, SAP-VLAN, QoS, Filters, MAC-limit, etc.)

PPP or DHCP Control Channel
Session on VLAN x

Create Service Instance
and SAP on VLAN y

Advertise New Service
Via BGP-AD

Auto.create
SDPs

1

2

4

5

6

7

3

123

123

123

RADIUS

BNG

BNG

BNG

RADIUS-Triggered Dynamic Data Service Provisioning

7750 SR Advanced Configuration Guide Page 2609

Both XML accounting and RADIUS accounting can be enabled on a dynamic data service SAP.

The RADIUS accounting data can be sent to up to two different RADIUS servers.

There is a strict separation of services created by dynamic service provisioning and services

created via the CLI or through other standard mechanisms (5620 SAM, SNMP). It is therefore not

allowed to:

• create a dynamic services object in a local provisioned CLI/SNMP context (e.g. create a

dynamic SAP in a local provisioned VPLS).

• create a local provisioned object in a dynamic service context (e.g. create a SAP via CLI/

SNMP in a dynamic VPLS service).

• change parameters in a local provisioned CLI/SNMP context using the dynamic services

model (change system name with dynamic services provisioning).

• change parameters with the CLI/SNMP in a dynamically created context.

• delete a local provisioned object using dynamic provisioning model.

• delete a dynamic provisioning object using the CLI/SNMP.

• create a reference to a dynamic services object in a local provisioned CLI/SNMP context

(reference to dynamic interface in router ospf)

A special command exists to overcome some of the above rules. This command is designed to

ease Python script creation and testing and not for normal operations. This is discussed in

Configuration on page 2610.

Configuration

Page 2610 7750 SR Advanced Configuration Guide

Configuration

It is assumed that the reader is familiar with the regular Enhanced Subscriber Management (ESM)

functionality as well as with general service related configurations. Furthermore certain

knowledge about Python programming is also assumed.

The test topology is shown in Figure 399.

Figure 399: Test Topology

The pure service setup can be tested with a single node acting as BNG. However an Epipe service

between two nodes will not normally become status “up” with only one endpoint in an up state. As

such, for packets should be sent through the established dynamic data service, a remote PE could

also be configured. The remote PE could have its data service configured in a regular fashion,

meaning via CLI/SNMP or 5620 SAM.

The required functionality on the BNG is divided into multiple building blocks. The following

sections discuss each building block in detail.

al_0287

172.31.1.2

192.0.2.1

MSAP

HG or Test Device

to Generate PPP

or DHCP Session

RADIUS

BNG

Remote PE

RADIUS-Triggered Dynamic Data Service Provisioning

7750 SR Advanced Configuration Guide Page 2611

Figure 400: Building Blocks of Dynamic Data Services

Based on a PPP or DHCP control session, RADIUS will return the required parameters for the

dynamic data service via dedicated Vendor Specific Attributes (VSAs). The existence of those

attributes in the RADIUS Accept message will trigger the relaying of the parameters relating to

those attributes towards the Python script defined in the dynamic service policy, which will

process them to generate the regular CLI output for the various service types (IES, VPRN, Epipe,

VPLS).

For efficiency and flexibility the Python script needs to be structured into different parts per

service which then reference each other internally. Those parts are called snippets.

Finally, as the services are initiated from RADIUS, RADIUS accounting messages per dynamic

data service will be sent to the RADIUS server as a necessary feedback mechanism to inform the

RADIUS server about a successful or failed service setup.

Building Block: Control Channel

The configuration to authenticate and instantiate a dynamic data service control channel is

identical to a residential Enhanced Subscriber Management (ESM) configuration. Examples for

this can be found in other sections of the advanced configuration guide and will not be covered

here in detail.

Building Block: Dynamic Services Policy

The dynamic services parameters are configured under the configure service dynamic-services

CLI context. The following output shows two policy examples.

configure service dynamic-services

 dynamic-services-policy "dynamic-services-1" create

 accounting-1

 server-policy "radius-server-policy-1"

 update-interval min 5

 exit

 accounting-2

 server-policy "radius-server-policy-2"

al_0288

Control Channel RADIUS Attributes

Dyn Serv Policy Python Script

CLI Snippets RADIUS Accounting

Configuration

Page 2612 7750 SR Advanced Configuration Guide

 stats-type time

 update-interval min 5

 update-interval-jitter absolute 10

 exit

 cli-user "dynuser"

 description "Dynamic Service Policy #1"

 sap-limit 4000

 script-policy "script-policy-1"

 exit

 dynamic-services-policy "dynamic-services-2" create

 accounting-1

 server-policy "radius-server-policy-2"

stats-type volume-time

 update-interval min 30

 update-interval-jitter absolute 20

 exit

 accounting-2

 server-policy "radius-server-policy-2"

 stats-type time

 update-interval min 5

 update-interval-jitter absolute 10

 exit

 cli-user "dynuser"

 description "Dynamic Service Policy #2"

 sap-limit 100

 script-policy "script-policy-2"

 exit

 service-range 1000 10000

 timers

 setup-timeout access-accept 3

 exit

Details of each command and the possible parameters can be found in the SR OS Triple Play

Guide in the RADIUS Triggered Dynamic Data Services section.

On the top command level under the dynamic-services sub-tree there are three options:

• dynamic-services-policy

• service-range

• timers

The setup-timeout value under timers is used to limit the maximum delay allowed for a dynamic

data service setup. In addition, it also protects the node during times where there is a high load on

the CPU. If a requested dynamic data service cannot be established in the specified time the

request will be dropped.

Dynamic data services are not preferred over regular ESM subscribers. As such, given a BNG

with a mix of residential ESM subscribers and business customers with dynamic data services, all

compete for the same CPU resources to establish the connections.

However, dynamic data services are expected to have a very long lifetime compared to potentially

very dynamic lifetimes for residential subscribers. In a regular operating mode the amount of

RADIUS-Triggered Dynamic Data Service Provisioning

7750 SR Advanced Configuration Guide Page 2613

additional setup requests for dynamic data services should be relatively small. Only in the event of

a node reboot will all users again compete to gain access, where longer setup-times are inevitable.

The service-range value reserves a certain amount of service IDs for the use of dynamic data

services. The configured range is no longer available for regular provisioned services configured

via the CLI/SNMP.

The dynamic-services-policy contains a CLI-user identifier, SAP-limits, accounting parameters

and reference to a Python script policy which is used when creating a dynamic data service.

Multiple dynamic services policies can be created to enable different profiles to be used for

different users/customers or services (as an example, two different departments within the service

provider, one responsible for Layer 2 services, one for Layer 3 services). The policy used for a

dynamic data service is determined from the Alc-Dyn-Serv-Policy [26-6527-167] RADIUS

attribute. If the attribute is not present and a policy named default exists, then the default policy is

used, otherwise the dynamic data service creation fails.

Up to two accounting server policies can be defined. This allows the use of separate RADIUS

accounting servers independent from the accounting servers used for residential services. The

parameters defined in the accounting sections are the default values which are used if no specific

values are sent via RADIUS VSAs.

As the service is established via RADIUS, a feedback mechanism towards RADIUS is most likely

required which would be at least RADIUS start and stop messages per service/session. In addition

performance counters (with a fixed set of parameters) can also be included in the RADIUS

messages. It is also possible to use the standard service-accounting under the service instance and

remove any counters from the RADIUS accounting messages.

The specification of a CLI user allows linking of the dynamic data service to a specific user-

profile. In addition, this facilitates limiting of the scope of allowed service configurations even

further, based on the specified context under the user profile.

The CLI-user needs to be configured locally on the node and needs to have a local user profile

(remote authorization via TACACS/RADIUS is not possible).

The radius-script-policy is configured under the configure aaa CLI context.

configure aaa

radius-script-policy "script-policy-2”

action-on-fail passthrough

 primary

 script-url "cf3:/scripts/dyn_services.py"

 no shutdown

 exit

 secondary

 script-url ftp://*:*@10.255.137.80/scripts/dyn_services.py"

 no shutdown

 exit

exit

exit

Configuration

Page 2614 7750 SR Advanced Configuration Guide

The parameters are no different to what have been defined generally for the use of Python

scripting on the BNG.

When the very first session request arrives, the Python script is loaded into memory and executed.

For all subsequent session requests the script is executed without the need for a reload. It is

possible for both primary and secondary locations to be FTP sites (the small transfer delay for the

first session is acceptable), however, it is recommended to have a compact-flash (cf1 or cf2) as the

primary location and a remote location as backup.

Building Block: RADIUS Attributes

A series of Alcatel-Lucent vendor specific attributes (VSAs) have been defined to setup, teardown

or modify dynamic data services from RADIUS.

The VSAs and their meaning are as follows:

• Alc-Dyn-Serv-SAP-Id [26-6527-164], type “string”

This attribute identifies the dynamic service SAP. The format can be any valid Ethernet

SAP format (dot1q or qinq encapsulation), including LAGs. A wildcard (“#”) can be

specified for the port field and optionally for one of the tag fields of a qinq interface. To

define the dynamic data service SAP-ID, the wildcard fields are replaced with the

corresponding field from the Control Channel SAP-ID.

Examples: “1/2/7:10.100” or “#:#.100”

• Alc-Dyn-Serv-Script-Action [26-6527-166], type “integer”

A mandatory VSA in a COA to the control channel accounting session ID or the

accounting session ID of the dynamic data service (only applicable for modify or

teardown). Tells the system what script action is required: setup, modify or teardown of a

dynamic data service.

Values: 1=setup, 2=modify, 3=teardown

• Alc-Dyn-Serv-Policy [26-6527-167], type “string”

Specifies the dynamic service policy to use for provisioning the dynamic service. The

policy must be configured in the “configure service dynamic-services dynamic-services-

policy < dynsrv-policy-name>” CLI context.

• Alc-Dyn-Serv-Script-Params [26-6527-165], type “string”

This VSA contains parameters that can be used by the Python script to setup or modify a

dynamic data service. The parameters can be split into multiple instances of the same

attribute, linked together by the same tag, that is, the parameters can cross an attribute

boundary. The concatenation of all “Alc-Dyn-Serv-Script-Params” attributes with the

same tag in a single message must be formatted as “function-key = {dictionary}” where

function-key specifies which Python functions will be called and {dictionary} contains

the actual parameters in a Python dictionary structure format.

RADIUS-Triggered Dynamic Data Service Provisioning

7750 SR Advanced Configuration Guide Page 2615

Example: “business_1 = { 'as_id' : '100', 'comm_id' : '200', 'if_name' : 'itf1', 'ipv4_address'

: '172.16.1.1', 'egr_ip_filter' : '100' , 'routes' : [{'to' : '172.16.100.0/24', 'next-hop' :

'172.16.1.2'}, {'to' : '172.16.200.0/24', 'next-hop' : '172.16.1.2'}]}

The above example shows each parameter with a keyword and the associated value.

Alternatively only the parameter values can be sent with a pre-defined (and always

constant) sequence.

Example: “business_1 = {“t”: '100', '200', 'itf1', '172.16.1.1', '100', '172.16.100.0/24',

'172.16.1.2', '172.16.200.0/24', '172.16.1.2'}.

• Alc-Dyn-Serv-Acct-Interim-Ivl-1 [26-6527-168], type “integer”

This VSA defines the number of seconds between each accounting interim update

message for the primary accounting server. It overrides the local configured “update-

interval” value in the dynamic services policy “accounting-1” CLI context. A value of 0

(zero) corresponds to no accounting interim update messages. A value [1..299] seconds is

rounded to 300s (min. CLI value) and a value above 15552000 seconds (180 days,

maximum CLI value) is rounded to the maximum CLI value.

Range = 0 | [300 - 15552000].

• Alc-Dyn-Serv-Acct-Interim-Ivl-2 [26-6527-169], type “integer”

Same function and values as Alc-Dyn-Serv-Acct-Interim-Ivl-1 [26-6527-168], for the

second accounting server. It overrides the locally configured “update-interval” value in

the dynamic services policy “accounting-2” CLI context.

• Alc-Dyn-Serv-Acct-Stats-Type-1 [26-6527-170], type “integer”

Enable or disable dynamic data service accounting to the primary accounting server and

specify the type of statistics that should be reported: volume and time or time only. It

overrides the locally configured value in the dynamic services policy “accounting-1” CLI

context.

Values: 1=off, 2=volume-time, 3=time

• Alc-Dyn-Serv-Acct-Stats-Type-2 [26-6527-171], type “integer”

Enable or disable dynamic data service accounting to the secondary accounting server and

specify the type of statistics that should be reported: volume and time or time only. It

overrides the locally configured “stats-type” value in the dynamic services policy

“accounting-2” CLI context.

Values: 1=off, 2=volume-time, 3=time

All VSAs are tagged to enable manipulation of up to 32 (tag values 0..31) dynamic data services in

a single RADIUS message. VSAs with an identical tag belong to the same dynamic data service.

The use of the VSAs in RADIUS Access-Accept, CoA and Disconnect Messages is detailed in

Table 43. An Access-Accept message can only contain dynamic data service setup requests. A

CoA can be used to setup, modify or terminate a dynamic data service. A Disconnect Message can

only be used to terminate a dynamic data service.

Configuration

Page 2616 7750 SR Advanced Configuration Guide

Table 43: Dynamic Service Attribute List for Setup, Modify and Teardown

Attribute Name

Access

Accept
CoA

Disc.

Message

Comment

Setup Setup Modify
Tear-

down

Tear-

down

Acct-Session-Id N/A M M M M Acct-Session-Id of the

Control Channel or in case

of a CoA: any other valid

CoA key for ESM hosts/

sessions.

Alc-Dyn-Serv-SAP-Id M M(*) M(*) M(*) N/A Identifies the dynamic data

service

Alc-Dyn-Serv-Script-

Params

O M(*) M(*) N/A N/A For a Modify, the script

parameters represent the

new parameters required for

the change.

Alc-Dyn-Serv-Script-

Action

O M(*) M(*) M(*) N/A Must be “setup” if specified

in an access-accept.

Alc-Dyn-Serv-Policy O O O O N/A The default policy used

when not specified for

create.

In CoA, must be same as

used for Setup if Specified

for Modify or Teardown.

Alc-Dyn-Serv-Acct-

Interim-Ivl-1

O O X(**) X(**) N/A

Alc-Dyn-Serv-Acct-

Interim-Iv2

O O X(**)) X(**)) N/A

Alc-Dyn-Serv-Acct-Stats-

Type-1

O O X(**) X(**)) N/A

Alc-Dyn-Serv-Acct-Stats-

Type-2

O O X(**)) X(**)) N/A

M = Mandatory, O= Optional, X = May not, N/A = Not Applicable (ignored)

(*) = CoA Nak’d, if not specified (Error Cause: 402 - Missing Attribute)

(**) = CoA Nak’d if specified (Error Cause:405 - Unsupported Service)

RADIUS-Triggered Dynamic Data Service Provisioning

7750 SR Advanced Configuration Guide Page 2617

To summarize, Table 44 shows resulting dynamic service script actions as function of the

RADIUS message (Access-Accept, CoA or DM) and the target (Control Channel or Dynamic

Service SAP).

Table 44: Dynamic Service Actions on Control- and Data-Channel

Target RADIUS

Message

Dynamic Ser-

vice Script

Action

Comments

Control

Channel

Access-Accept Setup Up to 32 dynamic data services in single message.

Alc-Dyn-Serv-Script-Action VSA optional.

Modify/Teardown Not supported.

CoA

(acct-session-id or

any other valid

CoA key for ESM

hosts/sessions)

Create/Modify/

Teardown

Cannot be mixed with session/post parameter changes in the

same RADIUS message (results in CoA NAK).

Up to 32 dynamic data services in single message.

Alc-Dyn-Serv-Script-Action VSA mandatory.

Disconnect N/A Teardown the Control Channel session and all associated

dynamic data services.

Dynamic

Service

CoA

(acct-session-id of

the dynamic data

service sap)

Modify/Teardown Only single dynamic data service per message (Acct-

Session-Id).

Alc-Dyn-Serv-Script-Action VSA mandatory.

Setup Not supported.

Disconnect

(acct-session-id of

the dynamic data

service sap)

N/A Teardown the corresponding dynamic data service.

Configuration

Page 2618 7750 SR Advanced Configuration Guide

Building Block: Python Script

Dynamic data services scripts are built using a Python script engine. The following dedicated

functions are available in the alc.dyn module:

• dyn.reference(function-key, reference-id string, dictionary)

This function creates a dynamic reference to another function in the script. This function

eases the creation of N:1 relationships in the script. For more information about use cases,

see Building Block: CLI Snippets on page 2621. The function-key specifies the key in the

action dictionary to find the corresponding setup/modify/teardown function calls.

The reference-id (typically derived from a parameter specified from RADIUS, for

example: service-name) specifies a unique instance string that identifies this reference.

The dictionary specifies a dictionary with parameters that can be used in the parent

function to generate CLI script output.

• dyn.action(d)

When called, the dyn.action will take the “function-key” string specified in the Alc-Dyn-

Serv-Script-Params attribute, and perform a lookup in the specified dictionary d to find

the corresponding Python function to execute. The format of the dictionary is d = {key-1 :

(Setup-1, Modify-1, Revert-1, Teardown-1), …, key-n : (Setup-n, Modify-n, Revert-n,

Teardown-n) }. If the function-key matches, for example, key-1 and the corresponding

Alc-Dyn-Script-Action is “setup”, then the function specified as “Setup-1” will be

executed. Setup and teardown functions are mandatory. Modify and revert functions are

optional. If a modify function is defined, a corresponding revert function must also be

defined. If no modify/revert function is required, the keyword “None” should be used

instead.

• dyn.add_cli(string)

This function is used to generate CLI output in the Python script. The use of dyn.add_cli

(”””) allows the specification of strings spanning multiple lines, which drastically

improves the readability of the script.

A subset of all available CLI commands is currently enabled for dynamic data services.

The command “tools dump service dynamic-services command-list” provides a complete

overview of all available CLI nodes for dynamic data services. In the allowed nodes

section, all CLI nodes are listed that can be navigated to and where attributes can be

modified. The pass through nodes section shows CLI nodes that can be navigated to but

no attribute changes are allowed. For example, it is not allowed to change the autonomous

system of a router (configure router autonomous-system <autonomous-system>) because

“configure router” is a “pass through node”. However, you can navigate to configure

router, because you can add a static route: “/configure router static-route 0.0.0.0/0 next-

hop 192.168.1.1” is part of the “allowed nodes”.

RADIUS-Triggered Dynamic Data Service Provisioning

7750 SR Advanced Configuration Guide Page 2619

• dyn.select_free_id(“service-id”)

This function is used to select a free service ID within the service ID range defined under

dynamic-services context. An automatic assignment of the service id is one option, but it

is also possible to provide the service id as one of the parameters in the “Alc-Dyn-Serv-

Script-Params” list from RADIUS.

The service-ID is a node-internal attribute. As such it is valid to let the node select the ID

itself. However, in a network with multiple BNGs and a single customer service spanning

two or more BNGs, a network administrator may actually prefer to use the same service-

id for this customer service on all nodes for better visibility, which cannot be guaranteed if

the automatic option is chosen. 5620 SAM is also using the service-ID as one attribute in

addition to others to discover service-entities across the whole network. If SAM is in use

for general management and service assurance, it is advised to manually specify the

service-ID and not to use the automatic selection.

In any case, the administrator needs to make a choice between the automatic ID

assignment and the specific assignment for all dynamic data services, as a mix between

both is not recommended.

When the automatic assignment is chosen, there is no “binding/memory” of a service ID

to a provisioned service, which means a service that may have service ID xyz initially

may get another service ID the next time it comes up. In other words, as soon as a service

is disconnected, the service ID is freed up for the next activated service.

• dyn.get_sap()

This function returns the value of the evaluation of the “Alc-Dyn-Serv-SAP-Id” attribute

as a string. Wildcards (“#”) in the Alc-Dyn-Serv-SAP-Id are replaced with the

corresponding port/vlan information of the control channel SAP-ID. So if, for example,

the “Alc-Dyn-Serv-SAP-Id” contains “#:#.1” and the control channel SAP ID is “1/1/

5:100.100”, the resulting SAP for the data service would be “1/1/5:100.1”.

• dyn.get_circuit_id()

This function returns a string which is equal to the Control Channel Circuit-ID (from the

DHCP relay agent option 82 or PPP tags). This function may be useful, for example, to

use the circuit id in the SAP description.

• dyn.get_remote_id()

This function returns a string which is equal to the Control Channel Remote-ID (from the

DHCP relay agent option 82 or PPP tags). This function may be useful, for example, to

use the remote id in the SAP description.

Configuration

Page 2620 7750 SR Advanced Configuration Guide

In addition to the RADIUS dictionary, the node will also store service-related parameters in a

service-specific dictionary. The information in the RADIUS messages or in the stored dictionary

are used for the various functions as outlined in Table 45:

Table 45: Function and Dictionary Relationship

Function Name Input Returns

setup dynsvc(rd*) rd: radius dictionary in the parameter

list in Alc-Dyn-Serv-Script-Params.

VSA Passed to setup function.

A dictionary that will be stored for the

lifetime of the dynamic service (sd).

modify_dynsvc(rd,sd**) rd: radius dictionary in the parameter

list in Alc-Dyn-Serv-Script-Params.

VSA passed to modify function.

sd: previously stored dictionary of the

setup/previous modify functions.

Updated stored dictionary (sd)

revert_dynsvc(rd, sd) rd: radius dictionary in the parameter

list in Alc-Dyn-Serv-Script-Params.

VSA passed to revert function.

sd: previously stored dictionary of the

setup/previous modify function.

The function does not return (store)

any information. The previously

stored dictionary (sd) is kept.

teardown_dynsvc(sd) sd: previously stored dictionary by

the setup function or a previous

modify function are passed to the

teardown function.

The function does not return (store)

any information. The stored

dictionary (sd) is deleted.

(*) rd = radius dictionary

(**) sd = stored dictionary. sd is required for modifies, reverts and teardowns.

RADIUS-Triggered Dynamic Data Service Provisioning

7750 SR Advanced Configuration Guide Page 2621

Building Block: CLI Snippets

Building Block: CLI Snippets The necessary functional parts of a service configuration cannot typically be put into one large

script (one single actionable function). This is best described with a small and simple example:

Imagine a single script where the setup action creates both the service instance and the SAP, and

the teardown action removes the service instance and the SAP. For a service with just one SAP per

service instance this may work fine, however, in a multi SAP service like a VPLS this will cause

problems, especially during the service teardown action. This is because if multiple SAPs have

been instantiated in a single service, the disconnect of just one SAP would trigger the teardown

action which would try to remove the SAP (still ok) but then would try to remove the service

instance. This action would fail as other SAPs still exist in the service. As such the script

execution would fail.

It is therefore necessary to structure the whole required configuration into individual actionable

pieces which are referenced by each other with specific reference-IDs. Those actionable pieces are

called “snippets”.

Referenced snippets may or may not be executed depending on whether the functional instance

exists already or not. As shown on the left of the picture below, the action to create a SAP

references the creation of a service and then to the creation of a customer. For the very first

business site to come up all three snippets will be executed. For any further business site to come

up in the same service the script to create the SAP will be executed, the referenced service script

and subsequently the customer script will not be executed again as those instances already exist.

The same logic applies during the teardown action. Only when the last SAP in a service is

removed is the service-instance itself removed, and potentially also the customer (unless it too is

associated with other services).

Configuration

Page 2622 7750 SR Advanced Configuration Guide

Figure 401: Hierarchy of Snippets

The implementation supports a three level hierarchy of snippets for high flexibility as shown in the

picture. A reference to the fourth level as shown on the right side would result in an error.

Furthermore, snippets can be scaled “horizontally”, so from one level multiple references to other

snippets are possible. An example for that would be the creation of a SAP triggers the creation of

a service as well as the creation of an Ethernet CFM association for that SAP.

Identifiers are needed for the referencing. The same identifier can be used on the “horizontal”

level, but not on the vertical level between the same pair of snippets, also shown above.

Snippets are heavily used in the service examples in Bringing it all together on page 2624 where

the logic and the referencing are described with real data.

Building Block: RADIUS Accounting

As dynamic data services are instantiated through RADIUS, it is also typically required to provide

feedback to the RADIUS server for service establishment and teardown. This is achieved via

RADIUS accounting records for the dynamic data channels in addition to the accounting messages

for the PPP or DHCP control channel.

al_0289

setup_A

Allowed since
reference to

different functions
can have same
reference-ids

Allowed since
reference to

same function
have different
reference-ids

Only 2
sequential dynamic
references allowed
(3 hierarchy levels)

Not allowed since
references to the

same function
must have different

reference-ids

“Interface/

 SAP”

“Service”

“Customer”

snippet A

setup_B

“id1”

L1

“id1”

L2

snippet BRef
count

setup_E

snippet ERef
count

setup_C

snippet CRef
count

setup_A

snippet A

setup_B

“id2”

L1

L1

“id1”

L1

L1

“id1”

L1

“id1”

“id1”

“id1”

“id1”

L2

L2

dynamic reference
reference “id1”

level 1

invalid

dynamic reference

snippet BRef
count

setup_C

snippet CRef
count

“id1”

L3

setup_D

snippet DRef
count

RADIUS-Triggered Dynamic Data Service Provisioning

7750 SR Advanced Configuration Guide Page 2623

Up to two dedicated accounting destinations can be defined within the dynamic services policy.

Thus, the accounting for the dynamic data services can be handled by an independent set of

accounting servers (from the accounting for general ESM subscribers). But the same servers can

also be used.

Each dynamic data service has its own accounting start/stop/interim messages based on a unique

accounting session ID. In addition, the accounting packets contain a multi-session ID which is

identical to the accounting session ID of the control channel and is therefore displayed in show

commands as Acct-Session-ID-Ctrl as shown below.

A:BNG-1# show service dynamic-services saps summary

===

Dynamic Services SAP's summary

===

SAP Acct-Session-ID Acct-Session-ID-Ctrl

3/2/1:4.3 D6E559000000B951668AEB D6E559000000B851668AEB

3/2/2:1.1 D6E559000000C75166CFF4 D6E559000000C45166CFF4

3/2/2:1.2 D6E559000000C85166CFF4 D6E559000000C45166CFF4

3/2/2:1.3 D6E559000000C95166CFF4 D6E559000000C45166CFF4

3/2/2:1.4 D6E559000000CA5166CFF4 D6E559000000C45166CFF4

No. of SAP's: 5

===

The Accounting Session ID (in the centre above) is the one for the dynamic data service itself, the

one on the right is from the control-channel. The above example clearly shows that the last 4

dynamic services all belong to the same control channel, as they all have the same Acct-Session-

ID-Ctrl.

If the accounting stats-type is set to “volume-time”, the interim and stop accounting messages will

also contain counters for the data traffic through the service. With the accounting stats-type

“time”, no counters are included, only session time is reported.

As a dynamic data service is functionally no different from a regular data service, traffic volumes

can also be gathered by assigning accounting policies within the service for file-based XML

accounting.

Configuration

Page 2624 7750 SR Advanced Configuration Guide

Bringing it all together

Bringing it all together This section gives examples of all of the above parameters and will also cover show, log and

debug information.

In the given example, a single user in the database has four different associated data services. Not

only are the data service types all different, but also other aspects of the parameter set, this has an

effect on how the data is entered in the RADIUS VSAs and how the Python script is constructed.

More detail is given below. The different models for specifying parameters are presented to show

the flexibility. An operator typically chooses a single model and uses that for all its services.

As all of the information for these four services will potentially be sent in one RADIUS message,

the VSAs need to be tagged so that the BNG can link the appropriate VSAs to each other and

differentiate the services. For better visibility, the different sections in the RADIUS users file are

displayed with bold black and dark grey text.

The freeradius users file format is used for this example.

RADIUS-Triggered Dynamic Data Service Provisioning

7750 SR Advanced Configuration Guide Page 2625

The first section (lines 1 — 3) shows a minimal parameter set for the (PPP) control channel. As

the focus of this example is on the dynamic data services, all default parameters will be used for

the control-session which are defined under the msap.

The second section (lines 4 — 8, attributes with tag “:1”) shows a possible parameter set for an

Epipe service. Only the absolutely minimum set of VSAs is used (see Table 43, Dynamic Service

Attribute List for Setup, Modify and Teardown, on page 2616). Furthermore, all service

parameters are listed without keywords in a pre-defined order. No service ID number is specified

in “Alc-Dyn-Serv-Script-Params”, hence the Python script should dynamically select the next free

ID.

1. "subscriber12@domain2.com" Cleartext-Password := "ALU"

2. Alc-Subsc-ID-Str := "pppoe-user12",

3. Framed-IP-Address = 10.2.1.200,

4 Alc-Dyn-Serv-SAP-Id:1 = "#:#.1",

5. Alc-Dyn-Serv-Script-Params:1 = "business_epipe={'t':('EPipe-

6. CustomerName','CustomerName-Circuit-1','3','3','64496',

7. '192.0.2.5','192.0.2.1','3333')}",

8. Alc-Dyn-Serv-Policy:1 = "dynamic-services-2",

9. Alc-Dyn-Serv-SAP-Id:2 += "#:#.2",

10. Alc-Dyn-Serv-Script-Params:2 += "business_vprn={'t':('9999',

11. 'VPRN-CustomerName','64497','100000','CustomerName-Circuit-

12. 1','172.16.10.1/30','3','1','3','2','172.16.100.0/24',

13. '172.16.10.2','100')}",

14. Alc-Dyn-Serv-Acct-Interim-Ivl-1:2 += "600",

15. Alc-Dyn-Serv-Acct-Interim-Ivl-2:2 += "0",

16. Alc-Dyn-Serv-Policy:2 += "dynamic-services-2",

17. Alc-Dyn-Serv-SAP-Id:3 += "#:#.3",

18. Alc-Dyn-Serv-Script-Params:3 += "business_vpls={'inst':

19. 'VPLS-CustomerName','if_name':'CustomerName-Circuit-1','ing_qos':'3',

20. 'egr_qos':'3','imp_comm_val':'10000','exp_comm_val':'10000',

21. 'rt':'64498','rd':'64498'}",

22. Alc-Dyn-Serv-Policy:3 += "dynamic-services-2",

23. Alc-Dyn-Serv-Acct-Interim-Ivl-1:3 += "0",

24. Alc-Dyn-Serv-Acct-Interim-Ivl-2:3 += "0",

25. Alc-Dyn-Serv-Acct-Stats-Type-1:3 += off,

26. Alc-Dyn-Serv-Acct-Stats-Type-2:3 += off,

27. Alc-Dyn-Serv-SAP-Id:4 += "#:#.4",

28. Alc-Dyn-Serv-Script-Params:4 += "business_ies={'t':

29. ('IES-CustomerName','CustomerName-Circuit-1','172.16.11.1/30',

30. '2001:db8:5100:1000::1/64','5','1','1','6','2','2','5','25',

31. 'cfm-Mep-to-CPE','100',",

32. Alc-Dyn-Serv-Script-Params:4 += "[{'to':'172.16.110.0/24',

33, 'n-h':'172.16.11.2'},{'to':'2001:db8:bbbb::/56',

34. 'n-h':'2001:db8:5100:1000::2'}])}",

35. Alc-Dyn-Serv-Policy:4 += "dynamic-services-2",

36. Alc-Dyn-Serv-Acct-Interim-Ivl-1:4 += "600",

37. Alc-Dyn-Serv-Acct-Interim-Ivl-2:4 += "0",

38. Alc-Dyn-Serv-Acct-Stats-Type-1:4 += "3",

39. Alc-Dyn-Serv-Acct-Stats-Type-2:4 += "2",

Configuration

Page 2626 7750 SR Advanced Configuration Guide

The third section (lines 9 — 16, attributes with tag “:2”) shows a possible parameter set for a

VPRN service. A few more VSAs are defined, thus some of the default parameters in the dynamic

service policy are overwritten for this service. The first entry in the “Alc-Dyn-Serv-Script-

Params” attribute specifies the Service-ID number for this service, so the Python script should not

select a service ID automatically. Furthermore, static-routing information towards the CPE is

added as normal attributes at the end of the list.

The fourth section (line 17 — 26, attributes with tag “:3”) shows a possible parameter set for a

VPLS service. Notice the difference with the first two services in the “Alc-Dyn-Serv-Script-

Params” part: now all parameters are given their specific keyword. As such, the sequence of those

parameters is not important. The effect on the Python script is shown further down.

The fifth section (lines 27 — 39, attributes with tag “:4”) finally shows a possible parameter set

for an IES service. All of the required parameters for this service do not fit into a single “Alc-Dyn-

Serv-Script-Params” attribute anymore (limited to 247 bytes). As is shown, multiple VSAs can be

“concatenated” by simply splitting the attributes. It is important that the order in which the

different “Alc-Dyn-Serv-Script-Params” attributes with the same tag is received can be

guaranteed. Furthermore the second appearance of this VSA shows a different way of

provisioning static-routing information towards the CPE.

To better understand the details it is necessary to take a closer look into the active Python script.

The first important part is the section with the dynamic actions.

-snip-

d = {

"vprn": (setup_vprn, None, None, teardown_vprn),

"ies": (setup_ies, None, None, teardown_ies),

"vpls": (setup_vpls, None, None, teardown_vpls),

"epipe": (setup_epipe, None, None, teardown_epipe),

"ethcfm" : (setup_ethcfm_domain, None, None, teardown_ethcfm_domain),

"business_vprn" : (setup_business_vprn, None, None, teardown_business_vprn),

"business_ies" : (setup_business_ies, None, None, teardown_business_ies),

"business_vpls" : (setup_business_vpls, None, None, teardown_business_vpls),

"business_epipe" : (setup_business_epipe, modify_business_epipe,

 revert_business_epipe, teardown_business_epipe)}

dyn.action(d)

The function-key string specified at the start of the “Alc-Dyn-Serv-Script-Params” (for example

Alc-Dyn-Serv-Script-Params:1 = “business_epipe={…}”) has a 1:1 mapping with the keys of the

dictionary “d” in the highlighted section of the above sample (for example d = { …,

"business_epipe" : (…)}. For services, different values for setup, modify, revert and teardown are

given which point to other sections in the Python script (see below). Setup and teardown functions

are mandatory, whereas modify and revert functions are optional.

In the unbolded text of the previous example, there are other actions defined that are not contained

in the RADIUS attributes (for example d = { "vprn": (…) , …). Those actions are referenced by

the four main functions.

RADIUS-Triggered Dynamic Data Service Provisioning

7750 SR Advanced Configuration Guide Page 2627

In the next part, there is more detail presented in each service example and maps it to the

corresponding Python function.

It is advisable to read through all examples, as only the deltas between each service are explicitly

explained.

Example 1 – Epipe service

copy of the RADIUS attributes from above

-snip-

 Alc-Dyn-Serv-SAP-Id:1 = "#:#.1",

 Alc-Dyn-Serv-Script-Params:1 = "business_epipe={'t':

 ('EPipe-CustomerName','CustomerName-Circuit-1','3','3','64496'

 ,'192.0.2.5','192.0.2.1','3333')}",

 Alc-Dyn-Serv-Policy:1 = "dynamic-services-2",

-snip-

Python-part

d = {

-snip-

"business_epipe" : (setup_business_epipe, modify_business_epipe,

 revert_business_epipe, teardown_business_epipe)

dyn.action(d)

-snip-

def setup_business_epipe(d):

 keys = ('inst', 'if_name', 'ing_qos', 'egr_qos', 'as', 'remote_ip',

 'local_ip', 'glb_svc_id')

 d = dict(zip(keys, d['t']))

 ref_d = dyn.reference("epipe", d['inst'], d)

 d['svc_id'] = ref_d['svc_id']

 d['sap_id'] = dyn.get_sap()

 dyn.add_cli("""

configure

 service

 epipe %(svc_id)s

 sap %(sap_id)s create

 description "%(if_name)s"

 ingress

 qos %(ing_qos)s

 exit

 egress

 qos %(egr_qos)s

 exit

 exit

 spoke-sdp-fec %(svc_id)s fec 129 aii-type 2 create

 pw-template-bind 2

 saii-type2 %(as)s:%(local_ip)s:%(glb_svc_id)s

 taii-type2 %(as)s:%(remote_ip)s:%(glb_svc_id)s

 no shutdown

 exit

 exit

 exit

exit

""" % d)

 return d

def setup_epipe(d):

Configuration

Page 2628 7750 SR Advanced Configuration Guide

 d['svc_id'] = dyn.select_free_id("service-id")

 dyn.add_cli("""

configure

 service

 epipe %(svc_id)s customer 1 create

 service-name "%(inst)s"

 description "%(inst)s"

 no shutdown

 exit

 exit

exit

""" % d)

 return {'svc_id':d['svc_id']}

def teardown_epipe(d):

 dyn.add_cli("""

configure

 service

 epipe %(svc_id)s

 shutdown

 exit

 no epipe %(svc_id)s

 exit

exit

""" % d)

def teardown_business_epipe(d):

 dyn.add_cli("""

configure

 service

 epipe %(svc_id)s

 sap %(sap_id)s

 shutdown

 exit

 spoke-sdp-fec %(svc_id)s

 shutdown

 exit

 no sap %(sap_id)s

 no spoke-sdp-fec %(svc_id)s

 exit

 exit

exit

""" % d)

-snip-

Based on the dictionary specified in the dyn.action(d) call, the function definition

“setup_business_epipe” in the Python script corresponds with the function that will be called if the

function-key “business-epipe” is specified in the “Alc-Dyn-Serv-Script-Params” attribute as

dictionary name and if a setup action is required. The dictionary containing the parameters in the

RADIUS VSA “Alc-Dyn-Serv-Script-Params” has a single key-value pair, with the parameters

stored in a tuple. The individual parameters cannot be identified with a keyword hence the order in

which they are specified in the RADIUS VSA should match the order in which they are extracted

in the Python script. The first two lines in this part of the script extract the parameters out of the

array “t” and link them to unique keywords, which are used for the rest of the script.

RADIUS-Triggered Dynamic Data Service Provisioning

7750 SR Advanced Configuration Guide Page 2629

The parameter “inst” is important in this logic, as it defines whether access circuits belong to the

same service-instance or different instances (the RADIUS VSAs for two SAPs belonging to the

same service therefore need to have the same “inst” value). If you look at the CLI of the

“setup_business_epipe” function, you can see that it creates the SAP and all related attributes, but

not the service itself. It is the “ref_d = dyn.reference("epipe", d['inst'], d)” that references a part in

the script to create the actual service-instance. The referenced function is found by using the first

parameter in the dyn.reference call (“epipe”) as a function-key lookup in the dictionary specified

in the dyn.action(d) and finding the corresponding setup function: d = { …, "epipe" : (setup_epipe,

…), …}. The second parameter (“d['inst']”) is used as unique identification of the service

instance. The last parameter (“d”) is a dictionary with parameters that can be used by the

references function. When the first customer endpoint with a new “inst” name comes up, the

service itself gets created.

By looking at “def setup_epipe(d):” the first line “d['svc_id'] = dyn.select_free_id("service-id")”

of the script automatically picks a free service-id out of the range defined in the dynamic service

policy, as no service ID was provided in the RADIUS parameters. The rest of this function creates

the service instance. Service attributes that were provided by RADIUS and are placed in a service

specific dictionary are available to this function via the third parameter in the dyn.reference call.

The newly generated service ID is returned to the calling script by the “return

{'svc_id':d['svc_id']}” command at the end of the function. The service specific dictionary (as

explained in the Python Script Building Block) is updated with the appropriate information.

Back to “def setup_business_epipe(d):”, the service ID together with the SAP ID and the

parameters from the Alc-Dyn-Serv-Script-Params VSA are used to create the appropriate CLI

code for the SAP and the SDP within the service.

Similar to the setup, there is also a teardown part for both service and SAP. The teardown function

is called either through the termination of the control-channel, through a COA with Alc-Dyn-

Script-Action = teardown or through a disconnect message. The CLI for the teardown script must

be written in the correct sequence as applied by the SR OS CLI logic so that SAP(s) and service(s)

are removed in the correct order.

Example 2 – VPRN service

RADIUS-part from above

-snip-

 Alc-Dyn-Serv-SAP-Id:2 += "#:#.2",

 Alc-Dyn-Serv-Script-Params:2 += "business_vprn={'t':

 ('9999','VPRN-CustomerName','64497','100000',

 'CustomerName-Circuit-1','172.16.10.1/30','3','1','3','2',

 '172.16.100.0/24','172.16.10.2','100')}",

 Alc-Dyn-Serv-Acct-Interim-Ivl-1:2 += "600",

 Alc-Dyn-Serv-Acct-Interim-Ivl-2:2 += "0",

 Alc-Dyn-Serv-Policy:2 += "dynamic-services-2",

-snip-

Python-part

d = {

-snip-

"business_vprn" : (setup_business_vprn, None, None, teardown_business_vprn)

Configuration

Page 2630 7750 SR Advanced Configuration Guide

dyn.action(d)

-snip-

def setup_business_vprn(d):

 keys = ('svc_id', 'inst', 'as_id', 'comm_id', 'if_name', 'ipv4_address',

 'ing_qos', 'ing_ip_filter', 'egr_qos', 'egr_ip_filter', 'lan_pfx',

 'nxt_hop', 'metric')

 d = dict(zip(keys, d['t']))

 ref_d = dyn.reference("vprn", d['inst'], d)

 d['sap_id'] = dyn.get_sap()

 dyn.add_cli("""

configure

 service

 vprn %(svc_id)s

 interface "%(if_name)s" create

 address %(ipv4_address)s

 urpf-check mode strict

 sap %(sap_id)s create

 ingress

 qos %(ing_qos)s

 filter ip %(ing_ip_filter)s

 exit

 egress

 qos %(egr_qos)s

 filter ip %(egr_ip_filter)s

 exit

 exit

 exit

 exit

 exit

 router

 static-route %(lan_pfx)s next-hop %(nxt_hop)s metric %(metric)s

 exit

exit

""" % d)

 return d

def setup_vprn(d):

 dyn.add_cli("""

configure

 service

 vprn %(svc_id)s customer 1 create

 service-name "%(inst)s"

 description "%(inst)s"

 autonomous-system %(as_id)s

 route-distinguisher %(as_id)s:%(comm_id)s

 auto-bind mpls

 vrf-target target:%(as_id)s:%(comm_id)s

 no shutdown

 exit

 exit

exit

""" % d)

 return {'svc_id':d['svc_id']}

def teardown_vprn(d):

 dyn.add_cli("""

configure

 service

 vprn %(svc_id)s

RADIUS-Triggered Dynamic Data Service Provisioning

7750 SR Advanced Configuration Guide Page 2631

 shutdown

 exit

 no vprn %(svc_id)s

 exit

exit

""" % d)

def teardown_business_vprn(d):

 dyn.add_cli("""

configure

 router

 no static-route %(lan_pfx)s next-hop %(nxt_hop)s

 exit

 service

 vprn %(svc_id)s

 interface "%(if_name)s"

 sap %(sap_id)s

 shutdown

 exit

 no sap %(sap_id)s

 shutdown

 exit

 no interface "%(if_name)s"

 exit

 exit

exit

""" % d)

-snip-

In this example of a VPRN service two additional RADIUS VSAs are used to overwrite the

accounting interim update intervals for the two RADIUS Accounting servers that are specified in

the dynamic services policy. The Stats-Type configuration (time or volume-time) is obtained from

the dynamic services policy as no RADIUS VSA is provided for that.

The beginning of the “setup_business_vprn” definition is identical to the earlier Epipe service

example. This time a service identifier is provided as part of the parameter list. The referenced

function to create the VPRN service (def setup_vprn) does not need the line to auto-generate the

service ID.

At the end of the setup-procedure there is a basic example to add static-route information in case

they are needed for PE-CE communication. Later on, in the IES service example, a more flexible

alternative is shown.

Example 3 – VPLS service

RADIUS-part from above

-snip-

 Alc-Dyn-Serv-SAP-Id:3 += "#:#.3",

 Alc-Dyn-Serv-Script-Params:3 += "business_vpls={'inst':

 'VPLS-CustomerName','if_name':'CustomerName-Circuit-1','ing_qos':'3',

 'egr_qos':'3','imp_comm_val':'10000','exp_comm_val':'10000',

 'rt':'64498','rd':'64498'}",

Configuration

Page 2632 7750 SR Advanced Configuration Guide

 Alc-Dyn-Serv-Policy:3 += "dynamic-services-2",

 Alc-Dyn-Serv-Acct-Interim-Ivl-1:3 += "0",

 Alc-Dyn-Serv-Acct-Interim-Ivl-2:3 += "0",

 Alc-Dyn-Serv-Acct-Stats-Type-1:3 += off,

 Alc-Dyn-Serv-Acct-Stats-Type-2:3 += off,

-snip-

Python-part

d = {

-snip-

"business_vpls" : (setup_business_vpls, None, None, teardown_business_vpls)

-snip-

def setup_business_vpls(d):

 ref_d = dyn.reference("vpls", d['inst'], d)

 d['svc_id'] = ref_d['svc_id']

 d['sap_id'] = dyn.get_sap()

 dyn.add_cli("""

configure

 service

 vpls %(svc_id)s

 sap %(sap_id)s create

 description "%(if_name)s"

 ingress

 qos %(ing_qos)s

 exit

 egress

 qos %(egr_qos)s

 exit

 collect-stats

 accounting-policy 10

 exit

 exit

 exit

exit

""" % d)

 return d

def setup_vpls(d):

 d['svc_id'] = dyn.select_free_id("service-id")

 dyn.add_cli("""

configure

 service

 vpls %(svc_id)s customer 1 create

 service-name "%(inst)s"

 description "%(inst)s"

 bgp

 route-distinguisher %(rd)s:%(exp_comm_val)s

 route-target export target:%(rt)s:%(exp_comm_val)s

 import target:%(rt)s:%(imp_comm_val)s

 pw-template-binding 1

 exit

 exit

 bgp-ad

 vpls-id %(rt)s:%(exp_comm_val)s

 no shutdown

 exit

 no shutdown

 exit

 exit

RADIUS-Triggered Dynamic Data Service Provisioning

7750 SR Advanced Configuration Guide Page 2633

exit

""" % d)

 return {'svc_id':d['svc_id']}

def teardown_vpls(d):

 dyn.add_cli("""

configure

 service

 vpls %(svc_id)s

 shutdown

 bgp-ad

 shutdown

 exit

 no bgp-ad

 bgp

 no pw-template-binding 1

 exit

 exit

 no vpls %(svc_id)s

 exit

exit

""" % d)

def teardown_business_vpls(d):

 dyn.add_cli("""

configure

 service

 vpls %(svc_id)s

 sap %(sap_id)s

 shutdown

 exit

 no sap %(sap_id)s

 exit

 exit

exit

""" % d)

-snip-

In the VPLS example the “Alc-Dyn-Serv-Acct-Stats-Type” is set to “off” for both RADIUS

accounting destinations, meaning RADIUS accounting is switched off, even if it is enabled in the

dynamic data services policy. In the script you can see that this service uses XML-accounting on

the SAP instead (“collect-stats” and “accounting-policy 10”).

The dictionary containing the parameters in the RADIUS VSA “Alc-Dyn-Serv-Script-Params”

has a key-value pair for each parameter. In the Python script the individual parameters can be

identified immediately with the dictionary key. The order in which they are specified in the

RADIUS VSA does not have to be strictly defined. The drawback of this approach is that the

length of the parameter VSA increases. A single parameter VSA is limited to a length of 246 bytes

and the total length of all parameter VSAs for a single service is limited to 1000 bytes.

Example 4 – IES service

RADIUS-part from above

-snip-

Configuration

Page 2634 7750 SR Advanced Configuration Guide

 Alc-Dyn-Serv-SAP-Id:4 += "#:#.4",

 Alc-Dyn-Serv-Script-Params:4 += "business_ies={'t':

 ('IES-CustomerName','CustomerName-Circuit-1','172.16.11.1/30',

 '2001:db8:5100:1000::1/64','5','1','1','6','2','2','5','25',

 'cfm-Mep-to-CPE','100',",

 Alc-Dyn-Serv-Script-Params:4 += "[{'to':'172.16.110.0/24',

 'n-h':'172.16.11.2'},{'to':'2001:db8:bbbb::/56',

 'n-h':'2001:db8:5100:1000::2'}])}",

 Alc-Dyn-Serv-Policy:4 += "dynamic-services-2",

 Alc-Dyn-Serv-Acct-Interim-Ivl-1:4 += "600",

 Alc-Dyn-Serv-Acct-Interim-Ivl-2:4 += "0",

 Alc-Dyn-Serv-Acct-Stats-Type-1:4 += "3",

 Alc-Dyn-Serv-Acct-Stats-Type-2:4 += "2",

-snip-

Python-part

d = {

-snip-

"business_ies" : (setup_business_ies, None, None, teardown_business_ies)

-snip-

def setup_business_ies(d):

 keys = ('inst', 'if_name', 'ipv4_address', 'ipv6_address', 'ing_qos',

 'ing_ip_filter', 'ing_ipv6_filter', 'egr_qos', 'egr_ip_filter',

 'egr_ipv6_filter', 'ing_bw', 'egr_bw', 'cfm_assoc_id', 'metric',

 'routes')

 d = dict(zip(keys, d['t']))

 ref_d = dyn.reference("ies", d['inst'], d)

 d['svc_id'] = ref_d['svc_id']

 d['sap_id'] = dyn.get_sap()

 d['cfm_domain'] = 1

 ref_d_cfm = dyn.reference("ethcfm", str(d['cfm_domain']), d)

 dyn.add_cli("""

configure

 eth-cfm

 domain %(cfm_domain)s

 association %(svc_id)s format string name "%(cfm_assoc_id)s"

 bridge-identifier %(svc_id)s

 exit

 ccm-interval 1

 remote-mepid 2

 exit

 exit

 exit

 service

 ies %(svc_id)s

 interface "%(if_name)s" create

 address %(ipv4_address)s

 urpf-check mode strict

 cflowd interface both

 ipv6

 address %(ipv6_address)s

 urpf-check mode strict

 exit

 sap %(sap_id)s create

 description "%(if_name)s"

 ingress

 scheduler-policy "Business Services"

 scheduler-override

 scheduler "root-t1" create

RADIUS-Triggered Dynamic Data Service Provisioning

7750 SR Advanced Configuration Guide Page 2635

 rate %(ing_bw)s000

 exit

 exit

 qos %(ing_qos)s

 filter ip %(ing_ip_filter)s

 filter ipv6 %(ing_ipv6_filter)s

 exit

 egress

 qos %(egr_qos)s

 filter ip %(egr_ip_filter)s

 filter ipv6 %(egr_ip_filter)s

 agg-rate-limit %(egr_bw)s000 queue-frame-based-accounting

 exit

 collect-stats

 accounting-policy 10

 eth-cfm

 mep 1 domain %(cfm_domain)s association %(svc_id)s direction down

 ccm-enable

 no shutdown

 exit

 exit

 exit

 urpf-check

 exit

 exit

 exit

 exit

 router

""" % d)

 for route in d['routes']:

 dyn.add_cli("""

 static-route %s next-hop %s metric %s tag 80

"""% (route["to"], route["n-h"], d['metric']))

 dyn.add_cli("""

 exit

exit

""" % d)

 return d

def setup_ies(d):

 d['svc_id'] = dyn.select_free_id("service-id")

 dyn.add_cli("""

configure

 service

 ies %(svc_id)s customer 1 create

 service-name "%(inst)s"

 description "%(inst)s"

 no shutdown

 exit

 exit

exit

""" % d)

 return {'svc_id':d['svc_id']}

def setup_ethcfm_domain(d):

 dyn.add_cli("""

configure

 eth-cfm

 domain %(cfm_domain)s format none level 1

Configuration

Page 2636 7750 SR Advanced Configuration Guide

 exit

 exit

exit

""" % d)

 return {'cfm_domain':d['cfm_domain']}

def teardown_ethcfm_domain(d):

 dyn.add_cli("""

configure

 eth-cfm

 no domain %(cfm_domain)s

 exit

exit

""" % d)

def teardown_ies(d):

 dyn.add_cli("""

configure

 service

 ies %(svc_id)s

 shutdown

 exit

 no ies %(svc_id)s

 exit

exit

""" % d)

def teardown_business_ies(d):

 dyn.add_cli("""

configure

 router

""")

 for route in d['routes']:

 dyn.add_cli("""

 no static-route %s next-hop %s

"""% (route["to"], route["n-h"]))

 dyn.add_cli("""

 exit

exit

""")

 dyn.add_cli("""

configure

 service

 ies %(svc_id)s

 interface "%(if_name)s"

 sap %(sap_id)s

 shutdown

 eth-cfm

 mep 1 domain %(cfm_domain)s association %(svc_id)s

 shutdown

 exit

 no mep 1 domain %(cfm_domain)s association %(svc_id)s

 exit

 exit

 no sap %(sap_id)s

 shutdown

 exit

 no interface "%(if_name)s"

 exit

RADIUS-Triggered Dynamic Data Service Provisioning

7750 SR Advanced Configuration Guide Page 2637

 exit

 eth-cfm

 domain %(cfm_domain)s

 association %(svc_id)s

 no bridge-identifier %(svc_id)s

 exit

 no association %(svc_id)s

 exit

 exit

exit

""" % d)

-snip-

The IES example has the most attributes. The maximum length of a tagged RADIUS VSA is 246

bytes. If the amount of data is too big to fit into one attribute, simply add a second or third one in

the syntax shown above in the RADIUS part. There is no need to separate the attributes exactly at

246 bytes; it can be cut at any position in the list (preferably between two attributes for better

readability). Note also that all the parameter VSAs that belong to the same service should have the

same tag (“:4” in this example).

In case of multiple parameter VSAs, the order in which they are specified is important and must be

guaranteed as the concatenation of all the attributes must result in a Python dictionary in the form:

“dictionary-name = {…}”. The Python script is not aware that multiple attributes were used.

Another difference to the previous examples is that there is not only a reference to the function for

the service creation, but also a similar reference to a function for Ethernet Connectivity Fault

Management (CFM). Considering that you may want to put all of the Eth-CFM endpoints under

the same domain within unique associations, the Eth-CFM domain needs to be created first and

torn down as last.

Finally, a different way to provide static-route information is shown at the end of the

“setup_business_ies” definition (starting with “for route in d['routes']:”). Also note the difference

in how this information is implemented at the end of the “Alc-Dyn-Serv-Script-Params” list. The

static routes themselves are defined as a dictionary and thus as many routes as required can be

added with this method. Compare this to the VPRN example where a more basic mechanism was

used.

As outlined before, dynamic data services can be triggered during the Access-Accept for the

control channel but also through a CoA to the control channel Accounting Session ID.

Example 5 – modify an Epipe service using CoA

So far the focus was on service establishment and teardown. It is also possible to change a running

dynamic data service using the “modify” function. This will be explained with the previously

configured Epipe service.

RADIUS attributes in the COA message

Configuration

Page 2638 7750 SR Advanced Configuration Guide

 Acct-Session-Id = D6E559000000BD5166BF34 #

 Alc-Dyn-Serv-SAP-Id:1 = "#:#.1",

 Alc-Dyn-Serv-Script-Params:1 = "business_epipe={'ing_qos':'4','egr_qos':'4'}",

 Alc-Dyn-Serv-Script-Action:1 = modify,

 Alc-Dyn-Serv-Policy:1 = "dynamic-services-2",

Python-part

d = {

-snip-

"business_epipe" : (setup_business_epipe, modify_business_epipe, revert_business_epipe,

teardown_business_epipe)}

dyn.action(d)

-snip-

def modify_business_epipe(d, sd):

 sd['ing_qos'] = d['ing_qos']

 sd['egr_qos'] = d['egr_qos']

 dyn.add_cli("""

configure

 service

 epipe %(svc_id)s

 sap %(sap_id)s

 ingress

 qos %(ing_qos)s

 exit

 egress

 qos %(egr_qos)s

 exit

 exit

 exit

 exit

exit

"""% sd)

 return sd

def revert_business_epipe(d, sd):

 dyn.add_cli("""

configure

 service

 epipe %(svc_id)s

 sap %(sap_id)s

 ingress

 qos %(ing_qos)s

 exit

 egress

 qos %(egr_qos)s

 exit

 exit

 exit

 exit

exit

""" % sd)

-snip-

Through the function-key in the parameter list (Alc-Dyn-Serv-Script-Params:1 =

"business_epipe= …) and the action attribute of “modify” (Alc-Dyn-Serv-Script-Action:1 =

modify), the script will identify the relevant routine to be invoked for the modification

RADIUS-Triggered Dynamic Data Service Provisioning

7750 SR Advanced Configuration Guide Page 2639

(modify_business_epipe). If a modify function is defined, there must also be a definition for a

revert function. A revert function cannot be initiated from RADIUS, but it is automatically

executed to restore the initial configuration in case the modify script execution fails.

A modify action for an existing service is triggered with a CoA message. For this CoA, either the

Accounting Session ID (ASID) of the control channel or the Accounting Session ID of the

dynamic data channel can be used. In case the ASID of the control channel is used, the “Alc-Dyn-

Serv-SAP-Id” can contain wildcards, as the appropriate port and VLAN information will be taken

from the control channel. If the ASID of the dynamic data channel itself is used, the “Alc-Dyn-

Serv-SAP-Id” needs to be fully specified, without wildcards. Otherwise the script execution will

fail.

For a modify action, the “Alc-Dyn-Serv-Script-Params” only contains the parameters to be

changed and does not need any further service identifying information. The service is identified

based on the ASID and the “Alc-Dyn-Serv-SAP-Id”. Parameters which have been previously

received by the setup or an earlier modify function are available in the stored dictionary (sd).

Those are combined with the dictionary in the RADIUS message (d). Service modifications which

relate to subsequent modifications, or for the service teardown, need to be updated in the stored

dictionary so that they can be used in those later actions. This is achieved by the “return sd”

command.

As with “manual” provisioned services, the new QoS settings from our example take effect

immediately.

A dynamic data service can also be disconnected using a RADIUS Disconnect Message

containing the Accounting Session ID of the dynamic data service, or indirectly via a RADIUS

Disconnect Message containing the Accounting Session ID of the control channel which would

result in a teardown of all associated dynamic data services.

Debugging

It is obvious that the Python scripts need extensive testing in the lab before they are deployed in

the field. This testing may require a number of iterations: write the script, testing, verification,

improvement and testing again. Every time there is a change in the Python script the node needs to

reload the script. This is achieved by a shutdown and no shutdown of the active script using the

command:

configure aaa radius-script-policy <script-policy-name> <primary/secondary> shutdown

configure aaa radius-script-policy <script-policy-name> <primary/secondary> no shutdown

Testing the script may result in some problems if certain aspects may not work as expected (see

also debug functions later in this section). It can be that a dynamically created service cannot be

removed properly because the teardown script contains errors and the whole service, or fragments

of that service, may still exist on the node.

Dynamic data services cannot be edited in normal CLI mode as it may potentially make a later

removal of that service through the script impossible. For troubleshooting there is a procedure to

Configuration

Page 2640 7750 SR Advanced Configuration Guide

manipulate those services during the testing phase, thus avoiding the need to reboot the box to

clear the state. The enable-dynamic-services-config command allows for the editing dynamic

services just like normal services. As this is an action that should only be executed by authorized

personnel, the activation of this command is protected by the use of a password, defined under

configure system security password dynsvc-password.

The show users command has been extended to visualize the respective mode ('D' indicates a user

is in dynamic service edit mode). A user in dynamic services edit mode cannot modify regular

services.

no enable-dynamic-services-config returns the user to normal mode.

To support the creation and the troubleshooting during the test phase the SR OS debug functions

have been extended extensively to allow for a detailed review of what is happening in the script

and on the CLI.

debug dynamic-services

debug dynamic-services scripts

debug dynamic-services scripts event

debug dynamic-services scripts event cli

debug dynamic-services scripts event errors

debug dynamic-services scripts event executed-cmd

debug dynamic-services scripts event state-change

debug dynamic-services scripts event warnings

debug dynamic-services scripts instance

debug dynamic-services scripts instance event

debug dynamic-services scripts instance event cli

debug dynamic-services scripts instance event errors

debug dynamic-services scripts instance event executed-cmd

debug dynamic-services scripts instance event state-change

debug dynamic-services scripts instance event warnings

debug dynamic-services scripts script

debug dynamic-services scripts script event

debug dynamic-services scripts script event cli

debug dynamic-services scripts script event errors

debug dynamic-services scripts script event executed-cmd

debug dynamic-services scripts script event state-change

debug dynamic-services scripts script event warnings

It is advised to enable all debug options when starting and then remove more and more debugs

options as the script becomes more complete and stable. The debug output gives clear indications

about errors in the script or its execution in case something goes wrong.

An additional aid is the use of “print” commands in the Python script itself for certain attributes

during the execution of the script. The print output will appear in the debug log. “Print” commands

in the Python script should only be used during the testing phase and not in the normal operations

mode.

The following command allows the execution of a dynamic services Python script without the

need for RADIUS interaction:

RADIUS-Triggered Dynamic Data Service Provisioning

7750 SR Advanced Configuration Guide Page 2641

tools perform service dynamic-services evaluate-script sap <sap-id> control-session <acct-

session-id> action <script-action> [dynsvc-policy <name>]

show service dynamic-services script statistics provides general statistics about script

execution.

show service dynamic-services script snippets displays the individual service configuration

parts and allows to check if all “snippets” are actually referenced (the counter will increment/

decrement with every function call).

In the case of a failed script action a SAP may not be deleted properly and it remains in the

configuration as an “orphaned” object. “show service dynamic-services saps orphaned” displays

orphaned objects.

An orphaned object no longer has any references, which can be seen using show service

dynamic-services root-objects where the snippet name and snippet instance is set to “N/A”.

Complete setup flow example

To finalize the section about the interaction between RADIUS and the Python script, the complete

setup flow for the Epipe example is shown using extracts from the debug output (any missing

sequence numbers in the flow below are simple acknowledge messages from RADIUS and are left

out to focus on the important information). The debug settings to be used for this output are the

following.

*A:BNG-1# show debug

debug

 router "Base"

 radius

 packet-type authentication accounting coa

 detail-level medium

 exit

 exit

 router "management"

 radius

 packet-type authentication accounting coa

 detail-level medium

 exit

 exit

 dynamic-services

 scripts

 event

 cli

 exit

 instance "dynamic-services-1"

 event

 cli

 exit

 exit

 exit

 exit

exit

Configuration

Page 2642 7750 SR Advanced Configuration Guide

The first sequence in the flow is the Access-Request to the RADIUS server for the control

channel. The information provided is that configured as part of the regular ESM configuration.

9 2013/04/12 20:47:23.73 UTC MINOR: DEBUG #2001 Base RADIUS

"RADIUS: Transmit

Access-Request(1) 172.31.1.2:1812 id 70 len 206 vrid 1 pol authentication-2

USER NAME [1] 24 subscriber12@domain2.com

NAS IP ADDRESS [4] 4 192.0.2.1

SERVICE TYPE [6] 4 Framed(2)

FRAMED PROTOCOL [7] 4 PPP(1)

CHAP PASSWORD [3] 17 1 0xd4b73e0a17c0ad7f03c19bc1db5c291d

CHAP CHALLENGE [60] 41

0x620fa5f8be193d2066f6abad96c7de2df03986e3421f9733220d9520137b0bf40b30edc9c92bea30a2

VSA [26] 29 DSL(3561)

AGENT CIRCUIT ID [1] 13 circuit-id-12

AGENT REMOTE ID [2] 12 remote-id-12

NAS PORT ID [87] 11 3/2/2:1.100

CALLING STATION ID [31] 17 00:00:64:01:02:03

NAS IDENTIFIER [32] 5 BNG-1

NAS PORT TYPE [61] 4 PPPoEoQinQ(34)

If the subscriber can be authenticated and authorized, RADIUS responds with an Access-Accept

containing attributes for both the control channel and the dynamic data service.

10 2013/04/12 20:47:23.73 UTC MINOR: DEBUG #2001 Base RADIUS

"RADIUS: Receive

 Access-Accept(2) id 70 len 211 from 172.31.1.2:1812 vrid 1 pol authentication-2

 VSA [26] 14 Alcatel(6527)

 SUBSC ID STR [11] 12 pppoe-user12

 FRAMED IP ADDRESS [8] 4 10.2.1.200

 VSA [26] 8 Alcatel(6527)

 DYN SERV SAP ID [164] 6 1 #:#.1

 VSA [26] 118 Alcatel(6527)

 DYN SERV SCRIPT PARAMS [165] 116 1 business_epipe={'t':('EPipe-CustomerName','Custom-

erName-Circuit-1','3','3','64496','192.0.2.5','192.0.2.1','3333')}

 VSA [26] 21 Alcatel(6527)

 DYN SERV POLICY [167] 19 1 dynamic-services-2

The existence of the Dyn Serv VSAs in the response triggers the BNG to start the execution of the

Python script, but first the control channel session is completely established and an accounting

start message is send to RADIUS. This is a standard accounting message for ESM subscribers.

11 2013/04/12 20:47:23.75 UTC MINOR: DEBUG #2001 Base RADIUS

"RADIUS: Transmit

 Accounting-Request(4) 172.31.1.2:1813 id 108 len 191 vrid 1 pol accounting-2

 STATUS TYPE [40] 4 Start(1)

 NAS IP ADDRESS [4] 4 192.0.2.1

 SERVICE TYPE [6] 4 Framed(2)

 FRAMED PROTOCOL [7] 4 PPP(1)

 FRAMED IP ADDRESS [8] 4 10.2.1.200

 FRAMED IP NETMASK [9] 4 255.255.255.255

 NAS IDENTIFIER [32] 5 BNG-1

 SESSION ID [44] 22 D6E559000000D2516872DB

 MULTI SESSION ID [50] 22 D6E559000000D3516872DB

RADIUS-Triggered Dynamic Data Service Provisioning

7750 SR Advanced Configuration Guide Page 2643

 EVENT TIMESTAMP [55] 4 1365799643

 NAS PORT TYPE [61] 4 PPPoEoQinQ(34)

 NAS PORT ID [87] 11 3/2/2:1.100

 VSA [26] 29 DSL(3561)

 AGENT CIRCUIT ID [1] 13 circuit-id-12

 AGENT REMOTE ID [2] 12 remote-id-12

 VSA [26] 14 Alcatel(6527)

 SUBSC ID STR [11] 12 pppoe-user12

"

Next, the creation of the dynamic data service starts. As this is the first SAP for this service, the

script which we reviewed above first creates the service instance.

12 2013/04/12 20:47:23.74 UTC MINOR: DEBUG #2001 Base dyn-script cli 1/1

"dyn-script cli 1/1: epipe:EPipe-CustomerName(cli 172 dict 0->31)

configure

 service

 epipe 1000 customer 1 create

 service-name "EPipe-CustomerName"

 description "EPipe-CustomerName"

 no shutdown

 exit

 exit

exit

"

Next, the SAP and the SDP are created within this service by the main function.

14 2013/04/12 20:47:23.74 UTC MINOR: DEBUG #2001 Base dyn-script cli 1/1

"dyn-script cli 1/1: business_epipe:3/2/2:1.1(cli 418 dict 0->308)

configure

 service

 epipe 1000

 sap 3/2/2:1.1 create

 description "CustomerName-Circuit-1"

 ingress

 qos 3

 exit

 egress

 qos 3

 exit

 exit

 spoke-sdp-fec 1000 fec 129 aii-type 2 create

 pw-template-bind 2

 saii-type2 64496:192.0.2.1:3333

 taii-type2 64496:192.0.2.5:3333

 no shutdown

 exit

 exit

 exit

exit

"

Configuration

Page 2644 7750 SR Advanced Configuration Guide

The service is created and is now active. As two RADIUS accounting destinations are configured

in the dynamic services policy a RADIUS Accounting-Start message is sent to each destination to

indicate the service is up.

16 2013/04/12 20:47:23.76 UTC MINOR: DEBUG #2001 Base RADIUS

"RADIUS: Transmit

 Accounting-Request(4) 172.31.1.2:1813 id 252 len 294 vrid 1 pol radius-server-policy-2

 STATUS TYPE [40] 4 Start(1)

 NAS IP ADDRESS [4] 4 192.0.2.1

 SESSION ID [44] 22 D6E559000000D4516872DB

 NAS PORT ID [87] 9 3/2/2:1.1

 DELAY TIME [41] 4 0

 NAS IDENTIFIER [32] 5 BNG-1

 EVENT TIMESTAMP [55] 4 1365799643

 MULTI SESSION ID [50] 22 D6E559000000D1516872DB

 USER NAME [1] 24 subscriber12@domain2.com

 VSA [26] 29 DSL(3561)

 AGENT CIRCUIT ID [1] 13 circuit-id-12

 AGENT REMOTE ID [2] 12 remote-id-12

 VSA [26] 117 Alcatel(6527)

 DYN SERV SCRIPT PARAMS [165] 115 business_epipe={'t':('EPipe-CustomerName','Custom-

erName-Circuit-1','3','3','64496','192.0.2.5','192.0.2.1','3333')}

"

15 2013/04/12 20:47:23.76 UTC MINOR: DEBUG #2001 Base RADIUS

"RADIUS: Transmit

 Accounting-Request(4) 172.31.1.2:1813 id 251 len 294 vrid 1 pol radius-server-policy-2

 STATUS TYPE [40] 4 Start(1)

 NAS IP ADDRESS [4] 4 192.0.2.1

 SESSION ID [44] 22 D6E559000000D4516872DB

 NAS PORT ID [87] 9 3/2/2:1.1

 DELAY TIME [41] 4 0

 NAS IDENTIFIER [32] 5 BNG-1

 EVENT TIMESTAMP [55] 4 1365799643

 MULTI SESSION ID [50] 22 D6E559000000D1516872DB

 USER NAME [1] 24 subscriber12@domain2.com

 VSA [26] 29 DSL(3561)

 AGENT CIRCUIT ID [1] 13 circuit-id-12

 AGENT REMOTE ID [2] 12 remote-id-12

 VSA [26] 117 Alcatel(6527)

 DYN SERV SCRIPT PARAMS [165] 115 business_epipe={'t':('EPipe-CustomerName','Custom-

erName-Circuit-1','3','3','64496','192.0.2.5','192.0.2.1','3333')}

"

For both RADIUS accounting destinations the interim accounting updates are also configured.

21 2013/04/12 20:51:46.69 UTC MINOR: DEBUG #2001 Base RADIUS

"RADIUS: Transmit

 Accounting-Request(4) 172.31.1.2:1813 id 173 len 511 vrid 1 pol radius-server-policy-1

 STATUS TYPE [40] 4 Interim-Update(3)

 NAS IP ADDRESS [4] 4 192.0.2.1

 SESSION ID [44] 22 D6E559000000D4516872DB

 NAS PORT ID [87] 9 3/2/2:1.1

 DELAY TIME [41] 4 0

 NAS IDENTIFIER [32] 5 BNG-1

 EVENT TIMESTAMP [55] 4 1365799906

 SESSION TIME [46] 4 125174

 MULTI SESSION ID [50] 22 D6E559000000D1516872DB

RADIUS-Triggered Dynamic Data Service Provisioning

7750 SR Advanced Configuration Guide Page 2645

 USER NAME [1] 23 subscriber12@domain2.com

 VSA [26] 27 DSL(3561)

 AGENT CIRCUIT ID [1] 12 circuit-id-12

 AGENT REMOTE ID [2] 11 remote-id-12

 VSA [26] 241 Alcatel(6527)

 DYN SERV SCRIPT PARAMS [165] 115 business_epipe={'t':('EPipe-CustomerName','Custom-

erName-Circuit-1','3','3','64496','192.0.2.5','192.0.2.1','3333')}

 INPUT_INPROF_OCTETS_64 [19] 10 0x00010000000000000000

 INPUT_OUTPROF_OCTETS_64 [20] 10 0x00010000000000000000

 INPUT_INPROF_PACKETS_64 [23] 10 0x00010000000000000000

 INPUT_OUTPROF_PACKETS_64 [24] 10 0x00010000000000000000

 INPUT_HIGH_OCTETS_OFFER_64 [73] 10 0x00010000000000000000

 INPUT_LOW_PACK_OFFER_64 [76] 10 0x00010000000000000000

 INPUT_HIGH_PACK_OFFER_64 [75] 10 0x00010000000000000000

 INPUT_LOW_OCTETS_OFFER_64 [74] 10 0x00010000000000000000

 INPUT_UNC_PACK_OFFER_64 [78] 10 0x00010000000000000000

 INPUT_UNC_OCTETS_OFFER_64 [77] 10 0x00010000000000000000

 INPUT_HIGH_PACK_DROP_64 [71] 10 0x00010000000000000000

 INPUT_LOW_PACK_DROP_64 [72] 10 0x00010000000000000000

 INPUT_HIGH_OCTETS_DROP_64 [69] 10 0x00010000000000000000

 INPUT_LOW_OCTETS_DROP_64 [70] 10 0x00010000000000000000

 OUTPUT_INPROF_OCTETS_64 [21] 10 0x0001000000000000033c

 VSA [26] 84 Alcatel(6527)

 OUTPUT_OUTPROF_OCTETS_64 [22] 10 0x00010000000000000000

 OUTPUT_INPROF_PACKETS_64 [25] 10 0x0001000000000000000b

 OUTPUT_OUTPROF_PACKETS_64 [26] 10 0x00010000000000000000

 OUTPUT_INPROF_PACK_DROP_64 [81] 10 0x00010000000000000000

 OUTPUT_OUTPROF_PACK_DROP_64 [82] 10 0x00010000000000000000

 OUTPUT_INPROF_OCTS_DROP_64 [83] 10 0x00010000000000000000

 OUTPUT_OUTPROF_OCTS_DROP_64 [84] 10 0x00010000000000000000

"

19 2013/04/12 20:48:56.69 UTC MINOR: DEBUG #2001 Base RADIUS

"RADIUS: Transmit

 Accounting-Request(4) 172.31.1.2:1813 id 253 len 241 vrid 1 pol radius-server-policy-2

 STATUS TYPE [40] 4 Interim-Update(3)

 NAS IP ADDRESS [4] 4 192.0.2.1

 SESSION ID [44] 22 D6E559000000D4516872DB

 NAS PORT ID [87] 9 3/2/2:1.1

 DELAY TIME [41] 4 0

 NAS IDENTIFIER [32] 5 BNG-1

 EVENT TIMESTAMP [55] 4 1365799736

 SESSION TIME [46] 4 125004

 MULTI SESSION ID [50] 22 D6E559000000D1516872DB

 USER NAME [1] 23 subscriber12@domain2.com

 VSA [26] 27 DSL(3561)

 AGENT CIRCUIT ID [1] 12 circuit-id-12

 AGENT REMOTE ID [2] 11 remote-id-12

 VSA [26] 61 Alcatel(6527)

 DYN SERV SCRIPT PARAMS [165] 115 business_epipe={'t':('EPipe-CustomerName','Custom-

erName-Circuit-1','3','3','64496','192.0.2.5','192.0.2.1','3333')}

"

The “Stats-Type” in the dynamic service policy (or obtained via RADIUS in a VSA) defines what

information is sent back to the accounting server (per server). In this example one was set to Stats-

Type “time” and the other to “volume-time”. The first accounting message displays the content of

“volume-time”. A full set of statistics counters per service class are provided for the dynamic

Configuration

Page 2646 7750 SR Advanced Configuration Guide

service. This is equivalent to the extended accounting statistics also provided in the ESM context.

The second accounting message shows the content of “time”. No volume statistics counters are

provided in this case.

Once the dynamic data services are instantiated they can be displayed with the regular show

commands.

A:BNG-1# show service service-using

===

Services

===

ServiceId Type Adm Opr CustomerId Service Name

1 VPLS Up Up 1 VPLS_For_Capture_SAPs

2 VPRN Up Up 1 VPRN_Control_Channel

3 VPRN Up Up 1 VPRN_REsidential_Subs

4 IES Up Up 1

10 VPRN Up Up 1

99 Mirror Up Up 1

500 Mirror Up Up 1

[1000] Epipe Up Up 1 EPipe-CustomerName

[1001] VPLS Up Up 1 VPLS-CustomerName

[1002] IES Up Up 1 IES-CustomerName

[5000] IES Up Up 1 IES-5000

[9999] VPRN Up Up 1 VPRN-CustomerName

10001 VPLS Up Up 1

10002 Epipe Up Up 1

-snip-

Matching Services : 20

Dynamic Services : 5, indicated by [<svc-id>]

===

The dynamically created services are shown in the standard service list with their service IDs

between brackets. It is possible to filter only the dynamic services using the origin dyn-script

option.

A:BNG-1# show service service-using origin dyn-script

===

Services

===

ServiceId Type Adm Opr CustomerId Service Name

[1000] Epipe Up Up 1 EPipe-CustomerName

[1001] VPLS Up Up 1 VPLS-CustomerName

[1002] IES Up Up 1 IES-CustomerName

[5000] IES Up Up 1 IES-5000

[9999] VPRN Up Up 1 VPRN-CustomerName

Matching Services : 5

Dynamic Services : 5, indicated by [<svc-id>]

RADIUS-Triggered Dynamic Data Service Provisioning

7750 SR Advanced Configuration Guide Page 2647

===

Similarly, the active SAPs can also be shown with the regular command.

A:BNG-1# show service sap-using

===

Service Access Points

===

PortId SvcId Ing. Ing. Egr. Egr. Adm Opr

 QoS Fltr QoS Fltr

3/2/1:*.100 1 1 none 1 none Up Up

3/2/1:*.200 1 1 none 1 none Up Up

3/2/2:*.100 1 1 none 1 none Up Up

[3/2/1:4.100] 2 1 none 1 none Up Up

[3/2/2:1.100] 2 1 none 1 none Up Up

3/2/2:1000.1000 2 1 none 1 none Up Up

[3/2/1:2.200] 3 1 none 1 none Up Up

[3/2/1:3.200] 3 1 none 1 none Up Up

3/2/1:1001.1001 3 1 none 1 none Up Up

3/2/2:500.500 3 1 none 1 none Up Up

3/2/2:100.100 4 1 none 1 none Up Up

3/2/2:99.99 99 1 none 1 none Up Up

[3/2/2:1.1] [1000] 3 none 3 none Up Up

[3/2/2:1.3] [1001] 3 none 3 none Up Up

[3/2/2:1.4] [1002] 5 ip4+ip6 6 ip4+i* Up Up

[3/2/1:4.3] [5000] 1 none 1 none Up Up

[3/2/2:1.2] [9999] 3 ip4 3 ip4 Up Up

3/2/1:99.99 10001 1 none 1 none Up Up

3/2/19:100 10001 1 none 1 none Up Up

3/2/20:100 10001 1 none 1 none Up Up

-snip-

Number of SAPs : 31

Number of Managed SAPs : 4, indicated by [<sap-id>]

Number of Dynamic Service SAPs : 5, indicated by [<sap-id>] [<svc-id>]

===

* indicates that the corresponding row element may have been truncated.

The description at the end of this show command explains how the dynamic services SAPs are

displayed. Note that there are managed SAPs created for the control channel as well as dynamic

data services SAPs.

If only the SAPs for dynamic data services should be displayed, the command show service sap-

using dyn-script can be used.

A:BNG-1# show service sap-using dyn-script

===

Service Access Points

===

PortId SvcId Ing. Ing. Egr. Egr. Adm Opr

 QoS Fltr QoS Fltr

Configuration

Page 2648 7750 SR Advanced Configuration Guide

[3/2/2:1.1] [1000] 3 none 3 none Up Up

[3/2/2:1.3] [1001] 3 none 3 none Up Up

[3/2/2:1.4] [1002] 5 ip4+ip6 6 ip4+i* Up Up

[3/2/1:4.3] [5000] 1 none 1 none Up Up

[3/2/2:1.2] [9999] 3 ip4 3 ip4 Up Up

Number of SAPs : 5

Number of Dynamic Service SAPs : 5, indicated by [<sap-id>] [<svc-id>]

===

* indicates that the corresponding row element may have been truncated.

RADIUS-Triggered Dynamic Data Service Provisioning

7750 SR Advanced Configuration Guide Page 2649

Conclusion

RADIUS-based dynamic data services provide an innovative way for business service

provisioning. They are created both automatically and instantaneously.

It removes the need for comprehensive integration tasks into the existing IT environment for

service provisioning and therefore speeds up the introduction of new service offerings, and thus

new revenue streams for the customer.

Conclusion

Page 2650 7750 SR Advanced Configuration Guide

	RADIUS-Triggered Dynamic Data Service Provisioning
	Applicability
	Overview
	Configuration
	Conclusion

