Routed CO

In This Chapter

This section provides information about Routed Central Office (Routed CO) configurations.

Topics in this section include:

- Applicability on page 2688
- Summary on page 2689
- Overview on page 2690
- Configuration on page 2693
- Conclusion on page 2733

Applicability

This example is applicable to the 7750 SR and SR-c series as well as the 7450 ESS series in mixed mode and was tested on SR-OS 11.0.R4. Chassis mode C or higher must be used.

Summary

In the Routed Central Office (Routed CO) model, subscriber management features are implemented on a Layer 3 subscriber interface, available in a VPRN or an IES service. Compared to regular Layer 3 interfaces, a subscriber-interface supports multiple SAP's, see later.

Customer originated traffic enters an Access Node (AN) and can be aggregated via either a Layer 2 or a Layer 3 aggregation network before being handled by a Broadband Network Gateway (BNG). Alternatively, an AN can be directly connected to the BNG.

Routed CO supports numbered, unnumbered and hybrid (combined numbered/unnumbered) subscriber interface configurations.

Enhanced Subscriber Management (ESM) is not mandatory for IPoEv4 in Routed CO, but is mandatory for PPPoE and all IPoEv6 scenarios.

The numbered and unnumbered scenarios in this example use an IES service with:

- Dual Stack IPoEv4 + IPoEv6
- Single stack PPPoEv4

General knowledge of Alcatel-Lucent's Triple Play Service Delivery Architecture is assumed throughout this section. Refer to the 7x50 SR OS Triple Play Guide.

Overview

The Routed CO model offers through the subscriber and group interface construct:

- Flexible subnet management
 - → Subnets can be shared across multiple access nodes.
- Support for different deployment models, for example:
 - → VLAN/service model.
 - → VLAN/subscriber model.
 - → VLAN/service/subscriber model.
 - → VLAN/access node model.
- Per group-interface load balancing in multi-chassis redundancy configurations. Redundancy is out of the scope of this example.

The components needed in the Routed CO model are depicted in Figure 407.

For the Routed CO model two interface types are needed:

- First, one or more subscriber interfaces must be created.
- Second, one or more group interfaces must be created within the subscriber interface context.

Figure 407: Components of the Routed CO Model

Subscriber Interface

A subscriber interface is a set of one or more group interfaces and identified by name.

A subscriber interface is created under an IES or VPRN service context, and supports up to 256 subnets (sum of IPv4 subnets and IPv6 prefixes).

Three types of subscriber interface configurations are available:

- Numbered subscriber interface.
- Unnumbered subscriber interface.
- Hybrid subscriber interface (numbered and unnumbered combined).

Subnet/Prefix Assignment

For the numbered scenario, the subscriber interface is configured with

- One or more IPv4 subnets
- One or more IPv6 subscriber prefixes:
 - → For WAN-hosts, using the DHCPv6 Identity Association for Non-temporary Addresses (IA_NA) option or Stateless Address Auto Configuration (SLAAC) and the prefix length is /64.
 - → For Prefix Delegation-hosts (PD-hosts), using the DHCPv6 Identity Association for Prefix Delegation (IA_PD) option and the prefix length is defined by the Delegated Prefix Length (DPL).

This allows for subscriber-host address assignment in these subnets/prefixes only.

For the unnumbered scenario, the subscriber interface is configured with:

- IPv4:
 - → No IPv4 subnets.
 - → The keyword **unnumbered** plus an interface in the same routing instance (for example the system interface). The IP address of the interface referenced in the unnumbered command is used in IPCP negotiation.
- IPv6:
 - → No IPv6 prefixes.
 - \rightarrow allow-unmatching-prefixes.

This allows for subscriber-host address assignment in any subnet/prefix. For IPv4, the keywords **unnumbered** and **allow-unmatching-subnets** are mutually exclusive.

Group Interface

For the hybrid scenario the subscriber interface is configured with:

- One or more IPv4 subnets and/or IPv6 subscriber prefixes.
- For IPv4: the keyword **allow-unmatching-subnets**.
- For IPv6: the keyword allow-unmatching-prefixes.

This allows for both subscriber-host address assignment within and outside of these subnets/prefixes.

Host IP Reachability

For the numbered scenario, host IP reachability requires:

- Adding the subscriber interfaces to the Interior Gateway Protocol (IGP).
- Or an export policy matching the subscriber interface subnets/prefixes.

For the unnumbered scenario, host IP reachability requires:

• An export policy matching the addresses of all individual subscriber hosts (from protocol sub-mgmt).

For the hybrid scenario, host IP reachability requires:

• An export policy matching both the subscriber interface subnets/prefixes as well as all individual subscriber hosts addresses.

Detailed examples of numbered/unnumbered/hybrid scenarios, including host IP reachability are included below.

Group Interface

A group interface is a set of one or more SAPs belonging to the same port and identified by name.

Configuration

This section covers:

- The definition of subscriber and group interfaces.
- A description of the numbered, unnumbered and hybrid scenarios.
- Options ensuring host IP reachability throughout the network.

Subscriber Interface

The configuration of the subscriber interface appears as follows.

```
configure
   service
            subscriber-interface "sub-int-1" create
                address 10.1.1.254/24
                address 10.1.2.254/24
                    delegated-prefix-len 56
                    link-local-address FE80::EA:48:FF
                    subscriber-prefixes
                       prefix 2001:DB8:101::/48 wan-host
                        prefix 2001:DB8:102::/48 pd
                       prefix 2001:DB8:F101::/48 wan-host
                       prefix 2001:DB8:F102::/48 pd
                exit.
           exit
            subscriber-interface "sub-int-2" create
                address 10.2.1.254/24
                address 10.2.2.254/24
                    delegated-prefix-len 56
                    link-local-address FE80::EA:48:FF
                    subscriber-prefixes
                       prefix 2001:DB8:201::/48 wan-host
                       prefix 2001:DB8:202::/48 pd
                       prefix 2001:DB8:F201::/48 wan-host
                        prefix 2001:DB8:F202::/48 pd
                    exit
                exit.
            exit
```

Notice that once a subnet/prefix is assigned to a subscriber interface, the subnet/prefix is tied to that interface, meaning that the same subnet/prefix cannot be used on another subscriber interface or regular interface in the same routing instance. When using VPRN for the Routed CO model, overlapping subnets/prefixes are allowed when on different VPRN services.

As long as no group interfaces are configured within the subscriber interface context, the subscriber interfaces are in the operationally down state as shown in the following output. The subscriber-interfaces, sub-int-1 and sub-int-2, are operational down since no group-interfaces have been assigned at this stage.

Interface Table (Router: Base)				
Interface-Name IP-Address	Adm	Opr(v4/v6)		Port/SapId PfxState
sub-int-1	Up	Down/Down	IES Sub	subscriber
10.1.1.254/24				n/a
10.1.2.254/24				n/a
2001:DB8:101::/48				INACCESSIBLE
2001:DB8:102::/48				INACCESSIBLE
2001:DB8:F101::/48				INACCESSIBLE
2001:DB8:F102::/48				INACCESSIBLE
FE80::EA:48:FF/64				INACCESSIBLE
ub-int-2	Up	Down/Down	IES Sub	subscriber
10.2.1.254/24				n/a
10.2.2.254/24				n/a
2001:DB8:201::/48				INACCESSIBLE
2001:DB8:202::/48				INACCESSIBLE
2001:DB8:F201::/48				INACCESSIBLE
2001:DB8:F202::/48				INACCESSIBLE
FE80::EA:48:FF/64				INACCESSIBLE
ystem	Up	Up/Up	Network	-
192.0.2.75/32				n/a
2001:DB8::75/128				PREFERRED
oDHCP-1	Up	Up/Up	Network	loopback
10.11.11.1/32				n/a
2001:DB8::11/128				PREFERRED
FE80::E84B:FFFF:FE00:0/64				PREFERRED
oRADIUS-1	Up	Up/Down	Network	1/1/10
192.168.202.75/24				n/a
nterfaces : 5				

The corresponding IPv4 routing table looks as follows.

*A:BNG# show router "Base" route-table ipv4 ====================================	-=====	======		:====
Dest Prefix[Flags] Next Hop[Interface Name]	Туре	Proto	Age Metric	Pref
10.11.11.1/32 toDHCP-1	Local	Local	00h30m12s 0	0
192.0.2.75/32 system	Local	Local	00h30m12s 0	0
192.168.202.0/24 toRADIUS-1	Local	Local	00h29m54s 0	0

```
No. of Routes: 3

Flags: L = LFA nexthop available B = BGP backup route available n = Number of times nexthop is repeated

*A:BNG#
```

The corresponding IPv6 routing table looks as follows.

```
*A:BNG# show router "Base" route-table ipv6
______
IPv6 Route Table (Router: Base)
Dest Prefix[Flags]
   Next Hop[Interface Name]
                                        Metric
______
                            Local Local 00h30m19s 0
0
Local Local 00h30m21s 0
2001:DB8::11/128
    toDHCP-1
2001:DB8::75/128
                                         0
   system
______
No. of Routes: 2
Flags: L = LFA nexthop available B = BGP backup route available
    n = Number of times nexthop is repeated
*A:BNG#
```

No subscriber interface subnets/prefixes are present in the IPv4 and the IPv6 routing table as the subscriber interfaces are operational down.

Group Interface

A group interface is created under the subscriber-interface hierarchy.

```
configure
   service
           subscriber-interface "sub-int-1" create
               group-interface "grp-int-1-1" create
                   ipv6
                   sap 1/1/1:111 create
                   exit
                   sap 1/1/1:112 create
                   exit
                exit
               group-interface "grp-int-1-2" create
                   exit
                   sap 1/1/1:121 create
                   exit
               exit
           exit
           subscriber-interface "sub-int-2" create
               group-interface "grp-int-2-1" create
                   ipv6
                   exit
                   sap 1/1/2:211 create
               group-interface "grp-int-2-2" create
                   exit
                   sap 1/1/3:221 create
                   exit
                   sap 1/1/3:222 create
                   exit
               exit
           exit
       exit
```

Static SAPs are created manually under the group-interface context. Managed SAPs (MSAPs) are dynamically created when a trigger packet (DHCP, DHCPv6, ARP, PPPoE) is successfully authenticated, which eliminates the provisioning of static SAPs. The creation and use of capture and managed SAPs (MSAPs) is explained in the example on Managed SAPs with Routed CO on page 2511.

A group interface is operationally up when at least one of its statically configured SAPs is operationally up or when no static SAPs are configured while the parameter **oper-up-while-empty** under the group-interface context is enabled. The following output shows all group interfaces are operationally up.

Interface Table (Router:	Base) 			
Interface-Name IP-Address	Adm	Opr(v4/v6)	Mode	Port/SapId PfxState
 grp-int-1-1	 Up	Up/Up	IES Grp	1/1/1
grp-int-1-2	Up	Up/Up	IES Grp	1/1/1
grp-int-2-1	Up	Up/Up	IES Grp	
grp-int-2-2	Up	Up/Up	IES Grp	1/1/3
sub-int-1	Up	Up/Up	IES Sub	subscriber
10.1.1.254/24				n/a
10.1.2.254/24				n/a
sub-int-2	Up	Up/Up	IES Sub	subscriber
10.2.1.254/24				n/a
10.2.2.254/24				n/a
system	Up	Up/Up	Network	system
192.0.2.75/32				n/a
toDHCP-1	Up	Up/Up	Network	loopback
10.11.11.1/32				n/a
toRADIUS-1	Up	Up/Down	Network	1/1/10
192.168.202.75/24				n/a

The IPv4 routing table includes the subnets configured on the subscriber-interfaces.

*A:BNG# show router "Base" route-table ipv4				
Route Table (Router: Base)				
Dest Prefix[Flags] Next Hop[Interface Name]	Туре	Proto	Age Metric	Pref
10.1.1.0/24 sub-int-1	Local	Local	00h25m32s 0	0
10.1.2.0/24 sub-int-1	Local	Local	00h25m32s 0	0
10.2.1.0/24 sub-int-2	Local	Local	00h25m32s 0	0
10.2.2.0/24 sub-int-2	Local	Local	00h25m32s 0	0
10.11.11.1/32 toDHCP-1	Local	Local	01h01m53s 0	0
192.0.2.75/32 system	Local	Local	01h01m53s 0	0
192.168.202.0/24 toRADIUS-1	Local	Local	01h01m36s 0	0

*A:BNG#

```
No. of Routes: 7

Flags: L = LFA nexthop available B = BGP backup route available n = Number of times nexthop is repeated

*A:BNG#
```

For IPv6, the interface table looks as follows.

*A:BNG# show router "Base" interface ipv6 ______ Interface Table (Router: Base) Opr(v4/v6) Mode Port/SapId TP-Address PfxState ______ Up Up/Up IES Grp 1/1/1
Up Up/Up IES Grp 1/1/1
Up Up/Up IES Grp 1/1/2
Up Up/Up IES Grp 1/1/2
Up Up/Up IES Grp 1/1/3
Up Up/Up IES Sub subscriber grp-int-1-1 grp-int-1-2 grp-int-2-1 grp-int-2-2 sub-int-1 2001:DB8:101::/48 PREFERRED 2001:DB8:102::/48 PREFERRED 2001:DB8:F101::/48 PREFERRED 2001:DB8:F102::/48 PREFERRED FE80::EA:48:FF/64 PREFERRED sub-int-2 Up Up/Up IES Sub subscriber 2001:DB8:201::/48 PREFERRED 2001:DB8:202::/48 PREFERRED 2001:DB8:F201::/48 PREFERRED 2001:DB8:F202::/48 PREFERRED FE80::EA:48:FF/64 PREFERRED Up/Up Network system Up system 2001:DB8::75/128 PREFERRED Up/Up toDHCP-1 Up Network loopback 2001:DB8::11/128 PREFERRED FE80::E84B:FFFF:FE00:0/64 PREFERRED Up/Down Network 1/1/10 t.oRADTUS-1 Uр Interfaces : 9 ______

The IPv6 routing table includes the prefixes configured on the subscriber interfaces.

*A:BNG# show re	outer "Base" route-table i	pv6 =======			
IPv6 Route Tab	le (Router: Base)				
Dest Prefix[Fl	ags] [Interface Name]	 Туре	Proto	Age Metric	Pref
2001:DB8::11/1		Local	Local	14d04h08m 0	0
2001:DB8::75/1	28	Local	Local	14d04h08m	0

*A:BNG# #

system			0	
2001:DB8:101::/48	Local	Local	14d03h10m	0
sub-int-1			0	
2001:DB8:102::/48	Local	Local	14d03h10m	0
sub-int-1			0	
2001:DB8:201::/48	Local	Local	14d03h08m	0
sub-int-2			0	
2001:DB8:202::/48	Local	Local	14d03h08m	0
sub-int-2			0	
2001:DB8:F101::/48	Local	Local	14d03h10m	0
sub-int-1			0	
2001:DB8:F102::/48	Local	Local	14d03h10m	0
sub-int-1			0	
2001:DB8:F201::/48	Local	Local	14d03h08m	0
sub-int-2			0	
2001:DB8:F202::/48	Local	Local	14d03h08m	0
sub-int-2			0	

No. of Routes: 10

Flags: L = LFA nexthop available $$\rm B=BGP\ backup\ route\ available\ }$ n = Number of times nexthop is repeated

*A:BNG#

Numbered Scenario

Figure 408 depicts the numbered scenario outlined below, including the connecting subscribers and subscriber hosts. Subscribers sub-11 and sub-44 are using PPPv4 hosts, and subscribers sub-22 and sub-33 are using dual stack DHCP hosts. Their VLANs and the MAC addresses are shown, as are the IP addresses and prefixes assigned once they are connected.

Figure 408: Numbered Scenario For IES 1

The configuration for the numbered scenario is shown below. Only the configuration items specific to the numbered scenario are shown.

In the numbered scenario the subscriber interfaces have following configuration:

- IPv4
 - \rightarrow Subnets.
 - \rightarrow no allow-unmatching-subnets.
 - \rightarrow no unnumbered.
- IPv6
 - → A delegated prefix length.
 - → subscriber prefixes.
 - \rightarrow no allow-unmatching-prefixes.

```
configure
   service
           subscriber-interface "sub-int-1" create
               address 10.1.1.254/24
                address 10.1.2.254/24
                    delegated-prefix-len 56
                    link-local-address FE80::EA:4B:FF
                    subscriber-prefixes
                       prefix 2001:DB8:101::/48 wan-host
                       prefix 2001:DB8:102::/48 pd
                    exit
                group-interface "grp-int-1-1" create
                       --- snip ---
                    exit
                    arp-populate
                    dhcp
                       --- snip ---
                       lease-populate 100
                       no shutdown
                    exit
                    authentication-policy "auth-pol-1"
                    local-proxy-arp
                    sap 1/1/1:111 create
                       anti-spoof ip-mac
                       sub-sla-mgmt
                        --- snip ---
                       exit
                    exit
                    sap 1/1/1:112 create
                       anti-spoof ip-mac
                       sub-sla-mgmt
                       --- snip ---
                       exit
```

```
exit
       pppoe
          --- snip ---
          no shutdown
       exit
    exit
    group-interface "grp-int-1-2" create
           --- snip ---
       exit
       arp-populate
       dhcp
           --- snip ---
          lease-populate 100
           no shutdown
       exit
       authentication-policy "auth-pol-1"
       local-proxy-arp
       sap 1/1/1:121 create
           anti-spoof ip-mac
           sub-sla-mgmt
           --- snip ---
           exit
       exit
       sap 1/1/1:122 create
           anti-spoof ip-mac
           sub-sla-mgmt
           --- snip ---
           exit
       exit
       pppoe
          --- snip ---
           no shutdown
       exit
   exit
exit
subscriber-interface "sub-int-2" create
   address 10.2.1.254/24
   address 10.2.2.254/24
       delegated-prefix-len 56
       link-local-address FE80::EA:4B:FF
       subscriber-prefixes
          prefix 2001:DB8:201::/48 wan-host
           prefix 2001:DB8:202::/48 pd
       exit
    group-interface "grp-int-2-1" create
           --- snip ---
       exit
       arp-populate
       dhcp
           --- snip ---
           lease-populate 100
           no shutdown
       exit
       authentication-policy "auth-pol-1"
       local-proxy-arp
```

```
sap 1/1/2:211 create
           anti-spoof ip-mac
           sub-sla-mgmt
           --- snip ---
           exit
        exit
        sap 1/1/2:212 create
          anti-spoof ip-mac
           sub-sla-mgmt
           --- snip ---
           exit
       exit
       pppoe
          --- snip ---
           no shutdown
        exit
    exit
    group-interface "grp-int-2-2" create
           --- snip ---
       exit
       arp-populate
            --- snip ---
           lease-populate 100
          no shutdown
        exit
       authentication-policy "auth-pol-1"
        local-proxy-arp
        sap 1/1/3:221 create
          anti-spoof ip-mac
           sub-sla-mgmt
           --- snip ---
           exit
        exit
        sap 1/1/3:222 create
          anti-spoof ip-mac
           sub-sla-mgmt
           --- snip ---
           exit
        exit
       pppoe
           --- snip ---
          no shutdown
       exit
   exit
no shutdown
```

The following parameters are mandatory for the routed CO model:

- **lease-populate** DHCPv4 lease state population is enabled by default on a group-interface with DHCPv4 configured as **no shutdown**. The number of leases allowed on each SAP of the group-interface must be configured. By default one single DHCPv4 host is allowed on each SAP. This parameter enables the creation of an ESM host table entry for each DHCPv4 lease. For DHCPv6 the ESM host table entry creation is implicit: no CLI parameter is required.
- **arp-populate** The ARP table is populated with dynamically learned entries from the DHCP lease state table or static entries from the static host table. The BNG does not send downstream ARPs for those managed ARP table entries.
- **local-proxy-arp** Enables user to user traffic in a split-horizon environment. The BNG responds with its own MAC address to ARP requests targeting subnets configured on the subscriber interface. If the ARP request is targeting a host of the same subscriber on the same SAP, the ARP request is silently discarded. This prevents traffic within a single bridged home to be attracted to the BNG. Local-proxy-arp is enabled by default.
- **anti-spoof** Checks the source MAC and/or source IP of the upstream subscriber traffic. This parameter is configured at the SAP level with values **ip-mac** (default), **ip** or **nh-mac**. With ESM enabled, anti-spoof must include the source mac (values **ip-mac** or **nh-mac**).

Optional settings are:

- description Can be used to assign a descriptive text to the item and used for administrative reasons.
- **delayed-enable** To be used in redundant configurations. It is expressed in seconds and defines the additional time the BNG waits before the interface is enabled.

Verification

The interfaces on the BNG are listed using following command. Notice that all subscriber and group interfaces are operational up for IPv4 and IPv6.

<pre>Interface Table (Router: Base)</pre>				
Interface-Name IP-Address	 Adm	Opr(v4/v6)	Mode	Port/SapId
grp-int-1-1	Up	Up/Up	IES Grp	1/1/1
grp-int-1-2	Up	Up/Up	IES Grp	1/1/1
grp-int-2-1	Up	Up/Up	IES Grp	1/1/2
grp-int-2-2	Up	Up/Up	IES Grp	1/1/3
sub-int-1	Up	Up/Up	IES Sub	subscriber
10.1.1.254/24				n/a
10.1.2.254/24				n/a
2001:DB8:101::/48				PREFERRED
2001:DB8:102::/48				PREFERRED
FE80::EA:48:FF/64				PREFERRED
sub-int-2	Up	Up/Up	IES Sub	subscriber
10.2.1.254/24				n/a
10.2.2.254/24				n/a
2001:DB8:201::/48				PREFERRED
2001:DB8:202::/48				PREFERRED
FE80::EA:48:FF/64				PREFERRED
system	Up	Up/Up	Network	system
192.0.2.75/32				n/a
2001:DB8::75/128				PREFERRED
toDHCP-1	Up	Up/Up	Network	loopback
10.11.11.1/32				n/a
2001:DB8::11/128				PREFERRED
FE80::E84B:FFFF:FE00:0/64				PREFERRED
toR1	Uр	Up/Up	Network	1/1/12
192.168.12.1/24		-		n/a
2001:DEAD::1/64				PREFERRED
FE80::E84B:FFFF:FE00:0/64				PREFERRED
toRADIUS-1	Uр	Up/Down	Network	1/1/10
192.168.202.75/24	-	-		n/a
Interfaces: 10				

Successfully created hosts have forwarding state Fwding. Hosts not in the Fwding state cannot forward any data.

```
A:BNG# show service id 1 subscriber-hosts

Subscriber Host table

Sap Subscriber

IP Address
```

Numbered Scenario

MAC Address	PPPoE-SID	Origin	Fwding State
1/1/1:111	sub-11		
10.1.1.11			
00:00:00:11:11:11	1	IPCP	Fwding
1/1/1:112	sub-22		
10.1.1.12			
00:00:00:22:22:22	N/A	DHCP	Fwding
1/1/1:112	sub-22		
2001:DB8:101:1::1/128	3		
00:00:00:22:22:22	N/A	IPoE-DHCP6	Fwding
1/1/1:112	sub-22		
2001:DB8:102:200::/50	5		
00:00:00:22:22:22	N/A	IPoE-DHCP6	Fwding
1/1/1:122	sub-33		
10.1.1.13			
00:00:00:33:33:33		DHCP	Fwding
1/1/1:122			
2001:DB8:101:2::1/128			
00:00:00:33:33:33		IPoE-DHCP6	Fwding
1/1/1:122			
2001:DB8:102:300::/56			
00:00:00:33:33:33		IPoE-DHCP6	Fwding
	sub-44		
10.2.2.11			
00:00:00:44:44:44	1	IPCP	Fwding
Number of subscriber ho			
A:BNG#			=========

The list of active subscribers can be displayed as follows.

A:BNG# show service active-subscribers
Active Subscribers
Subscriber sub-11 (sub-prof-1)
(1) SLA Profile Instance sap:1/1/1:111 - sla:sla-prof-1
IP Address
MAC Address PPPoE-SID Origin
10.1.1.11
00:00:00:11:11:11 1 IPCP
Subscriber sub-22 (sub-prof-1)
(1) SLA Profile Instance sap:1/1/1:112 - sla:sla-prof-1
IP Address
MAC Address PPPoE-SID Origin
10.1.1.12

2001:DB8:101:1:	00:00:00:22:22:22	N/A	DHCP
7001:DB8:101:1:	00:00:00:22:22:22	N/A	IPOE-DHCP6
2001:DB8:102:20		NI / D	IDAE DUODO
	00:00:00:22:22:22		
Subscriber sub-	*		
	Instance sap:1/1/		
IP Address			
	MAC Address		Origin
10.1.1.13			
2001:DB8:101:2:	00:00:00:33:33:33	N/A	DHCP
2001.080.101.2.	00:00:00:33:33:33	N/A	IPOE-DHCP6
2001:DB8:102:30		27 / 2	TD T DWGD6
	00:00:00:33:33:33	N/A 	1POE-DHCP6
Subscriber sub-	44 (sub-prof-1)		
	Instance sap:1/1/3		a:sla-prof-1
IP Address			
	MAC Address		=
10.2.2.11			
	00:00:00:44:44:44	1	IPCP
Number of active	e subscribers : 4		
A:BNG#			

Manually cross-referencing the SAPs from this output with the actual configuration shows the following for IPv4, and is depicted in Figure 408.

- Sub-11 and sub-22 are connected to the same subscriber and group interface (sub-int-1 and grp-int-1-1) but via different SAPs (1/1/1:111 and 1/1/1:112) and are sharing the same IPv4 subnet.
- Sub-33 is also connected to the same subscriber interface (sub-int-1) but via a different group-interface (grp-int-1-2). Sub-33 shares the same IPv4 subnet as sub-11 and sub-12, showing that the same subnet is shared across multiple group-interfaces.
- Sub-44 is connected to a different subscriber and group interface, and does not share a subnet with the other subscribers.

An alternative way to find where, for example, subscriber sub-33 is connected is shown below.

An alternative to find where, for example, IP address 10.1.1.13 is connected is shown below.

```
*A:BNG# show service id 1 dhcp lease-state ip-address 10.1.1.13 detail
______
DHCP lease states for service 1
Service ID : 1
IP Address : 10.1.1.13
Client HW Address : 00:00:00:33:33:33
Subscriber-interface : sub-int-1
Group-interface : grp-int-1-2
                 : 1/1/1:122
SAP
--- snip ---
Sub-Ident
                 : "sub-33"
Sub-Profile-String : "sub-prof-1"
SLA-Profile-String : "sla-prof-1"
App-Profile-String : ""
--- snip ---
DHCP Server Addr : 10.11.11.1
Radius User-Name : "00:00:00:33:33:33"
Number of lease states : 1
_____
*A:BNG#
```

For IPv6, the situation is as follows:

• Sub-22 and sub-33 are connected to the same subscriber interface (sub-int-1) but to different group interfaces. Both subscribers share the same IPv6 prefix for prefix-delegation (PD) and wan-host.

With these subscriber hosts connected, the IPv4 routing table (RIB) for the base router looks as follows.

Route Table (Router: Base)				
Dest Prefix[Flags] Next Hop[Interface Name]	Туре	Proto	Age Metric	Pref
10.1.1.0/24 sub-int-1	Local	Local	02h25m15s 0	0
10.1.1.11/32 [grp-int-1-1]	Remote	Sub Mgmt	02h25m10s 0	0
10.1.1.12/32 [grp-int-1-1]	Remote	Sub Mgmt	00h49m52s 0	0
10.1.1.13/32 [grp-int-1-2]	Remote	Sub Mgmt	00h47m40s 0	0
10.1.2.0/24 sub-int-1	Local	Local	02h25m15s 0	0
10.2.1.0/24 sub-int-2	Local	Local	02h25m15s 0	0
10.2.2.0/24 sub-int-2	Local	Local	02h25m15s 0	0
10.2.2.11/32 [grp-int-2-2]	Remote	Sub Mgmt	02h25m10s 0	0
10.11.11.1/32 toDHCP-1	Local	Local	02h25m33s 0	0
192.0.2.75/32 system	Local	Local	02h25m33s 0	0
192.0.2.76/32 192.168.12.2	Remote	ISIS	02h24m43s 10	15
192.168.12.0/24 toR1	Local	Local	02h25m15s 0	0
192.168.202.0/24 toRADIUS-1	Local	Local	02h25m15s 0	0
No. of Routes: 13 Flags: L = LFA nexthop available B = F n = Number of times nexthop is rep	peated			

The IPv6 routing table (RIB) for the base router displays as follows.

*A:BNG#

Next Hop[Interface Name]			Metric	
2001:DB8::11/128 toDHCP-1	Local	Local	02h27m23s 0	0
2001:DB8::75/128 system	Local	Local	02h27m24s	0
2001:DB8::76/128 FE80::E84C:FFFF:FE00:0-"toR1"	Remote	ISIS	02h26m32s 10	15
2001:DB8:101::/48 sub-int-1	Local	Local	02h27m06s 0	0
2001:DB8:101:1::1/128 [grp-int-1-1]	Remote	Sub Mgmt	01h13m43s 0	0
2001:DB8:101:2::1/128 [grp-int-1-2]	Remote	Sub Mgmt	01h13m25s 0	0
2001:DB8:102::/48 sub-int-1	Local	Local	02h27m06s 0	0
2001:DB8:102:200::/56 [grp-int-1-1]	Remote	Sub Mgmt	01h13m43s 0	0
2001:DB8:102:300::/56 [grp-int-1-2]	Remote	Sub Mgmt	01h13m25s 0	0
2001:DB8:201::/48 sub-int-2	Local	Local	02h27m06s 0	0
2001:DB8:202::/48 sub-int-2	Local	Local	02h27m06s 0	0
2001:DEAD::/64 toR1	Local	Local	02h27m05s 0	0
No. of Routes: 12 Flags: L = LFA nexthop available B = BGP k n = Number of times nexthop is repeate	ed			

The corresponding IPv4 FIB on card 1 looks as follows.

*A:BNG# show router "Base" fib 1 ipv4	
FIB Display	
Prefix NextHop	Protocol
10.1.1.0/24	LOCAL
10.1.1.0 (sub-int-1) 10.1.2.0/24 10.1.2.0 (sub-int-1)	LOCAL
10.2.1.0/24	LOCAL
10.2.1.0 (sub-int-2) 10.2.2.0/24 10.2.2.0 (sub-int-2)	LOCAL
10.2.2.0 (Sub-Int-2) 10.11.11.1/32 10.11.11.1 (toDHCP-1)	LOCAL
192.0.2.75/32	LOCAL
192.0.2.75 (system) 192.0.2.76/32	ISIS
192.168.12.2 (toR1) 192.168.12.0/24 192.168.12.0 (toR1)	LOCAL

```
192.168.202.0/24 LOCAL
192.168.202.0 (toRADIUS-1)

Total Entries : 9

*A:BNG#
```

The corresponding IPv6 FIB on card 1 is as follows.

```
*A:BNG# show router "Base" fib 1 ipv6
______
FIB Display
Prefix
                                                    Protocol
2001:DB8::11/128
                                                    LOCAL
  2001:DB8::11 (toDHCP-1)
2001:DB8::75/128
                                                    LOCAL
   2001:DB8::75 (system)
2001:DB8::76/128
                                                    ISIS
   FE80::E84C:FFFF:FE00:0 (toR1)
2001:DB8:101::/48
                                                    LOCAL
  2001:DB8:101:: (sub-int-1)
2001:DB8:102::/48
                                                    LOCAL
   2001:DB8:102:: (sub-int-1)
2001:DB8:201::/48
                                                    LOCAL
  2001:DB8:201:: (sub-int-2)
2001:DB8:202::/48
                                                    LOCAL
   2001:DB8:202:: (sub-int-2)
2001:DEAD::/64
                                                    LOCAL
  2001:DEAD:: (toR1)
Total Entries : 8
*A:BNG#
```

The addresses of the individual subscriber hosts show up in the RIB but they do not show up in the FIB

- /32 for IPv4-hosts.
- /DPL (Delegated Prefix Length) for IPv6 DP hosts, /56 in this example.
- /128 or /64 for IPv6 wan host.

Downstream traffic is forwarded based on a subscriber host table lookup. For specific network designs, subscriber host IPv4 addresses can optionally be included in the FIB with the populate-host-routes statement added to the subnet configuration. This is out of scope of this example.

Unnumbered Scenario

Figure 409 depicts the unnumbered scenario outlined below, including the connecting subscribers and subscriber hosts. Sub-11 and sub-44 are using single stack PPPoEv4 hosts, and sub-22 and sub-33 are using dual stack DHCP hosts. Their VLANs and the MAC addresses are shown, as are the IP addresses and prefixes assigned once they are connected.

Figure 409: Unnumbered Scenario for IES 1

The configuration for the unnumbered scenario is show below. Only the configuration items specific to the unnumbered scenario are shown.

In the unnumbered scenario the subscriber interfaces have following properties:

- IPv4:
 - → No subnets configured.
 - → unnumbered, with an IPv4 interface or an IPv4 address used for IPCP negotiation.
 - \rightarrow no allow-unmatching-subnets.
- IPv6:
 - → No subscriber prefixes configured.
 - \rightarrow allow-unmatching-prefixes.

```
configure
   service
           subscriber-interface "sub-int-1" create
                unnumbered "system"
                ipv6
                   delegated-prefix-len 56
                   allow-unmatching-prefixes
                   link-local-address FE80::EA:4B:FF
                exit
                group-interface "grp-int-1-1" create
                       --- snip ---
                   exit
                   arp-populate
                   dhcp
                       --- snip ---
                       lease-populate 100
                       no shutdown
                   authentication-policy "auth-pol-1"
                    sap 1/1/1:111 create
                       anti-spoof ip-mac
                       sub-sla-mgmt
                           --- snip ---
                       exit
                    exit
                    sap 1/1/1:112 create
                       anti-spoof ip-mac
                       sub-sla-mgmt
                           --- snip ---
                       exit
                    exit
                   pppoe
                       --- snip ---
                       no shutdown
                group-interface "grp-int-1-2" create
                       --- snip ---
                    exit
                   arp-populate
                    dhcp
```

```
--- snip ---
           lease-populate 100
           no shutdown
        exit
       authentication-policy "auth-pol-1"
       sap 1/1/1:121 create
           anti-spoof ip-mac
           sub-sla-mgmt
               --- snip ---
           exit
        sap 1/1/1:122 create
           anti-spoof ip-mac
           sub-sla-mgmt
              --- snip ---
           exit
       exit
           --- snip ---
          no shutdown
       exit.
exit
subscriber-interface "sub-int-2" create
   unnumbered "system"
   ipv6
       delegated-prefix-len 56
       allow-unmatching-prefixes
       link-local-address FE80::EA:4B:FF
    exit
    group-interface "grp-int-2-1" create
          --- snip ---
       exit
       arp-populate
       dhcp
           --- snip ---
           lease-populate 100
           no shutdown
       authentication-policy "auth-pol-1"
       sap 1/1/2:211 create
           anti-spoof ip-mac
           sub-sla-mgmt
               --- snip ---
           exit
        sap 1/1/2:212 create
           anti-spoof ip-mac
           sub-sla-mgmt
              --- snip ---
           exit
       exit
           --- snip ---
          no shutdown
       exit
    group-interface "grp-int-2-2" create
```

```
ipv6
          --- snip ---
       exit
       arp-populate
       dhcp
           --- snip ---
          lease-populate 100
           no shutdown
       exit
       authentication-policy "auth-pol-1"
       sap 1/1/3:221 create
           anti-spoof ip-mac
           sub-sla-mgmt
              --- snip ---
       exit
       sap 1/1/3:222 create
           sub-sla-mgmt
           anti-spoof ip-mac
           sub-sla-mgmt
            --- snip ---
           exit
           exit
       exit
          --- snip ---
          no shutdown
       exit
   exit
exit
no shutdown
```

The same mandatory and optional settings as for the numbered scenario apply.

Verification

The interfaces on the BNG are listed using following command. Notice that all subscriber and group interfaces are operational up for IPv4 and IPv6.

Interface Table (Router: Base)				
Interface-Name IP-Address	Adm	Opr(v4/v6)	Mode	Port/SapId PfxState
grp-int-1-1	Up	Up/Up	IES Grp	1/1/1
grp-int-1-2	Up	Up/Up	IES Grp	1/1/1
grp-int-2-1	Up	Up/Up	IES Grp	1/1/2
grp-int-2-2	Up	Up/Up	IES Grp	1/1/3
lb-pool4-1	Up	Up/Down	Network	loopback
10.1.1.254/24				n/a
lb-pool4-2	Up	Up/Down	Network	loopback
10.1.2.254/24				n/a
lb-pool4-3	Up	Up/Down	Network	loopback
10.2.1.254/24	-	_		n/a
lb-pool4-4	Up	Up/Down	Network	loopback
10.2.2.254/24	-	_		n/a
sub-int-1	Up	Up/Up	IES Sub	subscriber
Unnumbered If[system]	-			n/a
FE80::EA:4B:FF/64				PREFERRED
sub-int-2	qU	Up/Up	IES Sub	subscriber
Unnumbered If[system]	-	- · -		n/a
FE80::EA:4B:FF/64				PREFERRED
system	qU	qU/qU	Network	system
192.0.2.75/32	-	1. 1		n/a
2001:DB8::75/128				PREFERRED
toDHCP-1	qU	qU/qU	Network	loopback
10.11.11.1/32	- 1	-1, -1		n/a
2001:DB8::11/128				PREFERRED
FE80::E84B:FFFF:FE00:0/64				PREFERRED
toR1	Uр	Up/Down	Network	
192.168.12.1/24	- I-	-F-/ · · · · ·		n/a
toRADIUS-1	Ŭр	Up/Down	Network	, -
192.168.202.75/24	- I-	-F-/ · · · · ·		n/a
Interfaces : 14				

Page 2716

Successfully created hosts have forwarding state Fwding. Hosts not in the Fwding state cannot forward any data.

```
*A:BNG# show service id 1 subscriber-hosts
   _____
Subscriber Host table
                 Subscriber
 IP Address
  MAC Address
                  PPPoE-SID Origin
                                     Fwding State
1/1/1:111
                 sub-11
 10.1.1.101
   00:00:00:11:11:11 1
                          IPCP
           sub-22
1/1/1:122
 10.2.2.1
  00:00:00:22:22:22 N/A DHCP Fwding
/1:122 sub-22
1/1/1:122
 2001:DB8:101::1/128
   00:00:00:22:22:22 N/A IPOE-DHCP6 Fwding /1:122 sub-22
1/1/1:122
 2001:DB8:102::/56
   00:00:00:22:22:22 N/A
                          IPoE-DHCP6 Fwding
1/1/2:211
                 sub-33
 10.2.2.2
   00:00:00:33:33:33 N/A
/2:211 sub-33
                          DHCP Fwding
1/1/2:211
 2001:DB8:101:1::1/128
  00:00:00:33:33:33 N/A IPOE-DHCP6 Fwding /2:211 sub-33
1/1/2:211
 2001:DB8:102:100::/56
   00:00:00:33:33:33 N/A
                          IPoE-DHCP6 Fwding
1/1/2:212
                 sub-44
 10.1.1.102
  00:00:00:44:44:44 1 IPCP
Number of subscriber hosts : 8
______
*A:BNG#
```

A variant of the show service active-subscribers command shows the subscriber hierarchy.

```
|-- sap:1/1/1:122 - sla:sla-prof-1
    |-- 10.2.2.1
    | 00:00:00:22:22:22 - N/A (DHCP)
    |-- 2001:DB8:101::1/128
       00:00:00:22:22:22 - N/A (IPOE-DHCP6)
    |-- 2001:DB8:102::/56
    | 00:00:00:22:22:22 - N/A (IPOE-DHCP6)
  -- sub-33 (sub-prof-1)
  |-- sap:1/1/2:211 - sla:sla-prof-1
    |-- 10.2.2.2
    | 00:00:00:33:33:33 - N/A (DHCP)
     |-- 2001:DB8:101:1::1/128
     | 00:00:00:33:33:33 - N/A (IPOE-DHCP6)
  | |-- 2001:DB8:102:100::/56
    00:00:00:33:33:33 - N/A (IPOE-DHCP6)
  -- sub-44 (sub-prof-1)
  |-- sap:1/1/2:212 - sla:sla-prof-1
  | |-- 10.1.1.102
  | 00:00:00:44:44:44 - 1 (IPCP)
  ______
*A:BNG#
```

Manually cross-referencing the SAPs from this output with the actual configuration shows the following for IPv4, and is represented in Figure 409.

- Sub-11 and sub-44 share the same IPv4 subnet even though they are connected to different subscriber interfaces.
- Sub-22 and sub-33 share the same subnet even though they are connected to different subscriber interfaces.

For IPv6 the situation is as follows:

• Sub-22 and sub-33 are in different subscriber interfaces and do not share IPv6 prefixes in this example.

With these subscriber hosts are connected, the IPv4 RIB for the base router looks as follows.

Dest Prefix[Flags] Next Hop[Interface Name]	Туре	Proto	Age Metric	Pref
10.1.1.0/24 lb-pool4-1	Local	Local	00h49m42s 0	0
10.1.1.101/32 [grp-int-1-1]	Remote	Sub Mgmt	00h23m24s 0	0
10.1.1.102/32 [grp-int-2-1]	Remote	Sub Mgmt	00h02m32s 0	0
10.1.2.0/24 lb-pool4-2	Local	Local	00h49m42s 0	0
10.2.1.0/24 lb-pool4-3	Local	Local	00h49m42s 0	0
10.2.2.0/24 lb-pool4-4	Local	Local	00h49m42s 0	0
10.2.2.1/32 [grp-int-1-2]	Remote	Sub Mgmt	00h27m18s 0	0
10.2.2.2/32 [grp-int-2-1]	Remote	Sub Mgmt	00h27m10s 0	0
10.11.11.1/32 toDHCP-1	Local	Local	00h49m42s 0	0
192.0.2.75/32 system	Local	Local	00h49m42s 0	0
192.0.2.76/32 192.168.12.2	Remote	ISIS	00h41m48s 10	15
192.168.12.0/24 toR1	Local	Local	00h49m24s 0	0
192.168.202.0/24 toRADIUS-1	Local	Local	00h49m24s 0	0
No. of Routes: 13 Flags: L = LFA nexthop available B = BGP 1 n = Number of times nexthop is repeate	ed			

The IPv6 RIB for the base router looks as follows.

.A:BNG# show router "Base" route-table ipv6				
IPv6 Route Table (Router: Base)				
Dest Prefix[Flags] Next Hop[Interface Name]	Туре	Proto	Age Metric	Pref
2001:DB8::11/128 toDHCP-1	Local	Local	01h03m27s 0	0
2001:DB8::75/128 system	Local	Local	00h06m34s 0	0
2001:DB8:101::1/128 [grp-int-1-2]	Remote	Sub Mgmt	00h36m12s 0	0
2001:DB8:101:1::1/128 [grp-int-2-1]	Remote	Sub Mgmt	00h35m58s 0	0
2001:DB8:102::/56 [grp-int-1-2]	Remote	Sub Mgmt	00h36m12s 0	0
2001:DB8:102:100::/56 [grp-int-2-1]	Remote	Sub Mgmt	00h35m58s 0	0

A:BNG#

Unnumbered Scenario

The corresponding IPv4 FIB on card 1 looks as follows.

FIB Display ====================================	
Prefix NextHop	Protocol
10.1.1.0/24	LOCAL
10.1.1.0 (lb-pool4-1)	
10.1.1.101/32	LOCAL
10.1.1.101 (sub-int-1)	
10.1.1.102/32	LOCAL
10.1.1.102 (sub-int-2)	
10.1.2.0/24	LOCAL
10.1.2.0 (lb-pool4-2)	
10.2.1.0/24	LOCAL
10.2.1.0 (lb-pool4-3)	
10.2.2.0/24	LOCAL
10.2.2.0 (lb-pool4-4)	
10.2.2.1/32	LOCAL
10.2.2.1 (sub-int-1)	
10.2.2.2/32	LOCAL
10.2.2.2 (sub-int-2)	
10.11.11.1/32	LOCAL
10.11.11.1 (toDHCP-1)	
192.0.2.75/32	LOCAL
192.0.2.75 (system)	
192.0.2.76/32	ISIS
192.168.12.2 (toR1)	
192.168.12.0/24	LOCAL
192.168.12.0 (toR1)	
192.168.202.0/24	LOCAL
192.168.202.0 (toRADIUS-1)	
Total Entries : 13	

The corresponding IPv6 FIB on card 1 looks as follows:

```
A:BNG# show router "Base" fib 1 ipv6
______
  NextHop
2001:DB8::11/128
                                                  LOCAL
  2001:DB8::11 (toDHCP-1)
2001:DB8::75/128
                                                  LOCAL
  2001:DB8::75 (system)
2001:DB8:101::1/128
                                                  LOCAL
  2001:DB8:101::1 (sub-int-1)
2001:DB8:101:1::1/128
                                                  LOCAL
  2001:DB8:101:1::1 (sub-int-2)
2001:DB8:102::/56
                                                  LOCAL
  2001:DB8:102:: (sub-int-1)
2001:DB8:102:100::/56
                                                  LOCAL
  2001:DB8:102:100:: (sub-int-2)
Total Entries : 6
A:BNG#
```

The addresses of the individual subscriber hosts appear in the RIB and the FIB, which is the main difference with the numbered model. The forwarding plane here needs the individual addresses to forward the traffic towards the individual subscriber hosts.

Hybrid Scenario

An alternative to the scenarios described above does exist in the form of a mixed numbered/unnumbered (hybrid) scenario as depicted in Figure 410.

The subscriber interface is configured with

- One or more IPv4 subnets and/or IPv6 subscriber prefixes.
- For IPv4: the keyword **allow-unmatching-subnets**.
- For IPv6: the keyword **allow-unmatching-prefixes**.

No explicit configuration is shown as it is a mix of the numbered and the unnumbered scenario described above, and as such the behavior is mixed.

Figure 410: Hybrid Configuration

Host IP Reachability

To ensure reachability to the individual subscriber hosts, the subnets and prefixes of the subscriber interfaces/subscriber hosts need to be distributed to other routers in the network.

Three options are available:

- Without an export policy.
- With an export policy using, for example, from protocol direct.
- With an export policy using, for example, from protocol sub-mgmt.

Option 1 – No Export Policy

The key properties for the first option are:

- Subscriber interface subnets and prefixes are distributed into the network by adding the subscriber interfaces as passive interfaces to the routing protocol.
- It is used in combination with IGP based route distribution.
- It works with the numbered model only.

In this option the BNG uses IS-IS as IGP and no export policy is needed.

```
configure
   router
      isis
           area-id 48.0001
           multi-topology
               ipv6-unicast
           exit
           interface "system"
               no shutdown
           exit
           interface "sub-int-1"
               no shutdown
           interface "sub-int-2"
               passive
                no shutdown
           exit
            interface "toR1"
               interface-type point-to-point
               no shutdown
           evit
           no shutdown
        exit
```

The corresponding IPv4 RIB on router R1 (from Figure 407) lists the subscriber-interface subnets, not the individual subscriber host addresses.

Route Table (Router: Base)				
Dest Prefix[Flags] Next Hop[Interface Name]	Туре	Proto	Age Metric	Pref
10.1.1.0/24 192.168.12.1	Remote	ISIS	00h14m11s 20	15
10.1.2.0/24	Remote	ISIS	00h14m11s 20	15
10.2.1.0/24	Remote	ISIS	00h14m05s 20	15
10.2.2.0/24 192.168.12.1	Remote	ISIS	00h14m05s 20	15
192.0.2.75/32 192.168.12.1	Remote	ISIS	00h14m17s 10	15
192.0.2.76/32 system	Local	Local	62d21h22m 0	0
192.168.12.0/24 toBNG	Local	Local	05d04h43m 0	0
No. of Routes: 7 Flags: L = LFA nexthop available B = BGP n = Number of times nexthop is repeat	backup ro	oute avail	lable	

The corresponding IPv6 RIB on router R1 lists the subscriber-interface prefixes, not the individual subscriber host addresses/prefixes.

IPv6 Route Table (Router: Base)				
Dest Prefix[Flags] Next Hop[Interface Name]	Type	Proto	Age Metric	Pref
2001:DB8::75/128 FE80::E84B:FFFF:FE00:0-"toBNG"	Remote	ISIS	00h04m25s 10	15
2001:DB8::76/128 system	Local	Local	02d05h54m 0	0
2001:DB8:101::/48 FE80::E84B:FFFF:FE00:0-"toBNG"	Remote	ISIS	00h04m25s 20	15
2001:DB8:102::/48 FE80::E84B:FFFF:FE00:0-"toBNG"	Remote	ISIS	00h04m25s 20	15
2001:DB8:201::/48 FE80::E84B:FFFF:FE00:0-"toBNG"	Remote	ISIS	00h04m25s 20	15
2001:DB8:202::/48 FE80::E84B:FFFF:FE00:0-"toBNG"	Remote	ISIS	00h04m25s 20	15
2001:DEAD::/64 toBNG	Local	Local	01h42m18s 0	0

Alternatively the same result can be achieved with OSPF/OSPFv3.

Option 2 – Export Policy (from protocol direct)

The key properties for the second option are:

- Subscriber interface subnets and prefixes are distributed into the network by applying an export policy.
- It is most typically used in combination with BGP based route distribution.
- It works with the numbered model only.

The following export policy is used for this example.

```
configure
router

policy-options
policy-statement "local-subnets-out"
entry 10
from
protocol direct
exit
action accept
exit
exit
exit
exit
```

In this option the BNG relies on BGP using the policy local-subnets-out as an export policy. The neighbor address is the IPv4 system address of router R1.

```
configure
router
autonomous-system 65536
bgp
group "grp-1"
family ipv4 ipv6
export "local-subnets-out"
peer-as 65536
neighbor 192.0.2.76
advertise-label ipv6
exit
exit
no shutdown
exit
```

The following command shows the IPv4 routes advertised by applying the local-subnets-out policy. The subscriber interface subnets are advertised, as are some other local subnets.

```
*A:BNG# show router bgp neighbor 192.0.2.76 advertised-routes ipv4
______
BGP Router TD:192.0.2.75 AS:65536 Local AS:65536
Status codes : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes : i - IGP, e - EGP, ? - incomplete, > - best, b - backup
_______
______
Flag Network
                                      LocalPref MED
   Nexthop
                                      Path-Id
   As-Path
   10.1.1.0/24
                                      100 None
   192.0.2.75
   No As-Path
                                      None
   10.1.2.0/24
                                              None
   192.0.2.75
   No As-Path
                                      100
   10.2.1.0/24
                                              None
   192.0.2.75
                                      None
   No As-Path
                                      100
   10.2.2.0/24
                                              None
                                      None
   192.0.2.75
   No As-Path
                                      None
   10.11.11.1/32
                                              None
   192.0.2.75
   No As-Path
   192.0.2.75/32
                                      100
                                              None
   192.0.2.75
                                      None
   No As-Path
                                      100
   192.168.12.0/24
                                              None
   192.0.2.75
                                      None
   No As-Path
   192.168.202.0/24
                                      100
                                              None
   192.0.2.75
                                      None
   No As-Path
______
Routes: 8
```

The same applies for IPv6.

*A:BNG#

```
*A:BNG# show router bgp neighbor 192.0.2.76 advertised-routes ipv6

BGP Router ID:192.0.2.75 AS:65536 Local AS:65536

Legend -
Status codes : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes : i - IGP, e - EGP, ? - incomplete, > - best, b - backup
```

Flag	Network	LocalPref	MED
	Nexthop	Path-Id	Label
	As-Path		
i.	2001:DB8::11/128	100	None
	::FFFF:C000:24B	None	2
i	2001:DB8::75/128	100	None
	::FFFF:C000:24B	None	2
	No As-Path		
i	2001:DB8:101::/48	100	None
	::FFFF:C000:24B	None	2
	No As-Path		
i	2001:DB8:102::/48	100	None
	::FFFF:C000:24B	None	2
	No As-Path		
i	2001:DB8:201::/48	100	None
	::FFFF:C000:24B	None	2
	No As-Path		
Ĺ	2001:DB8:202::/48	100	None
	::FFFF:C000:24B	None	2
	No As-Path		
Ĺ	2001:DEAD::/64	100	None
	::FFFF:C000:24B	None	2
	No As-Path		

^{*}A:BNG#

The corresponding IPv4 RIB on router R1 lists the subscriber-interface subnets, not the individual subscriber host addresses. Notice the list also includes other routes local to the BNG.

*A:R1# show router "Base" route-table ipv4				
Route Table (Router: Base)	======			=====
Dest Prefix[Flags] Next Hop[Interface Name]	Type	Proto	Age Metric	Pref
10.1.1.0/24 192.168.12.1	Remote	BGP	00h13m34s 0	170
10.1.2.0/24 192.168.12.1	Remote	BGP	00h13m34s 0	170
10.2.1.0/24 192.168.12.1	Remote	BGP	00h13m34s 0	170
10.2.2.0/24 192.168.12.1	Remote	BGP	00h13m34s 0	170
10.11.11.1/32 192.168.12.1	Remote	BGP	00h13m34s 0	170
192.0.2.75/32 192.168.12.1	Remote	ISIS	00h15m38s 10	15
192.0.2.76/32 system	Local	Local	03h11m54s 0	0
192.168.12.0/24 toBNG	Local	Local	03h11m25s 0	0

The corresponding IPv6 RIB on router R1 lists the subscriber-interface prefixes, not the individual subscriber host addresses/prefixes. They are tunneled through the IPv4 core.

IPv6 Route Table (Router: Base)				
Dest Prefix[Flags] Next Hop[Interface Name]		Proto		Pref
2001:DB8::11/128 192.0.2.75 (tunneled)	Remote	BGP	00h00m49s 0	170
2001:DB8::75/128 FE80::E84B:FFFF:FE00:0-"toBNG"	Remote	ISIS	00h54m05s 10	15
2001:DB8::76/128 system	Local	Local	05h18m12s 0	0
2001:DB8:101::/48 192.0.2.75 (tunneled)	Remote	BGP	00h00m49s 0	170
2001:DB8:102::/48 192.0.2.75 (tunneled)	Remote	BGP	00h00m49s 0	170
2001:DB8:201::/48 192.0.2.75 (tunneled)	Remote	BGP	00h00m49s 0	170
2001:DB8:202::/48 192.0.2.75 (tunneled)	Remote	BGP	00h00m49s 0	170
2001:DEAD::/64 toBNG	Local	Local	05h17m42s 0	0
No. of Routes: 8 Flags: L = LFA nexthop available B = BG n = Number of times nexthop is repe	-	oute avai	lable	

The same export policy can be used in combination with IGP based route distribution. However, when IGP based route distribution is needed option 1 is the preferred method.

Option 3 – Export Protocol (from protocol sub-mgmt)

The key properties for the third option are:

- Host addresses and prefixes are distributed into the network by applying an export policy.
- It is most typically used in combination with BGP based route distribution, as IGP based route distribution does not scale for a large number of subscribers.
- It is most typically used for the unnumbered model, and in some cases for the numbered model.

The following export policy is used for this option.

```
configure
    router
    policy-options
    policy-statement "subsc-hosts-out"
    entry 10
        from
            protocol sub-mgmt
    exit
    action accept
    exit
    exit
    exit
```

In this option the BNG relies on BGP using the policy subsc-hosts-out as an export policy.

```
configure
router
autonomous-system 65536
bgp
group "grp-1"
family ipv4 ipv6
export "subsc-hosts-out"
peer-as 65536
neighbor 192.0.2.76
advertise-label ipv6
exit
exit
no shutdown
exit
```

The following command shows the IPv4 routes advertised by applying the subsc-hosts-out policy. Now the subscriber host addresses are advertised individually.

```
*A:BNG# show router bgp neighbor 192.0.2.76 advertised-routes ipv4 \,
______
BGP Router ID:192.0.2.75 AS:65536 Local AS:65536
______
Legend -
Status codes : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes : i - IGP, e - EGP, ? - incomplete, > - best, b - backup
______
BGP IPv4 Routes
Flag Network
                                      LocalPref MED
   Nexthop
                                      Path-Id Label
   As-Path
                                      100 0
   10.1.1.101/32
   192.0.2.75
                                      None
   No As-Path
                                      None
                                      100
   10.1.1.102/32
   192.0.2.75
   No As-Path
                                      100
   10.2.2.1/32
    192.0.2.75
                                      None
   No As-Path
                                      100
   10.2.2.2/32
   192.0.2.75
                                       None
   No As-Path
Routes: 4
*A:BNG#
```

For IPv6, the host addresses and prefixes are advertised.

*A:BN	IG# show router bgp neighbor 192.0.2.76 advertised-r	outes ipv6	.=======		
BGP	Router ID:192.0.2.75 AS:65536 Local AS:	65536			
Legend - Status codes : u - used, s - suppressed, h - history, d - decayed, * - valid Origin codes : i - IGP, e - EGP, ? - incomplete, > - best, b - backup					
BGP I	Pv6 Routes				
Flag	Network Nexthop As-Path	LocalPref Path-Id			
?	2001:DB8:101::1/128 ::FFFF:C000:24B No As-Path	100 None	0 2		
?	2001:DB8:101:1::1/128 ::FFFF:C000:24B No As-Path	100 None	0 2		

?	2001:DB8:102::/56	100	0
	::FFFF:C000:24B	None	2
	No As-Path		
?	2001:DB8:102:100::/56	100	0
	::FFFF:C000:24B	None	2
	No As-Path		
Rout	es: 4		
*A:B	NG#		

The corresponding IPv4 RIB on router R1 looks as follows. Notice the individual host addresses do appear.

Route Table (Router: Base)				
Dest Prefix[Flags] Next Hop[Interface Name]	 Type	Proto	Age Metric	Pref
10.1.1.101/32 192.168.12.1	Remote	BGP	00h40m49s 0	170
10.1.1.102/32 192.168.12.1	Remote	BGP	00h19m53s 0	170
10.2.2.1/32 192.168.12.1	Remote	BGP	00h44m49s 0	170
10.2.2.2/32 192.168.12.1	Remote	BGP	00h44m17s 0	170
192.0.2.75/32 192.168.12.1	Remote	ISIS	00h59m41s 10	15
192.0.2.76/32 system	Local	Local	01h22m11s 0	0
192.168.12.0/24 toBNG	Local	Local	01h21m42s 0	0
No. of Routes: 7 Flags: L = LFA nexthop available B = n = Number of times nexthop is 1	=	oute avai	lable	
A:R1#		:======	========	=====

The corresponding IPv6 RIB on router R1 looks as follows. Notice the individual host addresses and prefixes are distributed in this case.

A:R1# show router route-table ipv6				
IPv6 Route Table (Router: Base)				
Dest Prefix[Flags] Next Hop[Interface Name]	Туре	Proto	Age Metric	Pref
2001:DB8::76/128 system	Local	Local	01h22m16s 0	0
2001:DB8:101::1/128 192.0.2.75 (tunneled)	Remote	BGP	00h36m40s 0	170

Host IP Reachability

2001:DB8:101:1::1/128 192.0.2.75 (tunneled)	Remote	BGP	00h36m40s 0	170
2001:DB8:102::/56	Remote	BGP	00h36m40s	170
192.0.2.75 (tunneled)			0	
2001:DB8:102:100::/56	Remote	BGP	00h36m40s	170
192.0.2.75 (tunneled)			0	
2001:DEAD::/64	Local	Local	01h21m47s	0
toBNG			0	

No. of Routes: 6

Flags: L = LFA nexthop available B = BGP backup route available
n = Number of times nexthop is repeated

A:R1#

Conclusion

This example explains how to configure and use the Routed CO model. The subscriber and the group interfaces were configured for the numbered, unnumbered and hybrid scenario, showing the flexibility of the Routed CO model in terms of subnet/prefix assignment as well as the impact on the forwarding and the reachability to and from the subscriber hosts.

Conclusion