Multi-Access Gateway – controller Release 25.3 # Per Call Measurement Data Guide 3HE 21556 AAAA TQZZA Edition: 01 March 2025 © 2025 Nokia. Use subject to Terms available at: www.nokia.com/terms. Nokia is committed to diversity and inclusion. We are continuously reviewing our customer documentation and consulting with standards bodies to ensure that terminology is inclusive and aligned with the industry. Our future customer documentation will be updated accordingly. This document includes Nokia proprietary and confidential information, which may not be distributed or disclosed to any third parties without the prior written consent of Nokia. This document is intended for use by Nokia's customers ("You"/"Your") in connection with a product purchased or licensed from any company within Nokia Group of Companies. Use this document as agreed. You agree to notify Nokia of any errors you may find in this document; however, should you elect to use this document for any purpose(s) for which it is not intended, You understand and warrant that any determinations You may make or actions You may take will be based upon Your independent judgment and analysis of the content of this document. Nokia reserves the right to make changes to this document without notice. At all times, the controlling version is the one available on Nokia's site. No part of this document may be modified. NO WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF AVAILABILITY, ACCURACY, RELIABILITY, TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, IS MADE IN RELATION TO THE CONTENT OF THIS DOCUMENT. IN NO EVENT WILL NOKIA BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, DIRECT, INDIRECT, INCIDENTAL OR CONSEQUENTIAL OR ANY LOSSES, SUCH AS BUT NOT LIMITED TO LOSS OF PROFIT, REVENUE, BUSINESS INTERRUPTION, BUSINESS OPPORTUNITY OR DATA THAT MAY ARISE FROM THE USE OF THIS DOCUMENT OR THE INFORMATION IN IT, EVEN IN THE CASE OF ERRORS IN OR OMISSIONS FROM THIS DOCUMENT OR ITS CONTENT. Copyright and trademark: Nokia is a registered trademark of Nokia Corporation. Other product names mentioned in this document may be trademarks of their respective owners. © 2025 Nokia. # **Table of contents** | List | List of tables | | | | | |------|----------------|---|----|--|--| | | | | | | | | 1 | | ng started | | | | | | | About this guide | | | | | | | Conventions | | | | | | 1.2 | , | | | | | | 1.2 | Options or substeps in procedures and sequential workflows. | 11 | | | | 2 | Introd | luction to PCMD | 12 | | | | | 2.1 | PCMD overview | 12 | | | | | 2.2 | Feature summary | 12 | | | | | 2.3 | Configuration | 13 | | | | 3 | PCMD | Precord generation | 14 | | | | | 3.1 | Configuring the destination port for PCMD records | 14 | | | | | 3.2 | Session records | 14 | | | | | 3.3 | PCMD heartbeat messages | 15 | | | | | 3.4 | Generating and transmitting PCMD records | 16 | | | | 4 | PCMD | Precord format | 19 | | | | | 4.1 | PCMD record header format | 19 | | | | | 4.1 | .1 PCMD record common header | 20 | | | | | 4.1 | .2 PCMD record report header2 | 20 | | | | | 4.1 | I.3 SendingNodeIP container | 20 | | | | | 4.2 | Session PCMD record format | 21 | | | | | 4.2 | 2.1 Session PCMD Decoding container 2 | 23 | | | | | 4.2 | 2.2 Session3 container | 24 | | | | | 4.2 | 2.3 Procedure container | 24 | | | | | 4.2 | 2.4 IMEI container | 24 | | | | | 4.2 | 2.5 MSISDN container | 25 | | | | | 4.2 | 2.6 Peer container | 25 | | | | | 4.2 | 2.7 APN container | 26 | | | | | 4 2 | 2.8 Session Extended container | 26 | | | | | 4.2.9 | Message container | 26 | |---|----------|---------------------------------------|----| | | 4.2.10 | MessageAl container | 27 | | | 4.2.11 | Bearer / QoS Flow container | 27 | | | 4.2.12 | TEID container | 27 | | | 4.2.13 | FTEID IP container | 27 | | | 4.2.14 | Bearer Extended container | 28 | | | 4.2.15 | 5G QoS container | 29 | | | 4.2.16 | Charging container | 29 | | | 4.2.17 | UE IP container | 29 | | | 4.2.18 | SNSSAI container | 30 | | | 4.3 PCM | ЛD Heartbeat format | 30 | | | 4.3.1 | PCMD Heartbeat container | 30 | | 5 | PCMD rec | cord information elements | 32 | | | 5.1 Hea | der information elements | 32 | | | 5.1.1 | Common Header IEs | 32 | | | 5.1.2 | Report Header2 IEs | 32 | | | 5.1.3 | Sending Node IP container IEs | 34 | | | 5.2 Sess | sion PCMD record information elements | 34 | | | 5.2.1 | Session Decoding container IEs | 34 | | | 5.2.2 | Session3 container IEs | 35 | | | 5.2.3 | Procedure container IEs | 37 | | | 5.2.4 | IMEI container IEs | 38 | | | 5.2.5 | MSISDN container IEs | 38 | | | 5.2.6 | Peers container IEs | 38 | | | 5.2.7 | APN container IEs | 39 | | | 5.2.8 | Session extended container IEs | 39 | | | 5.2.9 | Message container IEs | 40 | | | 5.2.10 | MessageAl container IEs | 41 | | | 5.2.11 | Bearer and QoS Flow container IEs | 41 | | | 5.2.12 | TEID container IEs | 44 | | | 5.2.13 | FTEID IP container IEs | 44 | | | 5.2.14 | Bearer extended container IEs | 45 | | | 5.2.15 | 5GC QoS container IEs | 45 | | | 5.2.16 | Charging container IEs | 47 | | | 5 2 17 | LIE IP container IEs | 47 | | | 5.2 | 2.18 | SNSSAI container IEs | 48 | |---|-------|-------|--|----| | | 5.3 | PCM | 1D Heartbeat message IEs | 48 | | 6 | Infor | matic | on elements value tables | 49 | | | 6.1 | Proc | edureIDs | 49 | | | 6. | 1.1 | UE-level procedures | 56 | | | 6.2 | Resu | ults | 56 | | | 6.3 | Caus | ses | | | | 6.3 | 3.1 | Success causes | 56 | | | 6.3 | 3.2 | Failure causes | 57 | | | 6.4 | Deta | iled causes | 71 | | | 6.5 | Mess | sage marker IDs and SBI service operation messages | 78 | | | 6.6 | Refe | erence point and SBI services IDs | 83 | | | 6.7 | Direc | ction n IDs. | 84 | # **List of tables** | Table 1: Triggers for the creation of PCMD session records | 15 | |--|----| | Table 2: PCMD record header format | 19 | | Table 3: PCMD record common header | 20 | | Table 4: PCMD record report header2 | 20 | | Table 5: HeaderFlags | 20 | | Table 6: SendingNode IP container (IPv4) | 20 | | Table 7: SendingNode IP container (IPv6) | 21 | | Table 8: Session PCMD record | 21 | | Table 9: Extended session PCMD record | 22 | | Table 10: Session Decoding container 2 | 23 | | Table 11: SessionFlagsV2 | 23 | | Table 12: SessionFlags2 | 24 | | Table 13: Session3 PCMD container | 24 | | Table 14: UPSelection | 24 | | Table 15: Procedure container | 24 | | Table 16: IMEI container | 24 | | Table 17: MSISDN container | 25 | | Table 18: Peer container | 25 | | Table 19: PeerNTypeV2 | 26 | | Table 20: APN container | 26 | | Table 21: Session Extended container | 26 | | Table 22: Message container | 27 | |--|----| | Table 23: MessageAl container | 27 | | Table 24: Bearer / QoS Flow container | 27 | | Table 25: TEID container | 27 | | Table 26: FTEID IP container (IPv4) | 28 | | Table 27: FTEID IP container (IPv6) | 28 | | Table 28: FTEID IP container (IPv4 and IPv6) | 28 | | Table 29: Bearer Extended container | 28 | | Table 30: 5G QoS container | 29 | | Table 31: Charging container | 29 | | Table 32: UE IP container (IPv4) | 29 | | Table 33: UE IP container (IPv6) | 29 | | Table 34: UE IP container (IPv4 and IPv6) | 30 | | Table 35: SNSSAI container | 30 | | Table 36: PCMD Heartbeat format | 30 | | Table 37: PCMD Heartbeat container | 30 | | Table 38: HBFlags | 31 | | Table 39: Common Header IEs | 32 | | Table 40: Report Header2 IEs | 32 | | Table 41: Sending Node IP IEs | 34 | | Table 42: Session Decoding container IEs | 34 | | Table 43: SessionFlags2 IEs | 34 | | Table 44: SessionFlagsV2 IFs | 35 | | Table 45: Session3 container IEs | 35 | |---|----| | Table 46: User Plane Selection IEs | 37 | | Table 47: Procedure container IEs | 37 | | Table 48: IMEI container IEs | 38 | | Table 49: MSISDN container IEs | 38 | | Table 50: PeerNTypeV2 container IEs | 38 | | Table 51: APN container IEs | 39 | | Table 52: Session extended container IEs | 40 | | Table 53: Message container IEs | 41 | | Table 54: MessageAl container IEs | 41 | | Table 55: Bearer and QoS Flow container IEs | 41 | | Table 56: TEID container IEs | 44 | | Table 57: FTEID IP container IEs | 44 | | Table 58: Bearer extended container IEs | 45 | | Table 59: 5G QoS container IEs | 45 | | Table 60: Charging container IEs | 47 | | Table 61: UE IP container IEs | 47 | | Table 62: SNSSAI container IEs | 48 | | Table 63: Heartbeat container IE | 48 | | Table 64: ProcedureIDs | 49 | | Table 65: 5G PCMD procedures | 52 | | Table 66: Results | 56 | | Table 67: Success causes | 57 | | Table 68: Failure causes | 57 | |--|----| | Table 69: Detailed causes | 71 | | Table 70: MessageMarker_n IDs | | | Table 71: Reference point and SBI services IDs | 83 | | Table 72: Direction_n IDs | 84 | # 1 Getting started Find general information about this guide. ### 1.1 About this guide This guide describes details pertaining to the Per Call Measurement Data (PCMD) service for the Nokia Multi-Access Gateway – controller (MAG-c) for the BNG CUPS solution. This guide serves as the specification for the MAG-c PCMD, which is identical between all available product platforms. It provides concepts and descriptions of PCMD record generation, format, information elements and their value tables, Command Line Interface (CLI) syntax, and command usage. This guide is organized into functional chapters and provides concepts and descriptions of the implementation flow, as well as CLI syntax and command usage. Command outputs shown in this guide are examples only; actual displays may differ depending on supported functionality and user configuration. The CLI trees and command descriptions can be found in the MAG-c CLI Reference Guide. **Note:** This guide
generically covers content for the release specified on the title page of the guide, and may also contain some content that will be released in later maintenance loads. See the applicable *MAG-c Release Notes* for information about features supported in each load of the software release. **Note:** The information in this guide is intended to be used in conjunction with the SR OS software user guides. The SR OS software user guides describe SR OS service features that are supported by the MAG-c. See the 7450 ESS, 7750 SR, 7950 XRS, and VSR Documentation Suite Overview Card 20.10.R1 for specific guide titles. #### 1.2 Conventions This section describes the general conventions used in this guide. ### 1.2.1 Precautionary and information messages The following information symbols are used in the documentation. **DANGER:** Danger warns that the described activity or situation may result in serious personal injury or death. An electric shock hazard could exist. Before you begin work on this equipment, be aware of hazards involving electrical circuitry, be familiar with networking environments, and implement accident prevention procedures. **WARNING:** Warning indicates that the described activity or situation may, or will, cause equipment damage, serious performance problems, or loss of data. **Caution:** Caution indicates that the described activity or situation may reduce your component or system performance. Note: Note provides additional operational information. **Tip:** Tip provides suggestions for use or best practices. ### 1.2.2 Options or substeps in procedures and sequential workflows Options in a procedure or a sequential workflow are indicated by a bulleted list. In the following example, at step 1, the user must perform the described action. At step 2, the user must perform one of the listed options to complete the step. ### **Example: Options in a procedure** - 1. User must perform this step. - 2. This step offers three options. User must perform one option to complete this step. - · This is one option. - · This is another option. - · This is yet another option. Substeps in a procedure or a sequential workflow are indicated by letters. In the following example, at step 1, the user must perform the described action. At step 2, the user must perform two substeps (a. and b.) to complete the step. #### **Example: Substeps in a procedure** - 1. User must perform this step. - 2. User must perform all substeps to complete this action. - a. This is one substep. - **b.** This is another substep. ### 2 Introduction to PCMD PCMD provides the ability to conduct per-session performance analysis of MAG-c functions. PCMD supports per-procedure analysis at per-session granularity. ### 2.1 PCMD overview PCMD is a real-time diagnostics and troubleshooting tool that provides call-session and connection records for information such as duration, quality, disposition, and other important events that occur during the session, such as setup, failure, handover, and termination. PCMD is used to evaluate the UE and the network node performance. For example, a call-flow procedure failure for the majority of UEs from a specific vendor can quickly reveal the root cause of a problem at the UE level. When used for a specific scenario, PCMD provides the ability to find the root cause of a problem because of non-compliance in the network nodes. PCMD helps determine failure scenarios using end-to-end network-wide per-call measurements from multiple nodes. The end-to-end session data from the live network helps pinpoint the root causes of failures and facilitates quick responses, without recreating the scenarios in a lab environment. PCMD data is generated on the MAG-c control plane (CP) and sent to a data collector node over a UDP stream. The call-data streaming enables performance and root-cause analysis of real-time network issues. ## 2.2 Feature summary The MAG-c supports PCMD in the following networks: - · on the CP, in a 4G-CUPS network - · on the SMF, in a 5G network The MAG-c PCMD features include: - performance and fault management, real-time monitoring, and off-line troubleshooting - detailed call-processing view per procedure and per session - · detailed information about all activities of every user - · optionally enabled by the user using CLI configuration - · data source: - external messages - session state - internal processing logic - data digested and enriched with application logic, unlike sniffer tools that operate agnostic of application logic and rely on packet-capture only - live streaming of PCMD session records - PCMD stream realized as a UDP stream of PCMD records (one PCMD IP/UDP packet may contain 1 to 11 or more PCMD records) in proprietary binary format - support for FWA control plane functions only (SMF and GW-C) ### 2.3 Configuration The MAG-c supports CLI commands to configure streaming of PCMD records. MAG-c supports PCMD record streaming to the provisioned real-time port when the record is created. See PCMD record format and Generating and transmitting PCMD records for more information about PCMD records. # 3 PCMD record generation The MAG-c supports PCMD record configuration using CLI commands. A PCMD record is streamed to the provisioned real-time port when the record is created. ### 3.1 Configuring the destination port for PCMD records The MAG-c collects and streams session PCMD records. Use the following command to configure the destination port for PCMD records: configure mobile-gateway profile pcmd destination port ### 3.2 Session records #### Session records overview The most important entity reported in the PCMD session records is a procedure that describes the event (for example, attach, detach, PDU session create, modify bearer, and QoS flow modification). A procedure contains a set of messages that are reported together. A specific message starts a procedure and another message ends it. However, some exception procedures, such as session deletion because of MME failure, are initiated internally by the system without requiring an external trigger message. A procedure can also be relevant to bearers that are reported with it. If a procedure starts while another procedure is still ongoing, the procedures are reported together as concurrent procedures. A procedure is concurrent if it is relevant to some bearers in the original procedure. For example, when DL packets are received for an idle UE for a specific default bearer, a paging procedure is triggered and the DDN is sent to the MME. At the same time, the MME sends a Delete Session Request for this default bearer. A session PCMD record is created when any of the supported 3GPP procedures are triggered and the call flow of the procedure ends (normally or abnormally). Each session PCMD record contains fields for subscriber information (IMSI, SUPI, MSISDN, GPSI, IMEI, PEI), procedure ID, procedure result, procedure failure cause, and other data relevant to the procedure, such as bearer ID, QoS flow ID, APN, and slice. #### Session record verbosity The session PCMD can include either of the following records: - The **standard** record contains only the mandatory and conditional fields. - The extended record contains mandatory and conditional fields plus optional and conditional-optional fields. Mandatory fields are always present. Optional fields are present only when an extended record is generated. Conditional (and conditional-optional) fields are filled in the PCMD record if the related information elements (IEs) are present in the signaling messages involved in the procedure. In some cases, a conditional parameter may be filled in the PCMD record even when the IE is not present in any signaling message. This happens when the MAG-c processing function knows the value, for example, through state information kept from previous processing. The descriptions in the IE indicate the presence or availability of each PCMD IE; see PCMD record information elements for more information about IEs. The procedure result and the configured verbosity type determine the type of PCMD records that are generated and streamed. Use the following CLI command to configure the verbosity type: configure mobile-gateway profile pcmd session-report verbosity The possible values for the verbosity are: - · failure-only - standard - extended The following table lists the triggers for creating PCMD session records. Table 1: Triggers for the creation of PCMD session records | User setting (CLI) | Records | | | | |--------------------|---|--|--|--| | verbosity command | Extended session
PCMD record for result
FAILURE | Standard session
PCMD record for result
NORMAL | Extended session
PCMD record for result
NORMAL | | | failure-only | Х | _ | _ | | | standard | Х | Х | _ | | | extended | Х | _ | Х | | See Session PCMD record format for more information about the container formats that construct the standard and the extended session PCMD records. See Generating and transmitting PCMD records for more information about generating and transmitting PCMD records. ### 3.3 PCMD heartbeat messages The PCMD interface sends periodic heartbeat messages to notify the collector that the MAG-c reporting application is alive. This is especially useful in silent periods, for example, during the integration phase or when traffic is low. The MAG-c active OAM-VM transmits the heartbeat messages toward the configured PCMD destination, based on the configuration in the PCMD profile. Use the following CLI command to modify the default setting for the heartbeat messages. configure mobile-gateway profile pcmd heartbeat See Generating and transmitting PCMD records for more information about configuring the PCMD profile. ### 3.4 Generating and transmitting PCMD records An internal process collects PCMD data and generates the PCMD
records. When a user configures a PCMD profile and assigns it to a PDN, the internal process starts generating (not transmitting) PCMD records. To transmit the generated PCMD records, the user must also configure the PCMD profile with a reachable destination IP address and assign it to a PDN that is operationally enabled. #### About this task PCMD records start generating as soon as you associate a PCMD profile with a PDN, regardless of whether you configure a reachable destination IP address. **Note:** Generating PCMD records can have a performance impact on the system, regardless of whether the PCMD records are transmitted. To transmit the generated PCMD records, the following is required: - Configure the PCMD profile with a reachable destination IP address. - Assign the PCMD profile to a PDN that is operationally enabled (no shutdown command). #### Note: - Reachability is calculated based on the local routing information and the link status. As a result, the MAG-c starts and stops PCMD record transmission and accordingly updates the PCMD operational state based on network configuration and interface status only. - The PCMD transmission stops with any of the following events: - You execute the shutdown command at the PDN to shutdown the PDN. - You execute the **no pcmd** command at the PDN to disable the PCMD profile. - Connectivity to the configured destination IP address fails and the destination becomes unreachable. In the following procedure, the PCMD profile configuration settings are defined as follows: - The profile name is PCMD-records. - The PCMD network destination is 192.0.2.2. - The session report verbosity type is extended. #### **Procedure** Step 1. Configure a PCMD profile. **Note:** If you are modifying the configuration of a PCMD profile that is already assigned to the PDN, remove the profile from the PDN configuration before making the changes. The MAG-c does not support configuration of the PCMD profile while it is assigned to the PDN. configure mobile-gateway profile pcmd #### Example configure mobile-gateway profile pcmd PCMD-records **Step 2.** Configure the network destination for the PCMD profile records. PCMD records generate without a configured network destination, however a reachable destination IP address is required to transmit the generated PCMD records. configure mobile-gateway profile pcmd destination #### Example configure mobile-gateway profile pcmd PCMD-records destination 192.0.2.2 **Step 3.** Optional: Modify the default report type for the PCMD profile. configure mobile-gateway profile pcmd session-report verbosity #### Example configure mobile-gateway profile pcmd PCMD-records session-report verbosity extended Step 4. Optional: Modify the default periodic heartbeat transmission in the PCMD interface. configure mobile-gateway profile pcmd heartbeat #### Example configure mobile-gateway profile pcmd PCMD-records heartbeat 15 **Step 5.** Assign the PCMD profile to the gateway instance. configure mobile-gateway pdn pcmd profile #### Example configure mobile-gateway pdn 1 pcmd profile PCMD-records **Step 6.** Ensure the PDN is in the operationally enabled state. configure mobile-gateway pdn 1 no shutdown **Step 7.** View the PCMD configuration. show mobile-gateway profile pcmd #### **Example** ``` show mobile-gateway profile pcmd PCMD-records ``` #### **Expected outcome** #### **Step 8.** View the PCMD statistics. ``` show mobile-gateway pdn pcmd-stats ``` ### Expected outcome ``` A:MAG-c# show mobile-gateway pdn pcmd-stats PDN gateway PCMD statistics _______ VNF/VM : 1/3 Gateway : 1 PDN PCMD Profile name : PCMD-records PDN PCMD Profile duration : 0d 00:04:37 PDN PCMD oper. state : up Session records Success records : 0 Failure records : 0 Success extended: 3 Success limited : 0 Total records : 3 Total bytes : 588 Gateway lifetime statistics Success records : 3 Failure records : 0 Number of cards : 1 NOTE: Gateway lifetime statistics represent all generated session records count since gateway creation regardless profile is assigned to gateway or not. ``` ### 4 PCMD record format A PCMD record is logically divided into several parts known as containers. Containers are sorted and can be present multiple times. They can be of fixed or variable size and must be divisible by four. If the size is not divisible by four, padding 0s are appended. If the system IP address inserted in the PCMD record is IPv6, the maximum session record size is: - 1248 bytes for standard records - · 1532 bytes for extended records - · 32 bytes for heartbeat records If the system IP address inserted in the PCMD record is IPv4, the sizes are decreased by 12 bytes. The PCMD record size equals the UDP payload length of the IP packet, if there is just one PCMD record present. Every PCMD record begins with a header as defined in PCMD record header format. The version of the PCMD record conveyed in the PCMD header changes when either of the following occurs: - 1. The structure or format of any container changes. - 2. A new container type is introduced. The PCMD version for this release is 6. The following notation specifies the structure of each container. This notation is similar to the 3GPP specifications, with the left side of a byte holding the most significant bit. Four bytes are shown per table row. The leftmost byte is transmitted first. | bytes: | 0 | 1 | 2 | 3 | |--------|----------|----------|----------|----------| | bits: | 76543210 | 76543210 | 76543210 | 76543210 | When more than one byte is merged in a single information element, the bit numbering is contiguous and the left is the logically more significant. See Table 5: HeaderFlags in PCMD record report header2 for an example. ### 4.1 PCMD record header format The PCMD record header is composed of the PCMD record common header, the PCMD record report header, and the SendingNodeIP container. Table 2: PCMD record header format PCMD record common header PCMD record report header2 SendingNodeIP container #### 4.1.1 PCMD record common header Table 3: PCMD record common header | Bytes | 0 | 1 | 2 | 3 | |-------|---------------|------------|--------------|---| | 0 | PCMDVersion=6 | RecordType | RecordLength | | ### 4.1.2 PCMD record report header2 Table 4: PCMD record report header2 | Bytes | 0 | 1 | 2 | 3 | |-------|----------------------|-------------|-----------------|-------------| | 0 | RecordOpeningTime | | | | | 4 | | | | | | 8 | RecordSequenceNumber | | | | | 12 | Gwld | MscpGroupId | SendingNodeType | HeaderFlags | | 16 | Reserved | | | | | 20 | UEid | | | | | 24 | | | | | Table 5: HeaderFlags For descriptions of the PCMD record header container information elements, see Header information elements. ### 4.1.3 SendingNodelP container The length of the SendingNodeIP container depends on the IP address type: - · 4 bytes for IPv4 - · 16 bytes for IPv6 Table 6: SendingNode IP container (IPv4) | Bytes | 0 | 1 | 2 | 3 | | |-------|-------------------|---|---|---|--| | 0 | Sending node IPv4 | | | | | Table 7: SendingNode IP container (IPv6) | Bytes | 0 | 1 | 2 | 3 | | | | |-------|-------------------|---|---|---|--|--|--| | 0 | Sending node IPv6 | | | | | | | | 4 | | | | | | | | | 8 | | | | | | | | | 12 | | | | | | | | ### 4.2 Session PCMD record format The following tables describe the formats of the Session PCMD and Session Extended PCMD records. #### Note: The IMEI container is present when the ImeiFlag is set to 1. The MSISDN container is present when the MsisdnFlag is set to 1. The APN container is present when ApnFlag is set to 1. The Procedure container is present only once, except if another procedure or procedures occur before the original procedure completes. See PCMD record generation for more information about the meaning of a concurrent procedure. The Bearer, TEID, FTEID IP and Bearer Extended containers are present only when a bearer is involved in the procedure (bearer creation, modification, and deletion). The Session Extended container and Bearer Extended container are present when the ExtendedFlag is set to 1. One MessageAl container is present for every Message container. One Charging container is present if BLC=0. One Charging container is present for every Bearer container if BLC=1. Table 8: Session PCMD record | Container | Multiplicity | |------------------------------|--------------| | PCMD Record Common Header | 1 | | PCMD Record Report Header2 | | | Sending Node IP container | | | Session Decoding container 2 | | | Session 3 container | | | Procedure container | 1-3 | | IMEI container | 1 | | Container | Multiplicity | |---------------------------|--------------| | MSISDN container | | | Peers container | | | APN container | | | Message container | 0-40 | | Message_n container | | | MessageAl_1 container | 0-40 | | _ | | | MessageAl_n container | | | Bearer/QoS Flow container | 0-11 | | TEID container | | | FTEID IP container | | | 5G QoS container | | | Charging container | 1-11 | | _ | | | Charging_n container | | | UE IP container | 1 | | SNSSAI container | 0-1 | Table 9: Extended session PCMD record | Container | Multiplicity | |-----------------------------|--------------| | PCMD Record Common Header | 1 | | PCMD Record Report Header2 | | | Sending Node IP container | | | Session Decoding container2 | | | Session 3 container | | | Procedure container | 1-3 | | IMEI container | 1 | | MSISDN container | | | Peers container | | | APN container | | | Container | Multiplicity | |----------------------------|--------------| | Session Extended container | | | Message_1 container | 0-40 | | — | | | Message_n container | | | MessageAl_1 container | 0-40 | | _ | | | MessageAl_n container | | | Bearer/QoS Flow container | 0-11 | | TEID container | | | FTEID IP container | | | Bearer Extended container | | | 5G QoS container | | | Charging_1 container | 1-11 | | _ | | | Charging_n container | | | UE IP container | 1 | | SNSSAI container | 0-1 | ## 4.2.1 Session PCMD Decoding container 2 Table 10: Session Decoding container 2 |
Bytes | 0 | 1 | | 2 | 3 | | |-------|---------------|---------------------|---------------------|----------|--------------------|--| | 0 | MessageNum | ProcNum
(4 bits) | PeerNum
(4 bits) | Reserved | Session
FlagsV2 | | | 4 | SessionFlags2 | Reserved | | | | | Table 11: SessionFlagsV2 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---|-----|-----|---|---------|------------------|----------|------------| | | BrN | lum | | ApnFlag | Extended
Flag | ImeiFlag | MsisdnFlag | Table 12: SessionFlags2 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------------|-----------------|---|---|------|-------|---|---| | SnssaiFlag | UliType
Flag | | | Rese | erved | | | ### 4.2.2 Session3 container Table 13: Session3 PCMD container | Byt | es | | (|) | | 1 | | | 2 | 3 | | |-----|----|-------------------------|----------------|----------------|---------------|-------------------------|--|----------------------|-----------------------------|------------------|----------------------| | 0 | | Rat
Type
(4 bits) | DT
(2 bits) | BLC
(1 bit) | CI
(1 bit) | PDN
Type
(3 bits) | | Reserved
(3 bits) | UP
Selection
(6 bits) | SSCM
(2 bits) | Pdu
Session
Id | Table 14: UPSelection **Note:** If UPSAttributes equals 0, the UPSelectionPeer field is not used. The UPSAttributes is always 0 in this release. ### 4.2.3 Procedure container Table 15: Procedure container | Bytes | 0 | 1 | 2 | 3 | |-------|-------------|-----------------|----------------|-----------| | 0 | ProcedureID | ProcedureResult | ProcedureCause | | | 4 | ProcedureDe | etailedCause | Procedure | eDuration | ### 4.2.4 IMEI container Table 16: IMEI container | Bytes | 0 | 1 | 2 | 3 | | | | |-------|------|---|---|---|--|--|--| | 0 | IMEI | | | | | | | | 4 | | | | | | | | #### 4.2.5 MSISDN container Table 17: MSISDN container | Bytes | 0 | 1 | 2 | 3 | | | | |-------|--------|---|---|---|--|--|--| | 0 | MSISDN | | | | | | | | 4 | | | | | | | | ### 4.2.6 Peer container Table 18: Peer container | Bytes | 0 | 1 | 2 | 3 | | | | |--------|-------------|-------------------------------|-------------------------------|-------------------------------|--|--|--| | 0 | Peer1TypeV2 | Peer2TypeV2
or padding | Peer3TypeV2
or padding | Peer4TypeV2
or padding | | | | | | | | | | | | | | 4 - 12 | PeerXTypeV2 | Peer(X+1)TypeV2
or padding | Peer(X+2)TypeV2
or padding | Peer(X+3)TypeV2
or padding | | | | | 4 - 16 | Peer1Id | | | | | | | | | | | | | | | | | 252 | | Pee | rYld | | | | | #### Note: - X in [5..13] - Y in [2..15] = PeerNum The Peer container contains at least 1 peer and up to 15 peers maximum, as specified by PeerNum in the Session PCMD Decoding container 2. Each peer is described by a PeerTypeV2 field and a PeerId field. PeerTypeV2 field: - Length is 1 byte. - Padding may be added after the PeerTypeV2 fields to align with a 4-byte boundary. - The total number of bytes depends on the total number of peers in the record: - 1 to 4 peers use 4 bytes - 5 to 8 peers use 8 bytes - 9 to 12 peers use 12 bytes - 13 to 15 peers use 16 bytes The Peerld field length is 4 bytes (IPv4) or 16 bytes (IPv6 or UUID), as specified by the PeerldType. The maximum length of a Peer container is 256 bytes. Table 19: PeerNTypeV2 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |-------|-------|---|----------|---|---|---|---| | Peerl | dType | | PeerType | | | | | ### 4.2.7 APN container Table 20: APN container | Bytes | 0 | 1 2 | | | 3 | | |-------|-----------|-------------------|--|----------------|----------------|--| | 0 | ApnLength | APN (0 – 2 bytes) | | | | | | | | APN (continued) | | | | | | 96 | | (APN continued) | | Padding to 4 b | ytes if needed | | **Note:** The APN container size is up to 100 bytes, depending on the APN length, and is always a multiple of 4 bytes. ### 4.2.8 Session Extended container Table 21: Session Extended container | Bytes | 0 | 1 2 | | 3 | | | |-------|-----------|-------------------------|--|---|----------------|--| | 0 | UliLength | | | | | | | | | ULI (continued) | | | | | | 16 | | ULI (continued) Padding | | | ytes if needed | | #### Note: The Session Extended container size is up to 20 bytes, depending on the ULI length, and is always a multiple of 4 bytes; for example, for 5G sessions it can be up to 17 bytes. ### 4.2.9 Message container There is one Message container for every message that is transmitted or received in the reported procedure. The Message containers are appended in chronological order. When concurrent procedures are reported, to preserve the chronology the messages of the concurrent procedure are interleaved with the messages of the reported procedure. Table 22: Message container | Bits | 31-22 | 21-17 | 16 | 15-0 | |------|-----------------|------------------|-------------|---------------| | 0 | MessageMarker_n | ReferencePoint_n | Direction_n | timestampMM_n | ### 4.2.10 MessageAl container There is one MessageAl (additional information) container for each Message container. Matching of the MessageAl container to the Message container is performed in the order that the Message containers appear. Table 23: MessageAl container | Bytes | 0 | 1 | 2 | 3 | |-------|----------|-----------|--------------------------------|----------------------| | 0 | MessageC | CauseCode | Padding to 4 bytes a container | t the last MessageAl | #### 4.2.11 Bearer / QoS Flow container Table 24: Bearer / QoS Flow container | Bits | 31-28 | 27-24 | | 23-16 | | 15-8 | 7 | 6 | 5- 2 | 1 | 0 | |------|----------------------------------|-----------------------------------|--------------------------|--------------------------|--|---------------|-----|--------|------|----------|---------------| | 0 | BearerID | LBI | BearerResult | | | BearerCause | | | | | | | 4 | | BearerDetail | edCause | | | Bearer
QCI | PVI | PCI | PL | Reserved | 5GQos
Flag | | 8 | FTeidUlp
V4BrldRef
(4 bit) | FTeidUlp
V6 BrIdRef
(4 bit) | 5GTun
Ipv4
(1 bit) | 5GTun
Ipv6
(1 bit) | | | | Reserv | ed | | | ### 4.2.12 TEID container Table 25: TEID container | Bytes | 0 | 1 | 2 | 3 | | | | |-------|---|-------|---|---|--|--|--| | 0 | | TeidU | | | | | | ### 4.2.13 FTEID IP container The length of the FTEID IP container shown in the following tables depends on the IP address type: · 4 bytes for IPv4 - 16 bytes for IPv6 - 20 bytes for IPv4 followed by IPv6 Table 26: FTEID IP container (IPv4) | Bytes | 0 | 1 | 2 | 3 | |-------|---|------|--------|---| | 0 | | FTEI | D IPv4 | | Table 27: FTEID IP container (IPv6) | Bytes | 0 | 1 | 2 | 3 | | | |-------|------------|---|---|---|--|--| | 0 | FTEID IPv6 | | | | | | | 4 | | | | | | | | 8 | | | | | | | | 12 | | | | | | | Table 28: FTEID IP container (IPv4 and IPv6) | Bytes | 0 | 1 | 2 | 3 | | | | |-------|---------------------|---|---|---|--|--|--| | 0 | FTEID IPv4 and IPv6 | | | | | | | | 4 | | | | | | | | | 8 | | | | | | | | | 12 | | | | | | | | | 16 | | | | | | | | ### 4.2.14 Bearer Extended container Table 29: Bearer Extended container | Bytes | 0 | 1 | 2 | 3 | | | | | |-------|------------|-----------------|---------|---|--|--|--|--| | 0 | | Uplink APN-AMBR | | | | | | | | 4 | | Downlink A | PN-AMBR | | | | | | | 8 | | Uplink MBR | | | | | | | | 12 | | Downlink MBR | | | | | | | | 16 | Uplink GBR | | | | | | | | | 20 | | Downlin | nk GBR | | | | | | #### 4.2.15 5G QoS container Table 30: 5G QoS container | Bytes | (|) | | 1 | | | 2 | | 3 | |-------|---------------|---------------|-----|---------|----------------|----------------|----------------|------|----------| | 0 | QFI
(6bit) | RT (2
bit) | PDB | (5 bit) | PEB
(3 bit) | QNC
(1 bit) | RQI
(1 bit) | Rese | erved | | 4 | | AW (12 bit) | | | N | ЛВV (12 bit | t) | | Reserved | ### 4.2.16 Charging container There is one Charging container per procedure, when BLC=0. There is one Charging container for each Bearer container when BLC=1. The Charging container to Bearer container matching is performed in the order that the Bearer containers appear. Table 31: Charging container | Bytes | 0 | 1 | 2 | 3 | |-------|------|---|---|---| | 0 | GCID | | | | ### 4.2.17 UE IP container The length of the UE IP container shown in the following tables depends on the IP address type: - · 4 bytes for IPv4 - · 16 bytes for IPv6 - · 20 bytes for IPv4 followed by IPv6 Table 32: UE IP container (IPv4) | Bytes | 0 | 1 | 2 | 3 | |-------|---------|---|---|---| | 0 | UE IPv4 | | | | Table 33: UE IP container (IPv6) | Bytes | 0 | 1 | 2 | 3 | |-------|---|----|------|---| | 0 | | UE | IPv6 | | | 4 | | | | | | 8 | | | | | | 12 | | | | | Table 34: UE IP container (IPv4 and IPv6) | Bytes | 0 | 1 | 2 | 3 | |-------|---|---------|----------|---| | 0 | | UE IPv4 | and IPv6 | | | 4 | | | | | | 8 | | | | | | 12 | | | | | | 16 | | | | | ### 4.2.18 SNSSAI container Table 35: SNSSAI container | Bytes | 0 | 1 | 2 | 3 | |-------|-----|----|---|---| | 0 | sst | sd | | | # 4.3 PCMD Heartbeat format The following table describes the PCMD Heartbeat format. Table 36: PCMD Heartbeat format PCMD record common header PCMD Heartbeat container SendingNodeIP container ### 4.3.1 PCMD Heartbeat container Table 37: PCMD Heartbeat container | Bytes | 0 | 1 | 2 | 3 | |-------|------------------|---|------|---------| | 0 | HBSequenceNumber | | Gwld | HBFlags | | 4 | Reserved | | | | | 8 | HBTxTime | | | | Table 38: HBFlags | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---------------------|---|---|---|----------|---|---|---| | Sending
NodelpV6 | | | | Reserved | | | | ## 5 PCMD record information elements The MAG-c supports PCMD record IEs including header IEs, session IEs, and PCMD heartbeat message IEs. ### 5.1 Header information elements The MAG-c supports Common Header, Report Header 2, and Sending Node IP container IEs. ### 5.1.1 Common Header IEs Table 39: Common Header IEs | Information element | Description | |---------------------|------------------------------| | PCMDVersion | Version of the PCMD feature | | | Mandatory field ¹ | | RecordType | Type of record: | | | • 3 - session2 | | | • 4 -
heartbeat | | | Mandatory element | | RecordLength | Total record length in bytes | | | Mandatory element | ### 5.1.2 Report Header2 IEs Table 40: Report Header2 IEs | Information element | Description | |---------------------|---| | RecordOpeningTime | Opening timestamp for the record generation | | | First 4 bytes: seconds, indicating time since 1970-
01-01 00:00:00 UTC | | | Second 4 bytes: nanoseconds, precision of the procedure start time | ¹ The current value of PCMDVersion is 6. The version changes whenever there is a modification in the Header structure or some non-compatible change in the structure of the containers. | Information element | Description | |----------------------|--| | | Mandatory element | | RecordSequenceNumber | Unique sequence identifier for the record type per card and per record type | | | Each card generates the RecordSequenceNumber for each record type it transmits. | | | If the maximum is reached, the number is set to 1. | | | If an MSCP-group or MG-Group failover occurs, the number is set to 1. | | | If a switchover occurs to a new active card or VM, the numbering restarts from 1. | | | Mandatory element | | Gwld | Mobile gateway ID | | | Range: 1 to 8 | | | Mandatory element | | MscpGroupId | MSCP group ID | | | Range: 1 to 15 | | | Mandatory element | | SendingNodeType | Type of node that sends the PCMD record: | | | • 9 – combined SGW-C + PGW-C | | | • 14 – SMF | | | Mandatory element | | UEid | IMSI of the combined SGW-C + PGW-C session | | | IMSI is encoded in TBCD format. | | | The SUPI is used when the record is reported for a 5G PDU session. | | | The field is set to zero when the IMSI or SUPI is not available; for example, emergency attach with just the IMEI. | | | Mandatory element | | SendingNodeIpV6 | Sending node IP address type: | | | 1 – The SendingNodeIP contains an IPv6 address. | | | 0 – The SendingNodeIP contains an IPv4 address, stored in the first 4 bytes. | ### 5.1.3 Sending Node IP container IEs Table 41: Sending Node IP IEs | Information element | Description | |---------------------|--| | SendingNodelP | The IP address of the sending node is the IP address of the system interface of the base router. | | | If the system interface is configured with both an IPv4 and an IPv6 address, the SendingNodeIP in the PCMD Header contains the IP address that matches the IP version on the transport layer. Mandatory element | ### 5.2 Session PCMD record information elements The MAG-c supports session PCMD record IEs. ### 5.2.1 Session Decoding container IEs Table 42: Session Decoding container IEs | Information element | Description | |---------------------|--------------------------------| | MessageNum | Number of message containers | | | Range: 0 to 40 | | | Mandatory element | | ProcNum | Number of procedure containers | | | Range: 1 to 3 | | | Mandatory element | | PeerNum | Number of peers containers | | | Range: 0 to 15 | | | Mandatory element | Table 43: SessionFlags2 IEs | Information element | Description | |---------------------|---| | SnssaiFlag | Presence of the SNSSAI container | | UliTypeFlag | Type of ULI in the Session Extended container | | Information element | Description | |---------------------|---| | | See the ULI IE description in Table 52: Session extended container IEs. | Table 44: SessionFlagsV2 IEs | Information element | Description | |---------------------|---| | BrNum | Number of bearer containers, or the number of QoS
Flows containers for 5G Sessions
Range is 0 to 11 | | ApnFlag | Presence of the APN or DNN container Mandatory element | | ExtendedFlag | Extended report type flag The report type is extended when set to 1 Mandatory element | | ImeiFlag | Presence of the IMEI or PEI for 5G Session container Mandatory element | | MsisdnFlag | Presence of the MSISDN or GPSI for 5G Session container Mandatory element | ### 5.2.2 Session3 container IEs Table 45: Session3 container IEs | Information element | Description | |---------------------|---| | RatType | Radio access technology: | | | 0 – reserved | | | • 6 – EUTRAN (WB-E-UTRAN) | | | • 14 – NR | | | Mandatory element | | DT | Direct tunnel indication: | | | 0 – undefined (when UE is idle) | | | • 1 – S1-U | | BLC | Bearer level charging or sessions flag: | | | 0 – Session level charging is used | | Information element | Description | |---------------------|--| | | 1 – Bearer level charging is used | | | GCID is reported for every bearer | | | For 5G sessions, only PDU session-level charging is supported | | | Mandatory element | | CI | Charging indication: | | | 0 – no charging is done on the session | | | 1 – charging is done on the session | | | The charging indication takes into account online and offline charging as configured or imposed by the PCF | | PDNType | PDN type: | | | 0 – UE IP container is not present, for
example in UE level procedures (see UE-level
procedures) | | | • 1 – IPv4 | | | • 2 – IPv6 | | | • 3 – Dual stack | | lwkl | Interworking indication, from the AMF for a 5G-
attached UE or from the MME for a 4G-attached
UE: | | | • 0 – reserved | | | 1 – sessions with no interworking | | | 2 – sessions with N26 interworking | | | 3 – sessions without N26 interworking | | UPSelection | Consists of UPSelectionAttributes and UPSelection Peer; see the following table | | SSC-Mode | SSC-Mode 1, 2, or 3 are reported | | | Value 0 indicates undefined | | | Mandatory element | | PduSessionId | PDU session ID for the UE (0-15) | | | Note: 0 for 4G sessions | Table 46: User Plane Selection IEs | Information element | Description | |-----------------------|--| | UPSelectionAttributes | 0 – UPSelection not relevant | | | UPSelectionAttributes is 0 in the current version. | | | Mandatory element | | UPSelectionPeer | Present when UPSelectionAttributes is not 0. | | | Conditional element | ### 5.2.3 Procedure container IEs Table 47: Procedure container IEs | Information element | Description | |------------------------|---| | ProcedureID | ID of the procedure | | | See ProcedureIDs for possible values and meanings. | | | Mandatory element | | ProcedureResult | ProcedureResult associated with the current procedure: | | | • 1 – Success | | | • 2 – Failure | | | Mandatory element | | ProcedureCause | ProcedureCause associated with the Procedure Result for the current procedure. | | | See Causes for possible values and meanings. | | | When no value is reported, this is set to 0. This code is identical to the GTPv2, HTTP2, or PFCP external causes associated with the detailed cause (internal status events). | | | Conditional element | | ProcedureDetailedCause | ProcedureDetailedCause associated with the ProcedureCause for the current procedure. | | | See Detailed causes for possible values and meanings. | | | When no value is reported, this is set to 0. This code is identical to internal status events. | | | Conditional element | | Information element | Description | |---------------------|---| | ProcedureDuration | Elapsed time since the start of the procedure, in hundredths of seconds. Mandatory element | ### 5.2.4 IMEI container IEs Table 48: IMEI container IEs | Information element | Description | |---------------------|--| | IMEI | IMEI or PEI (14 decimal digits plus a check digit) or IMEI/SV (16 digits) for the UE | | | The structure of the IMEI/SV is specified in 3GPP TS 23.003 and includes information about the origin, model, and serial number of the device. | | | Non-zero if it is available | | | Encoded in telephony binary-coded decimal (TBCD) | | | Mandatory element | ### 5.2.5 MSISDN container IEs Table 49: MSISDN container IEs | Information element | Description | |---------------------|---| | MSISDN | MSISDN or GPSI identifying the subscription | | | Non-zero if available | | | Encoded in TBCD | | | Mandatory element | ### 5.2.6 Peers container IEs Table 50: PeerNTypeV2 container IEs | Information element | Description | |---------------------|---| | PeerNId | ID of the nth peer | | | It is IPv4, IPv6, or UUID according to the peer IdType value for the specific peer. | | Information element | Description | |---------------------|---| | PeerldType | • 10 – PeerNId is IPv6 | | | 00 – PeerNId is IPv4 | | | 01 – PeerNId is UUID | | PeerType | Indicates whether the PeerIP container is present, and if present, the type of peer node: | | | • 2 – MME | | | • 16 – combined SGW-U + PGW-U | | | • 20 – UPF | | | 21 – Nsmf_PDUSession consumer | | | 23 – Namf_Communication service | | | 25 – Nudm_SubscriberDataManagement service | | | 26 – Nudm_UEContextManagement service
 | | 27 – Npcf_SMPolicyControl service | | | 28 – Nchf_ConvergedCharging service | | | Mandatory element | ### 5.2.7 APN container IEs Table 51: APN container IEs | Information element | Description | |---------------------|----------------------------| | ApnLength | Length of the APN in bytes | | | Mandatory element | | APN | Access Point Name | | | Conditional element | Note: APN is not reported in the UE level procedures (see UE-level procedures). ### 5.2.8 Session extended container IEs The ULI container presence is indicated by the ExtendedFlag. Table 52: Session extended container IEs | Information element | Description | |---------------------|--| | UliLength | Length of the ULI | | | Optional element | | ULI | If the UliTypeFlag is not set (0), the ULI format is as specified in 3GPP TS 29.274, section 8.21. | | | Only the bytes from 5 onwards defined in the specification are present in this field (the first 4 bytes containing type, length, spare, and instance are not present in the PCMD ULI field). | | | If the UliTypeFlag is set (1), the ULI format is as specified in 3GPP TS 29.061, section 16.4.7.2. | | | Only the bytes from 3 onwards defined in the specification are present in this field (the first 2 bytes containing 3GPP type and length are not present in the PCMD ULI field). | | | This format is used for 5G ULI. | | | Only the following types are reported: | | | 137 NrLocation – 5GS TAI and NCGI | | | 130 EutraLocation – 5GS TAI and ECGI | | | From 29.571 (5.4.4.3-5): | | | TAI = PLMN-ID + 5GS TAC | | | ECGI = PLMN-ID + eutraCellId | | | NCGI = PLMN-ID + nrCellId | | | TAC, eutraCellId, and nrCellId encoded as per
section 5.4.2 of 3GPP TS 29.571 | | | For the PLMN-ID part, the MCC and MNC are encoded according to 3GPP TS 29.274. | | | Optional – Conditional element | **Note:** In 5G, the TAC part of TAI can be a 2- or 3-octet string, however in 2G, 3G, and 4G, it is always 2 octets. ### 5.2.9 Message container IEs There are 0 to 40 message containers in the Session PCMD record. Table 53: Message container IEs | Information element | Description | |---------------------|---| | MessageMarker_n | Code defining a specific procedure message when any message is received or sent during the associated procedure. | | | See Message marker IDs and SBI service operation messages for possible values and meanings. | | | Conditional element | | ReferencePoint_n | Code specifying the reference point where the message is received or sent. | | | See Reference point and SBI services IDs for the possible values and meanings. | | | Conditional element | | Direction_n | Code specifying the direction of the message. See Direction_n IDs for the possible values and meanings. Conditional field | | TimestampMM_n | Time elapsed since the procedure started, in hundredths of seconds. Conditional element | ### 5.2.10 MessageAl container IEs There are 0 to 40 MessageAl containers in the Session PCMD record. Table 54: MessageAI container IEs | Information element | Description | |---------------------|------------------------------| | MessageCauseCode | Message cause or reason code | ### 5.2.11 Bearer and QoS Flow container IEs There are 0 to 11 bearer containers in the session PCMD record. Table 55: Bearer and QoS Flow container IEs | Information element | Description | |---------------------|------------------| | BearerID | ID of the bearer | | Information element | Description | |---------------------|---| | | Conditional element | | LBI | Set to 0 in the default bearer record | | | For 5GC QoS flow reporting, the BearerId is not known if the N26 interface is not used in the network. Also, the EBI is not a unique identifier of a QoS flow, so multiple QoS flows may be reported with the same EBI. | | | Conditional element | | BearerResult | Bearer result value | | | See Results for a list of possible values and their meanings. | | | Conditional element | | BearerCause | Bearer cause value | | | See Causes for a list of possible values and their meanings. | | | When no value is reported, it is set to 0. | | | Identical to GTPv2 – external causes associated with detailed cause (internal status events) | | | Conditional element | | BearerDetailedCause | Bearer detailed cause value | | | See Detailed causes for a list of possible values and their meanings. | | | When no value is reported, it is set to 0. | | | The code is identical to internal status events. | | | Conditional element | | BearerQCI | Bearer QoS class ID | | | For a 5G QoS flow, it is the 5QI value of the QoS flow. | | | Conditional element | | PVI | Bearer pre-emption vulnerability indicator | | | Conditional element | | PCI | Bearer pre-emption capability indicator | | | Conditional element | | PL | Bearer priority level | | | Conditional element | | Information element | Description | |---------------------|---| | FTeidUlpV4BrldRef | Four-bit indicator: | | | 0x0 – indicates absence of an IPv4 address. | | | equal to BearerId – indicates that an IPv4 address is reported in an FTEID IP container, immediately following the TEID container. | | | X in range 0x5 to 0xF and not equal to the
BearerId value – indicates that the IPv4 address
of this bearer FTEID has been reported in the
same session record with bearer X. Serves as
a reference to the bearer X FTEID IP, that is,
same IP address is used. | | | Mandatory element | | FTeidUlpV6BrldRef | Four-bit indicator: | | | 0x0 – indicates absence of an IPv6 address. | | | equal to BearerId – indicates that an IPv6 address is reported in an FTEID IP container, immediately following the TEID container, or the FTEID IP container having the IPv4. | | | X in range 0x5 to 0xF and not equal to the
BearerId value – indicates that the IPv6 address
of this bearer FTEID has been reported in the
same session record with bearer X. Serves as
a reference to the bearer X FTEID IP, that is,
same IP address is used. | | | When an IPv6 address is explicitly reported, the FTEID IP address container is reported immediately following the IPv4 FTEID IP container (if this is present), or immediately following the TEID container if the IPv4 address is not present. | | | If both FTeidUlpV4BrldRef and FTeidUlpV6BrldRef are set to 0x0, no FTEID IP address and no TEID containers are present. | | | Mandatory element | | QosFlag5G | 0 – the reported container is for an EPS bearer | | | 1 – the reported container is for a 5G QoS flow | | | When the flag is set to 1, a 5G QoS container is present. | | Tun5Glpv4 | When set, the IP address of the 5G UP tunnel is an IPv4 address. | | Information element | Description | |---------------------|---| | | If this flag or the Tun5Glpv6 flag is set, there is only one FTEID being reported and the FTeidUlpV4/V6BrldRef IEs must be ignored. | | Tun5Glpv6 | When set, the IP address of the 5G UP tunnel is an IPv6 address. | | | If this flag or the Tun5Glpv4 flag is set, the FTeidUlpV4/V6BrIdRef IEs is ignored. | | | When an IPv6 address is explicitly reported, the FTEID IP address container is reported immediately following the IPv4 FTEID IP container (if this is present) or right after the TEID container, if the IPv4 address is not present. | | | If both Tun5Glpv4 and Tun5GlPv6 and QoSFlag5G are 0, no FTEID IP address and no TEID containers are present for this QoS flow. | | | FTEID is reported only for the first QoS flow in a PCMD record. | ### 5.2.12 TEID container IEs Table 56: TEID container IEs | Information element | Description | |---------------------|---| | TeidU | TEID value of the S1-U for the combined SGW + PGW session. | | | For 5G sessions, the TEID is the TEID of the UP tunnel on the N3 UPF side. A single TEID is reported for all the QoS flows. | | | If there are multiple UPFs for some QoS flows, the N3 tunnel is reported for all. | | | The TEID is reported only for the first QoS flow in a PCMD record. | ### 5.2.13 FTEID IP container IEs Table 57: FTEID IP container IEs | Information element | Description | |---------------------|----------------------| | FTeidUlp | IPv4 or IPv6 address | | Information element | Description | |---------------------|--| | | The TEID for 5G sessions is the TEID of the UP tunnel on the N3 UPF side. A single TEID is reported for all the QoS flows. | | | If there are multiple UPFs for some QoS flows, the N3 tunnel is reported for all the UPFs. | ### 5.2.14 Bearer extended container IEs Table 58: Bearer extended container IEs | Information element | Description | |---------------------|---| | Uplink APN-AMBR | Uplink aggregate maximum bit rate in kb/s | | | Conditional-optional element | | Downlink APN-AMBR | Downlink aggregate maximum bit rate in kb/s | | |
Conditional-optional element | | Uplink MBR | Uplink maximum bit rate in kb/s | | | Conditional-optional element | | Downlink MBR | Downlink maximum bit rate in kb/s | | | Conditional-optional element | | Uplink GBR | Uplink guaranteed bit rate in kb/s | | | Conditional-optional element | | Downlink GBR | Downlink guaranteed bit rate in kb/s | | | Conditional-optional element | ### 5.2.15 5GC QoS container IEs Table 59: 5G QoS container IEs | Information element | Description | |---------------------|--| | QFI | QFI value of the QoS flow (1 to 63) (6 bits) | | | Mandatory element | | RT | Resource type (2 bits): | | | • 1 – GBR | | | • 2 – Non-GBR | | | 3 – Delay critical GBR | | Mandatory field | Information element | Description | |---|---------------------|--| | PER - 0 - Undefined - 1 - 5 ms - 2 - 10 ms - 3 - 30 ms - 4 - 50 ms - 5 - 60 ms - 6 - 75 ms - 7 - 100 ms - 9 - 150 ms - 11 - 200 ms - 13 - 300 ms PER - 2 - 10 ⁻⁵ - 2 - 10 ⁻⁵ - 3 - 10 ⁻⁴ - 4 - 10 ⁻³ - 5 - 10 ⁻² QNC QOS control status: - 0 - disabled - 1 - enabled RQI Reflective QoS status: - 0 - disabled - 1 - enabled | | Mandatory field | | • 1 – 5 ms • 2 – 10 ms • 3 – 30 ms • 4 – 50 ms • 5 – 60 ms • 6 – 75 ms • 7 – 100 ms • 9 – 150 ms • 11 – 200 ms • 13 – 300 ms PER Packet error rate (3 bits): • 0 – Undefined • 1 – 10 ⁻⁶ • 2 – 10 ⁻⁵ • 3 – 10 ⁻⁴ • 4 – 10 ⁻³ • 5 – 10 ⁻² QNC QoS control status: • 0 – disabled • 1 – enabled RQI Reflective QoS status: • 0 – disabled • 1 – enabled | PDB | Packet delay budget (5 bits): | | PER Packet error rate (3 bits): 0 - Undefined 1 - 10 ⁶ 2 - 10 ⁵ 3 - 10 ⁻⁴ 4 - 10 ⁻³ 5 - 10 ⁻² QNC QoS control status: 0 - disabled 1 - enabled RQI Reflective QoS status: 0 - disabled 1 - enabled | | 0 – Undefined | | • 3 – 30 ms • 4 – 50 ms • 5 – 60 ms • 6 – 75 ms • 7 – 100 ms • 9 – 150 ms • 11 – 200 ms • 13 – 300 ms PER Packet error rate (3 bits): • 0 – Undefined • 1 – 10 ⁻⁶ • 2 – 10 ⁻⁵ • 3 – 10 ⁻⁴ • 4 – 10 ⁻³ • 5 – 10 ⁻² QNC QoS control status: • 0 – disabled • 1 – enabled RQI Reflective QoS status: • 0 – disabled • 1 – enabled | | • 1 – 5 ms | | • 4 – 50 ms • 5 – 60 ms • 6 – 75 ms • 7 – 100 ms • 9 – 150 ms • 11 – 200 ms • 13 – 300 ms Packet error rate (3 bits): • 0 – Undefined • 1 – 10 - 6 • 2 – 10 - 5 • 3 – 10 - 4 • 4 – 10 - 3 • 5 – 10 - 2 QNC QNC QoS control status: • 0 – disabled • 1 – enabled RQI Reflective QoS status: • 0 – disabled • 1 – enabled | | • 2 – 10 ms | | • 5 – 60 ms • 6 – 75 ms • 7 – 100 ms • 9 – 150 ms • 11 – 200 ms • 13 – 300 ms PER Packet error rate (3 bits): • 0 – Undefined • 1 – 10 ⁻⁶ • 2 – 10 ⁻⁵ • 3 – 10 ⁻⁴ • 4 – 10 ⁻³ • 5 – 10 ⁻² QNC QoS control status: • 0 – disabled • 1 – enabled RQI Reflective QoS status: • 0 – disabled • 1 – enabled | | • 3 – 30 ms | | • 6 – 75 ms • 7 – 100 ms • 9 – 150 ms • 11 – 200 ms • 13 – 300 ms PER Packet error rate (3 bits): • 0 – Undefined • 1 – 10 ⁻⁶ • 2 – 10 ⁻⁵ • 3 – 10 ⁻⁴ • 4 – 10 ⁻³ • 5 – 10 ⁻² QNC QoS control status: • 0 – disabled • 1 – enabled RQI Reflective QoS status: • 0 – disabled • 1 – enabled | | • 4 – 50 ms | | • 7 – 100 ms • 9 – 150 ms • 11 – 200 ms • 13 – 300 ms Packet error rate (3 bits): • 0 – Undefined • 1 – 10 ⁻⁶ • 2 – 10 ⁻⁵ • 3 – 10 ⁻⁴ • 4 – 10 ⁻³ • 5 – 10 ⁻² QNC QoS control status: • 0 – disabled • 1 – enabled RQI Reflective QoS status: • 0 – disabled • 1 – enabled | | • 5 – 60 ms | | PER Packet error rate (3 bits): 0 - Undefined 1 - 10 ⁻⁶ 2 - 10 ⁻⁵ 3 - 10 ⁻⁴ 4 - 10 ⁻³ 5 - 10 ⁻² QNC Qos control status: 0 - disabled 1 - enabled RQI Reflective Qos status: 0 - disabled 1 - enabled | | • 6 – 75 ms | | PER Packet error rate (3 bits): 0 – Undefined 1 – 10 ⁻⁶ 2 – 10 ⁻⁵ 3 – 10 ⁻⁴ 4 – 10 ⁻³ 5 – 10 ⁻² QNC QoS control status: 0 – disabled 1 – enabled RQI Reflective QoS status: 0 – disabled 1 – enabled | | • 7 – 100 ms | | PER Packet error rate (3 bits): 0 - Undefined 1 - 10 ⁻⁶ 2 - 10 ⁻⁵ 3 - 10 ⁻⁴ 4 - 10 ⁻³ 5 - 10 ⁻² QNC QoS control status: 0 - disabled 1 - enabled RQI Reflective QoS status: 0 - disabled 1 - enabled | | • 9 – 150 ms | | PER Packet error rate (3 bits): 0 - Undefined 1 - 10 ⁻⁶ 2 - 10 ⁻⁵ 3 - 10 ⁻⁴ 4 - 10 ⁻³ 5 - 10 ⁻² QNC QoS control status: 0 - disabled 1 - enabled RQI Reflective QoS status: 0 - disabled 1 - enabled | | • 11 – 200 ms | | • 0 – Undefined • 1 – 10 ⁻⁶ • 2 – 10 ⁻⁵ • 3 – 10 ⁻⁴ • 4 – 10 ⁻³ • 5 – 10 ⁻² QNC QoS control status: • 0 – disabled • 1 – enabled RQI Reflective QoS status: • 0 – disabled • 1 – enabled | | • 13 – 300 ms | | 1 - 10 ⁻⁶ | PER | Packet error rate (3 bits): | | • 2 – 10 ⁻⁵ • 3 – 10 ⁻⁴ • 4 – 10 ⁻³ • 5 – 10 ⁻² QNC QoS control status: • 0 – disabled • 1 – enabled RQI Reflective QoS status: • 0 – disabled • 1 – enabled | | • 0 – Undefined | | • 3 – 10 ⁻⁴ • 4 – 10 ⁻³ • 5 – 10 ⁻² QNC QoS control status: • 0 – disabled • 1 – enabled RQI Reflective QoS status: • 0 – disabled • 1 – enabled | | • 1 – 10 ⁻⁶ | | | | • 2 – 10 ⁻⁵ | | • 5 – 10 ⁻² QNC QoS control status: • 0 – disabled • 1 – enabled RQI Reflective QoS status: • 0 – disabled • 1 – enabled | | • 3 – 10 ⁻⁴ | | QNC QoS control status: • 0 – disabled • 1 – enabled RQI Reflective QoS status: • 0 – disabled • 1 – enabled | | • 4 – 10 ⁻³ | | • 0 – disabled • 1 – enabled RQI Reflective QoS status: • 0 – disabled • 1 – enabled | | • $5-10^{-2}$ | | • 1 – enabled RQI Reflective QoS status: • 0 – disabled • 1 – enabled | QNC | QoS control status: | | RQI Reflective QoS status: • 0 – disabled • 1 – enabled | | • 0 – disabled | | 0 – disabled 1 – enabled | | • 1 – enabled | | • 1 – enabled | RQI | Reflective QoS status: | | | | • 0 – disabled | | AW Averaging window (1 to 4095 ms) | | • 1 – enabled | | [7.4.1 | AW | Averaging window (1 to 4095 ms) | | (12 bits) | | | | MBV Maximum burst volume (1 to 4095 Bytes) | MBV | Maximum burst volume (1 to 4095 Bytes) | | (12 bits) | | (12 bits) | ### 5.2.16 Charging container IEs There are 1 to 11 Charging containers in the session PCMD record. Table 60: Charging container IEs | Information element | Description | |---------------------|--| | GCID | Session GCID when BLC is 0 | | | Bearer GCID when BLC is 1, that is, bearer-level charging is used. In this case there are multiple GCID bearers, one per bearer container. | | | Mandatory element | ### 5.2.17 UE IP container IEs Table 61: UE IP container IEs | Information element | Description | |---------------------|--| | UelPs | IP addresses allocated to the UE | | | The container is present when the PdnType is not 0. | | | Length is from 4 to 20 bytes, depending on the Pdn
Type in the report header: | | | PdnType = 1 (IPv4) – UeIPs contain the IPv4 allocated to the UE, length is 4 bytes. | | | PdnType = 2 (IPv6) – UeIPs contain the IPv6 allocated to the UE, length is 16 bytes. | | | PdnType = 3 (Dual Stack) – The first 4 bytes of
the UelPs contain the IPv4 allocated to the UE,
and the next 16 bytes contain the IPv6; length is
20 bytes. | | | Optional element | **Note:** Because the PdnType is set to 0 for UE-level procedures, the UE IP is not reported; see UE-level procedures for more information. ### 5.2.18 SNSSAI container IEs Table 62: SNSSAI container IEs | Information element | Description | |---------------------|--| | sst | Slice service type Range: 0 to 215 | | sd | 6 byte-string, allowed characters "0" to "9" and "A"to "F"; for example, 0xD143A5 3 bytes, mandatory | # 5.3 PCMD Heartbeat message IEs The MAG-c supports Heartbeat container IEs for PCMD. Table 63: Heartbeat container IE | Information element | Description | |---------------------|--| | HBSequenceNumber | Unique sequence identifier for the Heartbeat | | | If the maximum value of 65535 is reached, the number is set to 1. | | | Number is reset to 1 on failovers and each time the PCMD record transmission is enabled. | | | Mandatory element | | Gwld | Mobile gateway ID | | | Range: 1 to 8 | | | Mandatory element | | HBTxTime | Timestamp when the heartbeat message was transmitted | | | Seconds since 1970-01-01 00:00:00 UTC | | | Mandatory element | | SendingNodelpV6 | 1 – SendingNodeIP contains an IPv6 address 0 – SendingNodeIP contains an IPv4 address stored in the first 4 bytes Mandatory element | # 6 Information elements value tables The MAG-c PCMD supports IEs for procedure IDs, results, success and failure causes, message marker IDs, SBI service IDs and operation messages, and reference points. ### 6.1 ProcedureIDs The MAG-c PCMD supports procedure IDs with related causes and responses, for supported MAG-c gateway types. The following table describes the procedure ID, name, start and end actions, and supported gateway types. Table 64: ProcedureIDs | Procedureld | Name | Start of procedure | End of procedure (success) | End of procedure (failure) | Supported gateway type | |-------------|--|--|---
--|------------------------------| | 1 | MME-
initiated
Create
Default
Bearer | > Combined
SGW-C +
PGW-C receives
Create Session
Request from
MME | > Procedure
completes
successfully in all
involved peers
(MME, combined
SGW-C + PGW-C,
combined SGW-U
+ PGW-U, PCF,
UDM, CHF) | > A failure is
encountered
in any of the
involved peers | Combined
SGW-C +
PGW-C | | 9 | MME-
initiated
Modify
Bearer | > Combined
SGW-C +
PGW-C receives
Modify Bearer
Request from
MME | > Procedure is completed successfully in all involved peers (MME, combined SGW-C + PGW-C, combined SGW-U + PGW-U, and so on) | > A failure is
encountered
in any of the
involved peers | Combined
SGW-C +
PGW-C | | 16 | MME-
initiated
Modify
Default
Bearer | > Combined
SGW-C +
PGW-C receives
Modify Bearer
command from
MME | > Procedure is completed successfully in all involved peers (MME, combined SGW-C + PGW-C, combined SGW-U + PGW-U, PCF) | > A failure is
encountered
in any of the
involved peers | Combined
SGW-C +
PGW-C | | Procedureld | Name | Start of procedure | End of procedure (success) | End of procedure (failure) | Supported gateway type | |-------------|---|---|--|--|------------------------------| | 20 | MME-
initiated
Delete
Session | > Combined
SGW-C +
PGW-C receives
Delete Session
Request from
MME | > Procedure is completed successfully in all involved peers (MME, combined SGW-C + PGW-C, combined SGW-U + PGW-U, PCF, CHF, UDM) | > A failure is
encountered
in any of the
involved peers | Combined
SGW-C +
PGW-C | | 26 | SGW-
initiated
Downlink
Data
Notification
to MME | > Combined
SGW-C +
PGW-C sends
Downlink Data
Notification to
MME | > MME responds
with successful
cause | > A failure is
encountered in
MME | Combined
SGW-C +
PGW-C | | 32 | MME-
initiated
release of
S1U | > Combined
SGW-C +
PGW-C receives
Release Access
Bearer Request
from MME | > Procedure
is completed
successfully in all
involved peers
(MME, combined
SGW-C + PGW-C,
combined SGW-U
+ PGW-U) | >A failure is
encountered
in any of the
involved peers | Combined
SGW-C +
PGW-C | | 80 | Delete UE
Administrative | > Combined
SGW-C +
PGW-C deletes
all sessions
for specific
UE and may
inform its peers if
applicable
Triggered by
delete from
CLI, reattach or
collision | > Procedure is completed successfully in all involved peers (MME, combined SGW-C + PGW-C, combined SGW-U + PGW-U, PCF, UDM, CHF) | > A failure is
encountered
in any of the
involved peers | Combined
SGW-C +
PGW-C | | 81 | Delete
Session
Administrative | > Combined
SGW-C +
PGW-C deletes
session with
one or several
bearers but the
UE persists
if it has more
sessions on the
gateway. | > Procedure
is completed
successfully in all
involved peers
(MME, combined
SGW-C + PGW-C,
combined SGW-U
+ PGW-U, PCF,
UDM, CHF) | > A failure is
encountered
in any of the
involved peers | Combined
SGW-C +
PGW-C | | Procedureld | Name | Start of procedure | End of procedure (success) | End of procedure (failure) | Supported gateway type | |-------------|--|--|--|--|------------------------------| | | | May inform peers if applicable. Triggered mainly by collision, unsuccessful call-flow or per- bearer delete from CLI | | | | | 85 | Sx Session
Report | > Combined
SGW-C +
PGW-C receives
a PFCP Session
Report Req from
UPF | > Combined SGW-C + PGW-C acknowledges the PFCP Session Report Resp with a success cause and initiates the PFCP Session Modification to update or clean up the bearer | > A failure is
encountered in
Combined SGW-
C + PGW-C | Combined
SGW-C +
PGW-C | | 86 | PCF Initiated
Modify
Default
Bearer | > Combined
SGW-C +
PGW-C receives
Npcf_SMPolicy
Control_update | > Procedure
is completed
successfully in all
involved peers
(MME, combined
SGW-C + PGW-C,
combined SGW-U
+ PGW-U, PCF) | > A failure is
encountered
in any of the
involved peers | Combined
SGW-C +
PGW-C | | 87 | PCF Initiated
Delete
Default
Bearer | > Combined
SGW-C + PGW-
C receives
Npcf_SMPolicy
Control_update
terminate | > Procedure is completed successfully in all involved peers (MME, combined SGW-C + PGW-C, combined SGW-U + PGW-U, PCF, UDM, CHF) | > A failure is
encountered
in any of the
involved peers | Combined
SGW-C +
PGW-C | | 88 | Delete
Session
because of
MME Path
failure | > Combined
SGW-C +
PGW-C detects
MME Path
failure | > Procedure is completed successfully, all involved peers (combined SGW-C + PGW-C, combined SGW-U | > A failure is
encountered
in any of the
involved peers | Combined
SGW-C +
PGW-C | | Procedureld | Name | Start of procedure | End of procedure (success) | End of procedure (failure) | Supported gateway type | |-------------|--|--|---|--|------------------------------| | | | | + PGW-U, PCF,
UDM, CHF) | | | | 89 | Delete
Session
because of
UPF Path
failure | > Combined
SGW-C +
PGW-C detects
UPF Path failure | > Procedure
is completed
successfully in all
involved peers
(combined SGW-C
+ PGW-C, PCF,
UDM, CHF) | > A failure is
encountered
in any of the
involved peers | Combined
SGW-C +
PGW-C | The following table describes the 5G PCMD procedure IDs, names, start, and ending of a procedure. Table 65: 5G PCMD procedures | Procedureld | Name | Start of procedure | End of procedure (success) | End of procedure (failure) | |-------------|--|---|--|---| | 101 | PDU Session Create | > SMF receives
Nsmf_PDUSession_
CreateSMContext
service request from
AMF | Procedure
is completed
successfully, in all
involved peers (UE,
RAN, AMF, SMF,
UPF, PCF, UDM,
CHF) | A failure is
encountered in any
of the involved peers | | 102 | UE-initiated PDU
Session Release | > SMF receives Nsmf_PDUSession_ UpdateSMContext service request from AMF, containing the N1 container for PDU Session Release Request | Session and
subscriptions are
deleted successfully
in all involved peers
(UE, RAN, AMF,
SMF, UPF, PCF,
UDM, CHF) | A failure is encountered in any of the involved peers | | 103 | AMF-initiated PDU
Session Release
without N1N2
signaling to the RAN | > SMF receives
Nsmf_PDUSession_
ReleaseSMContext
Post request from
AMF | Session and
subscriptions are
deleted successfully
in all involved peers
(AMF, SMF, UPF,
PCF, UDM, CHF) | A failure is
encountered in any
of the involved peers | | 104 | AMF-initiated PDU
Session Release
with RAN signaling | > SMF receives Nsmf_PDUSession_ UpdateSMContext Post request from AMF. The release IE is included indicating | Session and
subscriptions are
deleted successfully
in all involved peers
(RAN, AMF, SMF,
UPF, PCF, UDM,
CHF) | A failure is
encountered in any
of the involved peers | | Procedureld | Name | Start of procedure | End of procedure (success) | End of procedure (failure) | |-------------|---|--|--|---| | | | that AMF wants to release the session. | | | | 105 | PCF-initiated PDU
Session Release | > SMF receives Npcf_SMPolicy Control_Update Notify Post request from PCF. The payload identifies the released session. | Session and
subscriptions are
deleted successfully
in all involved peers
(UE, RAN, AMF,
SMF, UPF, PCF,
UDM, CHF) | A failure is
encountered in any
of the involved peers | | 106 | SMF-initiated PDU
Session Release | > SMF initiates PDU session release | Session and
subscriptions are
deleted successfully
in all involved peers
(UE, RAN,
AMF,
SMF, UPF, PCF,
UDM, CHF) | A failure is
encountered in any
of the involved peers | | 107 | UDM-initiated PDU
Session Release | > SMF receives
Nudm_SDM_
Notification Request
from UDM, indicating
the subscription data
of the session has
been removed | Session and
subscriptions are
deleted successfully
in all involved peers
(UE, RAN, AMF,
SMF, UPF, PCF,
UDM, CHF) | A failure is encountered in any of the involved peers | | 109 | UE-triggered Service
Request without
AMF Change | > SMF Receives Nsmf_PDUSession_ UpdateSMContext Post request from AMF. The the value of up ConnectionState is set to 'ACTIVATING' to indicate that request is about activating the UP. | Procedure
is completed
successfully, in all
involved peers (UE,
RAN, AMF, SMF,
UPF, PCF) | A failure is
encountered in any
of the involved peers | | 110 | UE-triggered Service
Request with AMF
Change | > SMF receives Nsmf_PDUSession_ UpdateSMContext Post request from AMF. Value of up ConnectionState is set to 'ACTIVATING' to indicate that | Procedure
is completed
successfully, in all
involved peers (UE,
RAN, New AMF,
SMF, UPF, PCF) | A failure is
encountered in any
of the involved peers | | Procedureld | Name | Start of procedure | End of procedure (success) | End of procedure (failure) | |-------------|--|--|--|---| | | | request is about activating the user plane. New AMF-ID is received. | | | | 111 | 5GC Network-
initiated Service
Request | > SMF receives Data
Notification from
UPF.
The session report
message may
contain also a Usage
Report. | Procedure is completed successfully, in all involved peers (RAN, AMF, SMF, UPF, PCF, CHF) | A failure is
encountered in any
of the involved peers | | 112 | NR RAN Release | > SMF receives Nsmf_PDUSession_ UpdateSMContext Post request from AMF. The value of upConnection State is set to 'DEACTIVATED' | Procedure
is completed
successfully, in
all involved peers
(RAN, AMF, SMF,
UPF) | A failure is
encountered in any
of the involved peers | | 114 | SMF-initiated PDU
Session Modification | > SMF initiates PDU session modification | Procedure is completed successfully, in all involved peers (UE, RAN, AMF, SMF, UPF, PCF, CHF) | A failure is
encountered in any
of the involved peers | | 115 | PCF-initiated
Session Modification | > SMF receives
Npcf_SMPolicy
Control Update
Notify from PCF | Procedure is completed successfully, in all involved peers (UE, RAN, AMF, SMF, UPF, UDM, PCF, CHF) | A failure is
encountered in any
of the involved peers | | 116 | UDM-initiated PDU
Session Modification | > SMF receives
Nudm_SDM
Notification from
UDM | Procedure is completed successfully, in all involved peers (UE, RAN, AMF, SMF, UPF, UDM, PCF, CHF) | A failure is
encountered in any
of the involved peers | | Procedureld | Name | Start of procedure | End of procedure (success) | End of procedure (failure) | |-------------|--|--|--|---| | 119 | Xn based handover | > SMF receives Nsmf_PDUSession_ UpdateSMContext Request from AMF for the PDU session, with Path Switch Request Transfer in the N2 container | Procedure
is completed
successfully, in
all involved peers
(RAN, AMF, SMF,
UPF, PCF) | A failure is encountered in any of the involved peers | | 123 | N2-based handover with indirect forwarding with AMF change | > SMF receives Nsmf_PDUSession_ UpdateSMContext request from a new AMF. AMF ID of the new AMF is included in the message. The hoState is set to PREPARING. N2 container contains Handover Required Transfer IE, without Direct Forwarding Path Availability IE. | Procedure is completed successfully, in all involved peers (RAN, AMF, SMF, UPF, PCF) | A failure is encountered in any of the involved peers | | 124 | AMF Change in IDLE state | > SMF receives an
Nsmf_PDUSession_
Update SM Context
request from the
AMF with a new
AMF ID | Procedure
is completed
successfully, in all
involved peers (new
AMF, SMF, PCF) | A failure is encountered in any of the involved peers | | 127 | SMF received Error
Indication Report | > SMF receives
Error indication
report from UPF | Procedure
is completed
successfully, in
all involved peers
(RAN, AMF, SMF,
UPF) | A failure is
encountered in any
of the involved peers | | 128 | SMF received User
Plane Inactivity
Report | > SMF receives User plane Inactivity report from UPF. Session report message may contain also a Usage Report. | Procedure
is completed
successfully, in
all involved peers
(RAN, AMF, SMF,
UPF, CHF, PCF) | A failure is
encountered in any
of the involved peers | | Procedureld | Name | Start of procedure | End of procedure (success) | End of procedure (failure) | |-------------|---|---|--|---| | 129 | SMF received Data
Usage Report (as
only report in the
session report
message) | > SMF receives Usage Data Report from UPF as the only report type in the session report message | Procedure
is completed
successfully in all
involved peers (SMF,
UPF, CHF, PCF) | A failure is
encountered in any
of the involved peers | ### 6.1.1 UE-level procedures Procedures that are related to a specific session of a UE include the session- and bearer-level characteristics, such as APN, UE IP, PDN type, and so on. There are also UE-level procedures that are relevant to all the sessions of a UE. In the UE-level procedures, some IEs are not reported, such as APNs, UE IP, and so on. The following procedures are UE-level procedures that are relevant to all the sessions of a UE: - MME-initiated release of S1U - · Downlink data notification to the MME - · Delete UE administrative ### 6.2 Results The MAG-c supports success and failure results IEs for PCMD. Table 66: Results | Result | Name | |--------|---------| | 1 | Normal | | 2 | Failure | # 6.3 Causes The MAG-c supports success and failure causes IEs for PCMD. #### 6.3.1 Success causes The following table lists the success causes. Table 67: Success causes | Cause | Name | Description | Protocol | Protocol value | |-------|---|---|----------|----------------| | 112 | GTP_CAUSE_
SUCCESS | Request accepted | GTPv2 | 16 | | 113 | GTP_CAUSE_
PARTIAL_
SUCCESS | Request accepted partially | GTPv2 | 17 | | 114 | GTP_CAUSE_
NEW_PDN_
NWPREFS | New PDN type
because of network
preference | GTPv2 | 18 | | 115 | GTP_CAUSE_
NEW_PDN_
SINGLE_
ADDRESS_
BEARER | New PDN type
because of single
address bearer
only | GTPv2 | 19 | | 150 | SBI_200_OK | | HTTP/2 | 200 | | 151 | SBI_201_
CREATED | | HTTP/2 | 201 | | 152 | SBI_202_
ACCEPTED | | HTTP/2 | 202 | | 154 | SBI_204_NO_
CONTENT | | HTTP/2 | 204 | | 430 | PFCP_REQ_
ACCEPTED | Request accepted (success) | PFCP | 1 | #### 6.3.2 Failure causes The following table lists the failure causes. Table 68: Failure causes | Cause | Name | Description | Protocol | Protocol value | |-------|----------------------------|--------------|----------|----------------| | 238 | GTP_CAUSE_
RESERVED | Reserved | GTPv2 | 0 | | 239 | GTP_CAUSE_
PAGING | Paging | GTPv2 | 1 | | 240 | GTP_CAUSE_
LOCAL_DETACH | Local Detach | GTPv2 | 2 | | Cause | Name | Description | Protocol | Protocol value | |-------|--|---|----------|----------------| | 241 | GTP_CAUSE_
COMPLETE_
DETACH | Complete Detach | GTPv2 | 3 | | 242 | GTP_
CAUSE_RAT_
3GPP2NON3GPP | RAT changed from
3GPP to non-3GPP | GTPv2 | 4 | | 243 | GTP_
CAUSE_ISR_
DEACTIVATION | ISR deactivation | GTPv2 | 5 | | 244 | GTP_CAUSE_
ERR_IND_FROM_
RNCENB | Error Indication
received from
RNC/eNodeB/S4-
SGSN | GTPv2 | 6 | | 245 | GTP_CAUSE_
IMSI_DETACH | IMSI Detach Only | GTPv2 | 7 | | 246 | GTP_CAUSE_
REACTIVATION_
REQUESTED | Reactivation
Requested | GTPv2 | 8 | | 247 | GTP_CAUSE_
PDN_RECONN_
DISALLOWED | PDN reconnection to this APN disallowed | GTPv2 | 9 | | 248 | GTP_CAUSE_
ACCESS_
NON3GPP23GPP | Access changed from non-3GPP to 3GPP | GTPv2 | 10 | | 249 | GTP_CAUSE_
PDN_INACTIVE_
TIMEOUT | PDN connection inactivity timer expires | GTPv2 | 11 | | 250 | GTP_CAUSE_
CONTEXT_NOT_
FOUND | Context Not Found | GTPv2 | 64 | | 251 | GTP_CAUSE_
INVALID_MSG_
FMT | Invalid Message
Format | GTPv2 | 65 | | 252 | GTP_CAUSE_
VERSION_NOT_
SUPPORTED | Version not supported by next peer | GTPv2 | 66 | | 253 | GTP_CAUSE_
INVALID_LENGTH | Invalid length | GTPv2 | 67 | | 254 | GTP_CAUSE_
SERVICE_NOT_
SUPPORTED | Service not supported | GTPv2 | 68 | |
Cause | Name | Description | Protocol | Protocol value | |-------|--|--------------------------------------|----------|----------------| | 255 | GTP_CAUSE_
MANDAT_IE_
INCORRECT | Mandatory IE incorrect | GTPv2 | 69 | | 256 | GTP_CAUSE_
MANDAT_IE_
MISSING | Mandatory IE
missing | GTPv2 | 70 | | 257 | GTP_CAUSE_
OPT_IE_
INCORRECT | Optional IE incorrect | GTPv2 | 71 | | 258 | GTP_CAUSE_
SYSTEM_
FAILURE | System failure | GTPv2 | 72 | | 259 | GTP_CAUSE_NO_
RESOURCES | No resources available | GTPv2 | 73 | | 260 | GTP_CAUSE_
SEMANTIC_ERR_
TFT | Semantic error in the TFT operation | GTPv2 | 74 | | 261 | GTP_CAUSE_
SYNTAX_ERR_
TFT | Syntactic error in the TFT operation | GTPv2 | 75 | | 262 | GTP_CAUSE_
SEMANTIC_ERR_
PKTFILTER | Semantic errors in packet filters | GTPv2 | 76 | | 263 | GTP_CAUSE_
SYNTAX_ERR_
PKTFILTER | Syntactic errors in packet filters | GTPv2 | 77 | | 264 | GTP_CAUSE_
MISSING_APN | Missing or
unknown APN | GTPv2 | 78 | | 266 | GTP_CAUSE_
GREKEY_NOT_
FOUND | GRE key not found | GTPv2 | 80 | | 267 | GTP_CAUSE_
RELOCATION_
FAILURE | Relocation failure | GTPv2 | 81 | | 268 | GTP_CAUSE_
DENIED_RAT | Denied in RAT | GTPv2 | 82 | | 269 | GTP_CAUSE_
PREF_PDNTYPE_
NOT_SUPPORT | Preferred PDN type not supported | GTPv2 | 83 | | Cause | Name | Description | Protocol | Protocol value | |-------|--|--|----------|----------------| | 270 | GTP_CAUSE_
ALL_DYNAMIC_
ADDR_OCCUPIED | All dynamic
addresses are
occupied | GTPv2 | 84 | | 271 | GTP_CAUSE_UE_
CXT_ACTIVATED_
WITHOUT_TFT | UE context without
TFT already
activated | GTPv2 | 85 | | 272 | GTP_CAUSE_
PROTO_NOT_
SUPPORTED | Protocol type not supported | GTPv2 | 86 | | 273 | GTP_CAUSE_
UE_NOT_
RESPONDING | UE not responding | GTPv2 | 87 | | 274 | GTP_CAUSE_UE_
REFUSES | UE refuses | GTPv2 | 88 | | 275 | GTP_CAUSE_
SERVICE_DENIED | Service denied | GTPv2 | 89 | | 276 | GTP_CAUSE_
UNABLE_TO_
PAGE_UE | Unable to page UE | GTPv2 | 90 | | 277 | GTP_CAUSE_NO_
MEM | No memory available | GTPv2 | 91 | | 278 | GTP_CAUSE_
USER_AUTH_
FAILED | User authentication failed | GTPv2 | 92 | | 279 | GTP_CAUSE_
APN_ACCESS_
DENIED | APN access denied - no subscription | GTPv2 | 93 | | 280 | GTP_CAUSE_
REQUEST_
REJECTED | Request rejected (reason not specified) | GTPv2 | 94 | | 281 | GTP_CAUSE_
PTMSI_
MISMATCH | P-TMSI Signature mismatch | GTPv2 | 95 | | 282 | GTP_CAUSE_
IMSI_NOT_
KNOWN | IMSI/IMEI not
known | GTPv2 | 96 | | 283 | GTP_CAUSE_
SEMANTIC_ERR_
TAD | Semantic error in the TAD operation | GTPv2 | 97 | | Cause | Name | Description | Protocol | Protocol value | |-------|--|--|----------|----------------| | 284 | GTP_CAUSE_
SYNTACTIC_
ERR_TAD | Syntactic error in the TAD operation | GTPv2 | 98 | | 285 | GTP_CAUSE_
RESERVED_
MSG_VAL | Used to indicate specific IE value validation failure cases. | GTPv2 | 99 | | 286 | GTP_CAUSE_
REM_PEER_NO_
RESPONSE | Remote peer not responding, used for all types of peers without differentiation | GTPv2 | 100 | | 289 | GTP_CAUSE_
COLLISION_
WITH_NW_REQS | Collision with network-initiated request | GTPv2 | 101 | | 290 | GTP_CAUSE_
UNABLE_TO_
PAGE_DUE_TO_
SUSPENSION | Unable to page
UE because of
Suspension | GTPv2 | 102 | | 291 | GTP_CAUSE_
CONDITIONAL_
IE_MISSING | Conditional IE missing | GTPv2 | 103 | | 292 | GTP_CAUSE_
APN_
RESTRICTION_
INCOMPATIBLE | APN Restriction
type Incompatible
with currently
active PDN
connection | | 104 | | 293 | GTP_CAUSE_
INVALID_
OVERALL_LEN_
TRIG_PIGGY | Invalid overall length of the triggered response message and a piggybacked initial message | GTPv2 | 105 | | 294 | GTP_CAUSE_
DATA_
FOWARDING_
NOT_
SUPPORTED | Data forwarding not supported | GTPv2 | 106 | | 295 | GTP_CAUSE_
INVALID_REPLY_
REMOTE_PEER | Invalid reply from remote peer | GTPv2 | 107 | | Cause | Name | Description | Protocol | Protocol value | |-------|--|---|----------|----------------| | 296 | GTP_CAUSE_
FALLBACK_TO_
GTPV1 | Fallback to GTPv1 | GTPv2 | 108 | | 297 | GTP_CAUSE_
INVALID_PEER | Invalid peer | GTPv2 | 109 | | 298 | GTP_CAUSE_
HANDOVER_IN_
PROGRESS | Temporarily rejected because of a handover procedure in progress | GTPv2 | 110 | | 299 | GTP_CAUSE_
MOD_BEYONG_
S1U_BEARERS | Modifications not limited to S1-U bearers | GTPv2 | 111 | | 300 | GTP_CAUSE_UE_
REATTACHED | UE already re-
attached | GTPv2 | 115 | | 301 | GTP_CAUSE_
MPDN_PER_APN_
NOT_ALLOWED | Multiple PDN
connections for a
specific APN not
allowed | GTPv2 | 116 | | 302 | GTP_CAUSE_
SGW_
RECOVERY_IDLE | SGW/combined
SGW/PGW
indicates to the
MME that Geo-
redundancy
fail-over just
occurred. This
is a proprietary
definition. | GTPv2 | 254 | | 303 | GTP_CAUSE_
PGW_NOT_
RESPONDING | For PGW Restart
Notification (PRN)
message to
indicate the PGW
down case. | GTPv2 | 12 | | 409 | GTP_CAUSE_
MME_REFUSE_
VPLMN_PCY | The MME or the
SGSN refuses
because of VPLMN
Policy | GTPv2 | 119 | | 410 | GTP_CAUSE_UE_
UNREACH_PWR_
SAV | The UE is
temporarily not
reachable because
of power saving | GTPv2 | 123 | | Cause | Name | Description | Protocol | Protocol value | |-------|---|--|----------|----------------| | 411 | GTP_CAUSE_UE_
NO_AUTH_BY_
OCS_AAA | The UE is not authorized by the Online Charging Server or the external AAA server | GTPv2 | 125 | | 412 | GTP_CAUSE_
REQ_REJECT_
UE_CAPABILITY | The request was rejected because of UE Capability | GTPv2 | 127 | | 422 | GTP_CAUSE_
LATE_OVERLAP_
REQ | Late Overlapping
Request; see
DIAMETER cause
420 | GTPv2 | 121 | | 423 | GTP_CAUSE_
TIMED_OUT_REQ | Timed Out
Request; see
DIAMETER cause
421 | GTPv2 | 122 | | 424 | E_PCMD_
CAUSE_GTP1_
NETWORK_
FAILURE | Sent by SGSN in
the Delete PDP
Context Request to
indicate a network
problem | GTPv1 | 8 | | 431 | PFCP_CAUSE_
REQ_REJECTED | Request Rejected (no specified reason) | PFCP | 64 | | 432 | PFCP_CAUSE_
CONTEXT_NOT_
FOUND | Session Context not found | PFCP | 65 | | 433 | PFCP_CAUSE_
MANDATORY_IE_
MISSING | Mandatory IE
Missing | PFCP | 66 | | 434 | PFCP_CAUSE_
CONDITIONAL_
IE_MISSING | Conditional IE
Missing | PFCP | 67 | | 435 | PFCP_CAUSE_
INVALID_LENGTH | Invalid message
length | PFCP | 68 | | 436 | PFCP_CAUSE_
MANDATORY_IE_
INCORRECT | Mandatory IE
Incorrect | PFCP | 69 | | 501 | SBI_307_TMP_
REDIRECT | _ | HTTP | 307 | | Cause | Name | Description | Protocol | Protocol value | |-------|---|-------------|----------|----------------| | 502 | SBI_308_PERM_
REDIRECT | _ | НТТР | 308 | | 503 | SBI_400_BAD_
REQUEST_
INVALID_API | _ | HTTP | 400 | | 504 | SBI_400_BAD_
REQUEST_
INVALID_
MESSAGE_
FORMAT | _ | HTTP/2 | 400 | | 505 | SBI_400_BAD_
REQUEST_
INVALID_QUERY_
PARAM | _ | HTTP/2 | 400 | | 506 | SBI_400_BAD_
REQUEST_
MANDATORY_IE_
INCORRECT | _ | HTTP/2 | 400 | | 507 | SBI_400_BAD_
REQUEST_
MANDATORY_IE_
MISSING | _ | HTTP/2 | 400 | | 508 | SBI_400_BAD_
REQUEST_
MANDATORY_
QUERY_PARAM_
INCORRECT | _ | HTTP/2 | 400 | | 509 | SBI_400_BAD_
REQUEST_
MANDATORY_
QUERY_PARAM_
MISSING | _ | HTTP/2 | 400 | | 510 | SBI_400_BAD_
REQUEST_
OPTIONAL_IE_
INCORRECT | _ | HTTP/2 | 400 | | 511 | SBI_400_BAD_
REQUEST_
OPTIONAL_
QUERY_PARAM_
INCORRECT | _ | HTTP/2 | 400 | | 512 | SBI_400_BAD_
REQUEST_ | _ | HTTP/2 | 400 | | Cause | Name | Description | Protocol | Protocol value | |-------|--|-------------|----------|----------------| | | UNSPECIFIED_
MSG_FAILURE | | | | | 513 | SBI_403_
FORBIDDEN_
DEFAULT_
EPS_BEARER_
INACTIVE | _ | HTTP/2 | 403 | | 514 | SBI_403_
FORBIDDEN_
DNN_DENIED | _ | HTTP/2 | 403 | | 515 | SBI_403_
FORBIDDEN_
DNN_NOT_
SUPPORTED | _ | HTTP/2 | 403 | | 516 | SBI_403_
FORBIDDEN_EBI_
EXHAUSTED | _ | HTTP/2 | 403 | | 517 | SBI_403_
FORBIDDEN_
EBI_REJECTED_
LOCAL_POLICY | _ | HTTP/2 | 403 | | 518 | SBI_403_
FORBIDDEN_EBI_
REJECTED_NO_
N26 | _ | HTTP/2 | 403 | | 519 | SBI_403_
FORBIDDEN_
HO_TAU_IN_
PROGRESS | _ | HTTP/2 | 403 | | 520 | SBI_403_
FORBIDDEN_
HOME_ROUTED_
ROAMING_
REQUIRED | _ | HTTP/2 | 403 | | 521 | SBI_403_
FORBIDDEN_
INTEGRITY_
PROTECTED_
MDR_NOT_
ACCEPTABLE | _ | HTTP/2 | 403 | | 522 | SBI_403_
FORBIDDEN_ | _ | HTTP/2 | 403 | | Cause | Name | Description | Protocol | Protocol value | |-------|---|-------------|----------|----------------| | | MODIFICATION_
NOT_ALLOWED | | | | | 523 | SBI_403_
FORBIDDEN_N1_
SM_ERROR | _ | HTTP/2 | 403 | | 524 | SBI_403_
FORBIDDEN_N2_
SM_ERROR | _ | HTTP/2 | 403 | | 525 | SBI_403_
FORBIDDEN_
NO_EPS_5GS_
CONTINUITY | _ | HTTP/2 | 403 | | 526 | SBI_403_
FORBIDDEN_
OUT_OF_LADN_
SERVICE_AREA | _ | HTTP/2 | 403 | | 527 | SBI_403_
FORBIDDEN_
PDU_SESSION_
ANCHOR_
CHANGE | _ | HTTP/2 | 403 | | 528 | SBI_403_
FORBIDDEN_
PDUTYPE_
DENIED | _ | HTTP/2 | 403 | | 529 |
SBI_403_
FORBIDDEN_
PDUTYPE_NOT_
SUPPORTED | _ | HTTP/2 | 403 | | 530 | SBI_403_
FORBIDDEN_
PRIORITIZED_
SERVICES_ONLY | _ | HTTP/2 | 403 | | 531 | SBI_403_
FORBIDDEN_
REJECTED_BY_
UE | _ | HTTP/2 | 403 | | 532 | SBI_403_
FORBIDDEN_
REJECTED_DUE_
VPLMN_POLICY | _ | HTTP/2 | 403 | | Cause | Name | Description | Protocol | Protocol value | |-------|--|-------------|----------|----------------| | 533 | SBI_403_
FORBIDDEN_
SNSSAI_DENIED | _ | HTTP/2 | 403 | | 534 | SBI_403_
FORBIDDEN_
SSC_DENIED | _ | HTTP/2 | 403 | | 535 | SBI_403_
FORBIDDEN_
SSC_NOT_
SUPPORTED | _ | HTTP/2 | 403 | | 536 | SBI_403_
FORBIDDEN_
SUBSCRIPTION_
DENIED | _ | HTTP/2 | 403 | | 537 | SBI_403_
FORBIDDEN_
TARGET_MME_
CAPABILITY | _ | HTTP/2 | 403 | | 538 | SBI_403_
FORBIDDEN_
UE_NOT_
RESPONDING | _ | HTTP/2 | 403 | | 539 | SBI_403_
FORBIDDEN_
UNABLE_TO_
PAGE_UE | _ | HTTP/2 | 403 | | 540 | SBI_404_
NOT_FOUND_
CONTEXT_NOT_
FOUND | _ | HTTP/2 | 404 | | 541 | SBI_404_
NOT_FOUND_
RESOURCE_URI_
STRUCTURE_
NOT_FOUND | _ | HTTP/2 | 404 | | 542 | SBI_404_
NOT_FOUND_
SUBSCRIPTION_
NOT_FOUND | _ | HTTP/2 | 404 | | 543 | SBI_411_
LENGTH_
REQUIRED_ | _ | HTTP/2 | 411 | | Cause | Name | Description | Protocol | Protocol value | |-------|--|-------------|----------|----------------| | | INCORRECT_
LENGTH | | | | | 544 | SBI_429_
TOO_MANY_
REQUESTS_NF_
CONGESTION_
RISK | _ | HTTP/2 | 429 | | 545 | SBI_500_
INTERNAL_
SERVER_
ERROR_
INSUFFICIENT_
RESOURCES | _ | HTTP/2 | 500 | | 546 | SBI_500_
INTERNAL_
SERVER_
ERROR_
INSUFFICIENT_
RESOURCES_
SLICE | _ | HTTP/2 | 500 | | 547 | SBI_500_
INTERNAL_
SERVER_
ERROR_
INSUFFICIENT_
RESOURCES_
SLICE_DNN | _ | HTTP/2 | 500 | | 548 | SBI_500_
INTERNAL_
SERVER_
ERROR_
SYSTEM_
FAILURE | _ | HTTP/2 | 500 | | 549 | SBI_500_
INTERNAL_
SERVER_
ERROR_
UNSPECIFIED_
NF_FAILURE | _ | HTTP/2 | 500 | | 550 | SBI_503_
SERVICE_
UNAVAILABLE_
DNN_
CONGESTION | _ | HTTP/2 | 503 | | Cause | Name | Description | Protocol | Protocol value | |-------|--|-------------|----------|----------------| | 551 | SBI_503_
SERVICE_
UNAVAILABLE_
NF_CONGESTION | _ | HTTP/2 | 503 | | 552 | SBI_503_
SERVICE_
UNAVAILABLE_
S_NSSAI_
CONGESTION | _ | HTTP/2 | 503 | | 553 | SBI_504_
GATEWAY_
TIMEOUT_
NETWORK_
FAILURE | _ | HTTP/2 | 504 | | 554 | SBI_504_
GATEWAY_
TIMEOUT_
PEER_NOT_
RESPONDING | _ | HTTP/2 | 504 | | 555 | SBI_400_BAD_
REQUEST_
CHARGING_
FAILED | _ | HTTP/2 | 400 | | 556 | SBI_403_
FORBIDDEN_
CHARGING_NOT_
APPLICABLE | _ | HTTP/2 | 403 | | 557 | SBI_403_
FORBIDDEN_
END_USER_
REQUEST_
DENIED | _ | HTTP/2 | 403 | | 558 | SBI_403_
FORBIDDEN_
QUOTA_LIMIT_
REACHED | _ | HTTP/2 | 403 | | 559 | SBI_403_
FORBIDDEN_
END_USER_
REQUEST_
REJECTED | _ | HTTP/2 | 403 | | Cause | Name | Description | Protocol | Protocol value | |-------|--|---|----------|----------------| | 560 | SBI_404_NOT_
FOUND_USER_
UNKNOWN | _ | HTTP/2 | 404 | | 561 | N10_
UNAUTHORIZED_
ERROR | Error when building HTTP/ 2 Authorization Header | HTTP/2 | | | 562 | N10_EXTERNAL_
ERROR | Various error cases
when decoding
N10 peer message | HTTP/2 | | | 563 | N10_INTERNAL_
ERROR | Various error cases
when sending
HTTP/2 N10 peer
message | HTTP/2 | _ | | 564 | N7_INTERNAL_
ERROR | Various error cases
when sending
HTTP/2 N7 peer
message | HTTP/2 | | | 565 | SBI_400_BAD_
REQUEST | _ | HTTP/2 | 400 | | 566 | SBI_403_
FORBIDDEN | _ | HTTP/2 | 403 | | 567 | SBI_404_NOT_
FOUND | _ | HTTP/2 | 404 | | 568 | SBI_411_
LENGTH_
REQUIRED | _ | HTTP/2 | 411 | | 569 | SBI_429_
TOO_MANY_
REQUESTS | _ | HTTP/2 | 429 | | 570 | SBI_500_
INTERNAL_
SERVER_ERROR | _ | HTTP/2 | 500 | | 571 | SBI_503_
SERVICE_
UNAVAILABLE | _ | HTTP/2 | 503 | | 572 | SBI_504_
GATEWAY_
TIMEOUT | _ | HTTP/2 | 504 | | Cause | Name | Description | Protocol | Protocol value | |-------|--|-------------|----------|----------------| | 573 | SBI_403_UE_IN_
NON_ALLOWED_
AREA | | HTTP/2 | 573 | # 6.4 Detailed causes Table 69: Detailed causes | Detailed cause ID | Description | Related event | Related cause | |-------------------|-----------------------------------|-------------------------------|----------------------------------| | 1008 | Address Pool Missing/
cfg | LTE_ADDR_POOL_
NOT_PRESENT | GTP1_CAUSE_NO_
RESOURCES | | 1009 | Unsupported Auth Type | LTE_UNSUPP_AUTH_
TYPE | GTP1_CAUSE_AUTH_
FAILURE | | 1010 | Invalid Authentication
Key | LTE_INV_AUTH_KEY | GTP1_CAUSE_AUTH_
FAILURE | | 1011 | Invalid Authentication Type | LTE_INV_AUTH_TYPE | GTP1_CAUSE_AUTH_
FAILURE | | 1012 | Authentication Failed | LTE_AUTH_FAIL | GTP1_CAUSE_AUTH_
FAILURE | | 1013 | Failed | LTE_FAILED | GTP1_CAUSE_USER_
AUTH_FAILURE | | 1014 | UE Reattach | LTE_UE_REATTACH | GTP_CAUSE_
SUCCESS | | 1015 | User authentication failure | LTE_USER_AUTH_FAIL | GTP1_CAUSE_USER_
AUTH_FAILURE | | 1016 | Diameter (PCRF)
disabled | LTE_DIAM_PCRF_
DISABLED | GTP1_CAUSE_USER_
AUTH_FAILURE | | 1017 | ROL session establishment failure | LTE_ROL_SESS_
FAILED | GTP1_CAUSE_USER_
AUTH_FAILURE | | 1018 | Addr Alloc Failed | LTE_ADDR_ALLOC_
FAIL | GTP1_CAUSE_PDP_
ADDR_NOT_AVAI | | 1019 | Address Pool Exhausted | LTE_ADDR_POOL_
EXHAUSTED | GTP1_CAUSE_PDP_
ADDR_NOT_AVAI | | 1020 | Address Pool Empty | LTE_ADDR_POOL_
EMPTY | GTP1_CAUSE_PDP_
ADDR_NOT_AVAI | | 1021 | APN access denied | LTE_APN_ACCESS_
DENIED | GTP1_CAUSE_APN_
ACC_DENIED | | Detailed cause ID | Description | Related event | Related cause | |-------------------|---|---|---| | 1022 | APN Selection Mode
Mismatch | LTE_APN_
SELECTION_MODE_
MISMATCH | GTP1_CAUSE_APN_
ACC_DENIED | | 1023 | Session Termination because of Timeout | LTE_SESSION_
TIMEOUT | GTP_CAUSE_PDN_
INACTIVE_TIMEOUT | | 1024 | Delete Session Idle
Timeout | LTE_IDLE_TIMEOUT | GTP_CAUSE_PDN_
INACTIVE_TIMEOUT | | 1025 | UE Context Not Found | LTE_UE_CTXT_NOT_
FOUND | GTP_CAUSE_
CONTEXT_NOT_
FOUND | | 1026 | PDN Context Not Found | LTE_PDN_CTXT_NOT_
FOUND | GTP_CAUSE_
CONTEXT_NOT_
FOUND | | 1027 | Bearer Context Not
Found | LTE_BEARER_CTXT_
NOT_FOUND | GTP_CAUSE_
CONTEXT_NOT_
FOUND | | 1028 | BCE PBU Prefixes Set
Mismatch | LTE_BCE_PBU_PFX_
SET_MISMATCH | GTP_CAUSE_
CONTEXT_NOT_
FOUND | | 1029 | Unexpected IE | LTE_IE_UNEXPECTED | GTP_CAUSE_INVALID_
MSG_FMT | | 1030 | Proxy registration not enabled for the mobile node | LTE_PROXY_REG_
NOT_ENABLED | GTP_CAUSE_
SERVICE_NOT_
SUPPORTED | | 1031 | Not local mobility anchor for the mobile node | LTE_NOT_LMA_FOR_
THIS_MN | GTP_CAUSE_
SERVICE_NOT_
SUPPORTED | | 1032 | The mobile access gateway is not authorized to send proxy binding updates | LTE_MAG_NO_AUTH_
FOR_PROXY_REG | GTP_CAUSE_
SERVICE_NOT_
SUPPORTED | | 1033 | Service Not Supported | LTE_SERVICE_NOT_
SUPPORTED | GTP_CAUSE_
SERVICE_NOT_
SUPPORTED | | 1034 | Timestamp Mismatch | LTE_TIMESTAMP_
MISMATCH | GTP_CAUSE_
MANDAT_IE_
INCORRECT | | 1035 | Older Timestamp | LTE_TIMESTAMP_IN_
PAST | GTP_CAUSE_
MANDAT_IE_
INCORRECT | | Detailed cause ID | Description | Related event | Related cause | |-------------------|---|---|---| | 1036 | Invalid Mand/Cond IE | LTE_INV_REQ_IE | GTP_CAUSE_
MANDAT_IE_
INCORRECT | | 1037 | Missing Home Net Pfx
Option | LTE_MISSING_HOME_
NET_PFX_OPT | GTP_CAUSE_
MANDAT_IE_MISSING | | 1038 | Missing UE ID Option | LTE_MISSING_MN_
IDENTIFIER_OPT | GTP_CAUSE_
MANDAT_IE_MISSING | | 1039 | Missing Handoff Ind
Option | LTE_MISSING_
HANDOFF_
INDICATOR_OPT | GTP_CAUSE_
MANDAT_IE_MISSING | | 1040 | Missing Access Tech
Type Option | LTE_MISSING_
ACCESS_TECH_
TYPE_OPT | GTP_CAUSE_
MANDAT_IE_MISSING | | 1041 | Missing IE | LTE_MISSING_IE | GTP_CAUSE_
MANDAT_IE_MISSING | | 1042 | Addr Pool Invalid Mscp | LTE_ADDR_POOL_
INVALID_MSCP | GTP_CAUSE_ALL_
DYNAMIC_ADDR_
OCCUPIED | | 1043 | One of the Gateways is active or the MSCP group is active | LTE_BUSY | GTP_CAUSE_UE_
NOT_RESPONDING | | 1044 | Relinking Attributes failed - discarded | LTE_DISCARD | GTP_CAUSE_UE_
REFUSES | | 1045 | Unauthorized for Home
Net Pfx | LTE_NO_AUTH_FOR_
HOME_NET_PFX | GTP_CAUSE_USER_
AUTH_FAILED | | 1047 | MME No Resp | LTE_MME_NO_RESP | GTP_CAUSE_REM_
PEER_NO_RESPONSE | | 1048 | PGW No Resp | LTE_PGW_NO_RESP | GTP_CAUSE_REM_
PEER_NO_RESPONSE | | 1049 | SGW No Resp | LTE_SGW_NO_RESP | GTP_CAUSE_REM_
PEER_NO_RESPONSE | | 1050 | Disallowed RAT Type | LTE_DISALLOWED_
RAT | GTP_CAUSE_DENIED_
RAT | | 1051 | Peer is considered to be down | LTE_PEER_DOWN | GTP_CAUSE_
SUCCESS | | 1052 | Multiple failed rules | RFC_MULTIPLE_
FAILED_RULES | DIAMETER_PCC_
BEARER_EVENT/
DIAMETER_PCC_
RULE_EVENT | | Detailed cause ID | Description | Related event | Related cause | |-------------------|--------------------------------|-------------------------------|--| | 1053 | Unknown Rule Name |
RFC_UNK_RULE_
NAME | DIAMETER_PCC_
BEARER_EVENT/
DIAMETER_PCC_
RULE_ EVENT | | 1054 | Rating group Error | RFC_RATING_GRP_
ERR | DIAMETER_PCC_
BEARER_EVENT/
DIAMETER_PCC_
RULE_EVENT | | 1055 | Service ID error | RFC_SERVICE_ID_
ERR | DIAMETER_PCC_
BEARER_EVENT/
DIAMETER_PCC_
RULE_EVENT | | 1056 | Gateway Malfunction | RFC_GW_MALFUNC | DIAMETER_PCC_
BEARER_EVENT/
DIAMETER_PCC_
RULE_EVENT | | 1057 | Resource Limitation | RFC_RESOURCE_
LIMIT | DIAMETER_PCC_
BEARER_EVENT/
DIAMETER_PCC_
RULE_EVENT | | 1058 | Max number of Bearers reached | RFC_MAX_NR_
BEARER_REACHED | DIAMETER_PCC_
BEARER_EVENT/
DIAMETER_PCC_
RULE_EVENT | | 1059 | Unknown Bearer ID | RFC_UNK_BEARER_ID | DIAMETER_PCC_
BEARER_EVENT/
DIAMETER_PCC_
RULE_EVENT | | 1060 | Missing Bearer ID | RFC_MISS_BEARER_
ID | DIAMETER_PCC_
BEARER_EVENT/
DIAMETER_PCC_
RULE_EVENT | | 1061 | Missing Flow Description | RFC_MISS_FLOW_
DESCRIPTION | DIAMETER_PCC_
BEARER_EVENT/
DIAMETER_PCC_
RULE_EVENT | | 1062 | Resource allocation
Failure | RFC_RSRC_ALLOC_
FAILURE | DIAMETER_PCC_
BEARER_EVENT/
DIAMETER_PCC_
RULE_EVENT | | 1063 | Unsuccessful QoS validation | RFC_UNSUCC_QOS_
VALIDATION | DIAMETER_PCC_
BEARER_EVENT/ | | Detailed cause ID | Description | Related event | Related cause | |-------------------|--|--|---| | | | | DIAMETER_PCC_
RULE_EVENT | | 1064 | Incorrect flow information | RFC_INCORRECT_
FLOW_INFO | DIAMETER_PCC_
BEARER_EVENT/
DIAMETER_PCC_
RULE_EVENT | | 1065 | PS to CS handover | RFC_PS2CS_
HANDOVER | DIAMETER_PCC_
BEARER_EVENT/
DIAMETER_PCC_
RULE_EVENT | | 1066 | TDF application identifier error | RFC_TDF_APPL_ID_
ERR | DIAMETER_PCC_
BEARER_EVENT/
DIAMETER_PCC_
RULE_EVENT | | 1067 | No IP-CAN bearer without traffic mapping information | RFC_NO_BEARER_
BOUND | DIAMETER_PCC_
BEARER_EVENT/
DIAMETER_PCC_
RULE_EVENT | | 1068 | Filter restrictions | RFC_FILTER_
RESTRICTIONS | DIAMETER_PCC_
BEARER_EVENT/
DIAMETER_PCC_
RULE_EVENT | | 1069 | AN gateway failed | RFC_ANGW_FAILED | DIAMETER_PCC_
BEARER_EVENT/
DIAMETER_PCC_
RULE_EVENT | | 1070 | Missing redirect server address | RFC_MISS_REDIR_
SERVR_ADDR | DIAMETER_PCC_
BEARER_EVENT/
DIAMETER_PCC_
RULE_EVENT | | 1071 | End user service denied | RFC_CM_END_USER_
SERVICE_DENIED | DIAMETER_PCC_
BEARER_EVENT/
DIAMETER_PCC_
RULE_EVENT | | 1072 | Credit control not applicable | RFC_CM_CREDIT_
CONTROL_NOT_
APPLICABLE | DIAMETER_PCC_
BEARER_EVENT/
DIAMETER_PCC_
RULE_EVENT | | 1073 | Authorization rejected | RFC_CM_
AUTHORIZATION_
REJECTED | DIAMETER_PCC_
BEARER_EVENT/
DIAMETER_PCC_
RULE_EVENT | | Detailed cause ID | Description | Related event | Related cause | |-------------------|---|---|--| | 1074 | User unknown | RFC_CM_USER_
UNKNOWN | DIAMETER_PCC_
BEARER_EVENT/
DIAMETER_PCC_
RULE_ EVENT | | 1075 | Rating failed | RFC_CM_RATING_
FAILED | _ | | 1076 | Diameter Internal Error | DIAMETER_
INTERNAL_ERROR | _ | | 1077 | Diameter Fsm Error | DIAMETER_FSM_
ERROR | _ | | 1078 | Diameter PCRF OOS | DIAMETER_PCRF_
OOS | _ | | 1079 | Diameter PCRF
Disabled | DIAMETER_PCRF_
DISABLED | _ | | 1080 | Diameter Mem Error | DIAMETER_MEM_
ERROR | _ | | 1081 | Diameter Tx Tmr Expiry | DIAMETER_TX_TMR_
EXPIRY | _ | | 1082 | Diameter Gen Encode
Error | DIAMETER_GEN_
ENCODE_ERROR | _ | | 1083 | Diameter Gen Decode
Error | DIAMETER_GEN_
DECODE_ERROR | _ | | 1084 | Diameter AMS Error | DIAMETER_AMS_
ERROR | _ | | 1085 | Diameter Session Gone | DIAMETER_SESSION_
GONE | _ | | 1086 | Diameter Timer Error | DIAMETER_TIMER_
ERROR | _ | | 1087 | LTE APN is shut | LTE_APN_IS_SHUT | GTP_CAUSE_APN_
ACCESS_DENIED | | 1088 | LTE is missing PCO IE | LTE_MISSING_PCO_IE | GTP_CAUSE_
MANDAT_IE_MISSING | | 1089 | GTP request is rejected because dual connectivity is disabled | LTE_DUAL_
CONNECTIVITY_NOT_
SUPPORTED | GTP_CAUSE_
SERVICE_NOT_
SUPPORTED | | 1090 | Session is rejected because of Diameter Overload Indication Conveyance (DOIC) | DIAMETER_DOIC_
DROP | GTP_CAUSE_NO_
RESOURCES | | Detailed cause ID | Description | Related event | Related cause | |-------------------|---|--------------------------------|---| | 1094 | Context not found | LTE_NOT_FOUND | HTTP_STATUS_404_
CONTEXT_NOT_
FOUND | | 1095 | Local Area DN Session
Release | LTE_LADN_PDU_
SESS_REL | _ | | 1096 | Failure Sending
Message | LTE_MSG_SEND_FAIL | _ | | 1097 | N2 Encoding Failure | LTE_N2_ENCODE_FAIL | _ | | 1098 | Encoding Failure | LTE_ENCODE_FAIL | _ | | 1099 | AMF Configuration Error | LTE_AMF_CFG_NF_
FAIL | _ | | 1100 | PDU Session Rejected
Only Allow IPv4 | LTE_PDU_ONLY_
ALLOW_IPV4 | HTTP_STATUS_403_
PDUTYPE_DENIED | | 1101 | PDU Session Rejected
Only Allow IPv6 | LTE_PDU_ONLY_
ALLOW_IPV6 | HTTP_STATUS_403_
PDUTYPE_DENIED | | 1102 | SSC mode is not supported | LTE_UNSUPPORTED_
SSCMODE | HTTP_STATUS_
403_SSC_NOT_
SUPPORTED | | 1103 | Insufficient resource in slice | LTE_INSUFFICIENT_
RES_SLICE | HTTP_STATUS_
500_INSUFFIC_
RESOURCES_SLICE | | 1104 | PDU session type unknown | LTE_UNKNOWN_PDU_
SESSTYPE | HTTP_STATUS_403_
PDUTYPE_DENIED | | 1105 | N2 PDU Setup Failure | LTE_N2_ESTB_FAIL | HTTP_STATUS_200_
OK | | 1106 | N1_T3591 and N1_
T3592 timeout | LTE_N1_TIMER_
TIMEOUT | _ | | 1107 | N2 Decoding Failure | LTE_N2_DECODING_
FAILED | HTTP_STATUS_500_
UNSPECIFIED_NF_
FAILURE /
HTTP_STATUS_403 | | | | | N2_SM_ERROR | | 1108 | AMF reported 5G AN not responding | LTE_AN_NOT_
RESPONDING | _ | | 1110 | UPF no response | LTE_PEER_REQ_
TIMEOUT | _ | ## 6.5 Message marker IDs and SBI service operation messages Table 70: MessageMarker_n IDs | Message
marker ID | Message interface,
name, direction / service
operation | Node | Protocol | Interface / SBI service | |----------------------|--|-------------------------------------|----------|-------------------------| | 0 | No_Message | N/A | N/A | N/A | | 1 | Create_Session_Request | Combined SGW-C + PGW-C | GTPv2 | S11 | | 2 | Create_Session_Response | Combined SGW-C + PGW-C | GTPv2 | S11 | | 3 | Delete_Session_Request | Combined SGW-C + PGW-C | GTPv2 | S11 | | 4 | Delete_Session_Response | Combined SGW-C + PGW-C | GTPv2 | S11 | | 5 | Modify_Bearer_Request | Combined SGW-C + PGW-C | GTPv2 | S11 | | 6 | Modify_Bearer_Response | Combined SGW-C + PGW-C | GTPv2 | S11 | | 7 | Resume_Notification | Combined SGW-C + PGW-C | GTPv2 | S11 | | 8 | Resume_Acknowledge | Combined SGW-C + PGW-C | GTPv2 | S11 | | 9 | Modify_Bearer_Command | SGW, PGW, combined
SGW-C + PGW-C | GTPv2 | S11 | | 10 | Modify_Bearer_Failure_
Indication | Combined SGW-C + PGW-C | GTPv2 | S11 | | 11 | Delete_Bearer_Command | Combined SGW-C + PGW-C | GTPv2 | S11 | | 12 | Delete_Bearer_Failure_
Indication | Combined SGW-C + PGW-C | GTPv2 | S11 | | 13 | Bearer_Resource_Command | Combined SGW-C + PGW-C | GTPv2 | S11 | | 14 | Bearer_Resource_Failure_
Indication | Combined SGW-C + PGW-C | GTPv2 | S11 | | 15 | Downlink_Data_Notification_
Failure_Indication | Combined SGW-C + PGW-C | GTPv2 | S11 | | Message
marker ID | Message interface,
name, direction / service
operation | Node | Protocol | Interface / SBI
service | |----------------------|--|---------------------------|----------|----------------------------| | 16 | Create_Bearer_Request | Combined SGW-C +
PGW-C | GTPv2 | S11 | | 17 | Create_Bearer_Response | Combined SGW-C +
PGW-C | GTPv2 | S11 | | 18 | Update_Bearer_Request | Combined SGW-C +
PGW-C | GTPv2 | S11 | | 19 | Update_Bearer_Response | Combined SGW-C + PGW-C | GTPv2 | S11 | | 20 | Delete_Bearer_Request | Combined SGW-C +
PGW-C | GTPv2 | S11 | | 21 | Delete_Bearer_Response | Combined SGW-C + PGW-C | GTPv2 | S11 | | 22 | Suspend_Notification | Combined SGW-C + PGW-C | GTPv2 | S11 | | 23 | Suspend_Acknowledge | Combined SGW-C + PGW-C | GTPv2 | S11 | | 24 | Create_Indirect_Data_
Forwarding_Tunnel_Request | Combined SGW-C + PGW-C | GTPv2 | S11 | | 25 | Create_Indirect_Data_
Forwarding_Tunnel_
Response | Combined SGW-C + PGW-C | GTPv2 | S11 | | 26 | Delete_Indirect_Data_
Forwarding_Tunnel_Request | Combined SGW-C + PGW-C | GTPv2 | S11 | | 27 | Delete_Indirect_Data_
Forwarding_Tunnel_
Response | Combined SGW-C +
PGW-C | GTPv2 | S11 | | 28 | Release_Access_Bearers_
Request | Combined SGW-C + PGW-C | GTPv2 | S11 | | 29 | Release_Access_Bearers_
Response | Combined SGW-C +
PGW-C | GTPv2 | S11 | | 30 | Downlink_Data_Notification | Combined SGW-C + PGW-C | GTPv2 | S11 | | 31 | Downlink_Data_Notification_
Acknowledge | Combined SGW-C + PGW-C | GTPv2 | S11 | | 32 | PGW_Restart_Notification | Combined SGW-C + PGW-C | GTPv2 | S11 | | Message
marker ID | Message interface,
name, direction / service
operation | Node | Protocol | Interface / SBI service | |----------------------|--|---------------------------|----------|-------------------------| | 33 | PGW_Restart_Notification_
Acknowledge | Combined SGW-C +
PGW-C | GTPv2 | S11 | | 82 | Modify_Access_Bearer_
Request | Combined SGW-C + PGW-C | GTPv2 | S11 | | 83 | Modify_Access_Bearer_
Response | Combined SGW-C + PGW-C | GTPv2 | S11 | |
83 | Modify_Access_Bearer_
Response | Combined SGW-C + PGW-C | GTPv2 | S11 | | 84 | PFCP Session
Establishment Request | Combined SGW-C + PGW-C | PFCP | Sx, N4 | | 85 | PFCP Session
Establishment Response | Combined SGW-C + PGW-C | PFCP | Sx, N4 | | 86 | PFCP Session Modification Request | Combined SGW-C + PGW-C | PFCP | Sx, N4 | | 87 | PFCP Session Modification Response | Combined SGW-C + PGW-C | PFCP | Sx, N4 | | 88 | PFCP Session Deletion
Request | Combined SGW-C + PGW-C | PFCP | Sx, N4 | | 89 | PFCP Session Deletion
Response | Combined SGW-C + PGW-C | PFCP | Sx, N4 | | 90 | PFCP Session Report
Request | Combined SGW-C + PGW-C | PFCP | Sx, N4 | | 91 | PFCP Session Report
Response | Combined SGW-C + PGW-C | PFCP | Sx, N4 | | 101 | Create SM Context Request | SMF | HTTP/2 | Nsmf_
PDUSession | | 102 | Create SM Context
Response | SMF | HTTP/2 | Nsmf_
PDUSession | | 103 | Update SM Context Request | SMF | HTTP/2 | Nsmf_
PDUSession | | 104 | Update SM Context
Response | SMF | HTTP/2 | Nsmf_
PDUSession | | 105 | Release SM Context
Request | SMF | HTTP/2 | Nsmf_
PDUSession | | 106 | Release SM Context
Response | SMF | HTTP/2 | Nsmf_
PDUSession | | Message
marker ID | Message interface,
name, direction / service
operation | Node | Protocol | Interface / SBI service | |----------------------|--|--------------------------------|----------|---------------------------------------| | 107 | SM Context Notify Request | SMF | HTTP/2 | Nsmf_
PDUSession | | 108 | SM Context Notify Response | SMF | HTTP/2 | Nsmf_
PDUSession | | 109 | N1N2MessageTransfer
Request | SMF | HTTP/2 | Namf_
Communication | | 110 | N1N2MessageTransfer
Response | SMF | HTTP/2 | Namf_
Communication | | 111 | N1N2Message Transfer
Failure Notification Request | SMF | HTTP/2 | Namf_
Communication | | 112 | N1N2Message Transfer
Failure Notification
Response | SMF | HTTP/2 | Namf_
Communication | | 115 | Subscriber Data
Management Get Request | SMF, combined SGW-C
+ PGW-C | HTTP/2 | Nudm_
SubscriberData
Management | | 116 | Subscriber Data
Management Get Response | SMF, combined SGW-C
+ PGW-C | HTTP/2 | Nudm_
SubscriberData
Management | | 117 | Subscriber Data
Management Subscribe
Request | SMF, combined SGW-C
+ PGW-C | HTTP/2 | Nudm_
SubscriberData
Management | | 118 | Subscriber Data
Management Subscribe
Response | SMF, combined SGW-C
+ PGW-C | HTTP/2 | Nudm_
SubscriberData
Management | | 119 | Subscriber Data
Management Unsubscribe
Request | SMF, combined SGW-C
+ PGW-C | HTTP/2 | Nudm_
SubscriberData
Management | | 120 | Subscriber Data
Management Unsubscribe
Response | SMF, combined SGW-C
+ PGW-C | HTTP/2 | Nudm_
SubscriberData
Management | | 121 | Subscriber Data Change
Notification Request | SMF, combined SGW-C
+ PGW-C | HTTP/2 | Nudm_
SubscriberData
Management | | 122 | Subscriber Data Change
Notification Response | SMF, combined SGW-C
+ PGW-C | HTTP/2 | Nudm_
SubscriberData
Management | | Message
marker ID | Message interface,
name, direction / service
operation | Node | Protocol | Interface / SBI service | |----------------------|--|--------------------------------|----------|----------------------------------| | 123 | UE Context Management
Register Request | SMF, combined SGW-C
+ PGW-C | HTTP/2 | Nudm_
UEContext
Management | | 124 | UE Context Management
Register Response | SMF, combined SGW-C
+ PGW-C | HTTP/2 | Nudm_
UEContext
Management | | 125 | UE Context Management
Deregister Request | SMF, combined SGW-C
+ PGW-C | HTTP/2 | Nudm_
UEContext
Management | | 126 | UE Context Management
Deregister Response | SMF, combined SGW-C
+ PGW-C | HTTP/2 | Nudm_
UEContext
Management | | 127 | SM Policy Control Get
Request | SMF, combined SGW-C
+ PGW-C | HTTP/2 | Npcf_SMPolicy
Control | | 128 | SM Policy Control Get
Response | SMF, combined SGW-C
+ PGW-C | HTTP/2 | Npcf_SMPolicy
Control | | 129 | SM Policy Control Delete
Request | SMF, combined SGW-C
+ PGW-C | HTTP/2 | Npcf_SMPolicy
Control | | 130 | SM Policy Control Delete
Response | SMF, combined SGW-C
+ PGW-C | HTTP/2 | Npcf_SMPolicy
Control | | 131 | SM Policy Control Update
Notify Request | SMF, combined SGW-C
+ PGW-C | HTTP/2 | Npcf_SMPolicy
Control | | 132 | SM Policy Control Update
Notify Response | SMF, combined SGW-C
+ PGW-C | HTTP/2 | Npcf_SMPolicy
Control | | 133 | SM Policy Control Update
Request | SMF, combined SGW-C
+ PGW-C | HTTP/2 | Npcf_SMPolicy
Control | | 134 | SM Policy Control Update
Response | SMF, combined SGW-C
+ PGW-C | HTTP/2 | Npcf_SMPolicy
Control | | 135 | Charging Data Request [Initial] | SMF, combined SGW-C
+ PGW-C | HTTP/2 | Nchf_Converged
Charging | | 136 | Charging Data Response
[Initial] | SMF, combined SGW-C
+ PGW-C | HTTP/2 | Nchf_Converged
Charging | | 137 | Charging Data Request [Update] | SMF, combined SGW-C
+ PGW-C | HTTP/2 | Nchf_Converged
Charging | | 138 | Charging Data Response
[Update] | SMF, combined SGW-C
+ PGW-C | HTTP/2 | Nchf_Converged
Charging | | Message
marker ID | Message interface,
name, direction / service
operation | Node | Protocol | Interface / SBI
service | |----------------------|--|--------------------------------|----------|----------------------------| | 139 | Charging Data Request [Terminate] | SMF, combined SGW-C
+ PGW-C | HTTP/2 | Nchf_Converged
Charging | | 140 | Charging Data Response
[Terminate] | SMF, combined SGW-C
+ PGW-C | HTTP/2 | Nchf_Converged
Charging | | 141 | SM Policy Control Delete
Notify Request | SMF, combined SGW-C
+ PGW-C | HTTP/2 | Npcf_SMPolicy
Control | | 142 | SM Policy Control Delete
Notify Response | SMF, combined SGW-C
+ PGW-C | HTTP/2 | Npcf_SMPolicy
Control | | 143 | EBI Request | SMF | HTTP/2 | Namf_
Communication | | 144 | EBI Response | SMF | HTTP/2 | Namf_
Communication | ## 6.6 Reference point and SBI services IDs Table 71: Reference point and SBI services IDs | Reference point ID / service ID | Reference point / SBI service name | Involved Nodes | Protocol | |---------------------------------|------------------------------------|-------------------------------------|----------| | 0 | Unknown | N/A | N/A | | 1 | S11 | Combined SGW-C + PGW-C, MME | GTPv2 | | 15 | Combined Sxa/Sxb | Combined SGW-C + PGW-C,
UPF | PFCP | | 16 | N4 | SMF, UPF | PFCP | | 17 | Nsmf_PDUSession | SMF, AMF | HTTP/2 | | 19 | Namf_Communication | SMF, AMF | HTTP/2 | | 22 | Nudm_SubscriberData
Management | SMF, Combined SGW-C +
PGW-C, UDM | HTTP/2 | | 23 | Nudm_UEContextManagement | SMF, Combined SGW-C +
PGW-C, UDM | HTTP/2 | | 24 | Npcf_SMPolicyControl | SMF, Combined SGW-C +
PGW-C, PCF | HTTP/2 | | 25 | Nchf_ConvergedCharging | SMF, Combined SGW-C +
PGW-C, CHF | HTTP/2 | ## 6.7 Direction_n IDs Table 72: Direction_n IDs | Direction ID | Direction | |--------------|-----------| | 0 | Ingress | | 1 | Egress | # **Customer document and product support** #### **Customer documentation** Customer documentation welcome page # **Technical support** Product support portal **Documentation feedback** Customer documentation feedback