
Nokia Service Router Linux
7215 Interconnect System
7220 Interconnect Router
7250 Interconnect Router
7730 Service Interconnect Router
Release 25.7

Event Handler Guide

3HE 21405 AAAB TQZZA
Edition: 01
July 2025

© 2025 Nokia.

Use subject to Terms available at: www.nokia.com/terms.

Nokia is committed to diversity and inclusion. We are continuously reviewing our customer
documentation and consulting with standards bodies to ensure that terminology is inclusive and
aligned with the industry. Our future customer documentation will be updated accordingly.

This document includes Nokia proprietary and confidential information, which may not be distributed
or disclosed to any third parties without the prior written consent of Nokia.

This document is intended for use by Nokia’s customers (“You”/”Your”) in connection with a product
purchased or licensed from any company within Nokia Group of Companies. Use this document
as agreed. You agree to notify Nokia of any errors you may find in this document; however, should
you elect to use this document for any purpose(s) for which it is not intended, You understand and
warrant that any determinations You may make or actions You may take will be based upon Your
independent judgment and analysis of the content of this document.

Nokia reserves the right to make changes to this document without notice. At all times, the
controlling version is the one available on Nokia’s site.

No part of this document may be modified.

NO WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY OF AVAILABILITY, ACCURACY, RELIABILITY, TITLE, NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, IS MADE
IN RELATION TO THE CONTENT OF THIS DOCUMENT. IN NO EVENT WILL NOKIA BE LIABLE
FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, DIRECT, INDIRECT,
INCIDENTAL OR CONSEQUENTIAL OR ANY LOSSES, SUCH AS BUT NOT LIMITED TO LOSS
OF PROFIT, REVENUE, BUSINESS INTERRUPTION, BUSINESS OPPORTUNITY OR DATA
THAT MAY ARISE FROM THE USE OF THIS DOCUMENT OR THE INFORMATION IN IT, EVEN
IN THE CASE OF ERRORS IN OR OMISSIONS FROM THIS DOCUMENT OR ITS CONTENT.

Copyright and trademark: Nokia is a registered trademark of Nokia Corporation. Other product
names mentioned in this document may be trademarks of their respective owners.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

© 2025 Nokia.

Event Handler Guide Release 25.7

Table of contents

Table of contents
1  About this guide.. 4

1.1  Precautionary and information messages...4
1.2  Conventions... 4

2  What's new... 6

3  Event handler overview.. 7

4  Event handler configuration...9
4.1  Configuring the user for event handler operations... 11
4.2  Displaying event handler information..12
4.3  Error handling for event handler... 14

5  Event handler scripts..15
5.1  Actions... 17

6  Operational groups overview...23

7  Configuring event handler for operational groups..25
7.1  Configuring the event handler instance.. 25
7.2  MicroPython script for oper-group...28
7.3  Displaying oper-group information.. 31

3HE 21405 AAAB TQZZA © 2025 Nokia.

Use subject to Terms available at: www.nokia.com/terms.
3

SPACER TEXT

Event Handler Guide Release 25.7

About this guide

1 About this guide
This document describes the functionality and configuration for the event handler framework on the Nokia
Service Router Linux (SR Linux). A configuration example is provided showing how the event handler
framework can be used to support operational groups.
This document is intended for marketing personnel, network technicians, administrators, operators, service
providers, and others who need a basic understanding of how event handler works.

Note:
This manual covers the current release and may also contain some content that will be released
in later maintenance loads. See the SR Linux Software Release Notes for information about
features supported in each load.
Configuration and command outputs shown in this guide are examples only; actual displays may
differ depending on supported functionality and user configuration.

1.1 Precautionary and information messages
The following are information symbols used in the documentation.

DANGER: Danger warns that the described activity or situation may result in serious personal
injury or death. An electric shock hazard could exist. Before you begin work on this equipment,
be aware of hazards involving electrical circuitry, be familiar with networking environments, and
implement accident prevention procedures.

WARNING: Warning indicates that the described activity or situation may, or will, cause
equipment damage, serious performance problems, or loss of data.

Caution: Caution indicates that the described activity or situation may reduce your component or
system performance.

Note: Note provides additional operational information.

Tip: Tip provides suggestions for use or best practices.

1.2 Conventions
SR Linux documentation uses the following command conventions.
• Bold type indicates a command that the user must enter.
• Input and output examples are displayed in Courier text.

• An open right-angle bracket indicates a progression of menu choices or simple command sequence
(often selected from a user interface). Example: start > connect to.

3HE 21405 AAAB TQZZA © 2025 Nokia.

Use subject to Terms available at: www.nokia.com/terms.
4

SPACER TEXT

Event Handler Guide Release 25.7

About this guide

• A vertical bar (|) indicates a mutually exclusive argument.
• Square brackets ([]) indicate optional elements.
• Braces ({ }) indicate a required choice. When braces are contained within square brackets, they indicate

a required choice within an optional element.
• Italic type indicates a variable.
Generic IP addresses are used in examples. Replace these with the appropriate IP addresses used in the
system.

3HE 21405 AAAB TQZZA © 2025 Nokia.

Use subject to Terms available at: www.nokia.com/terms.
5

SPACER TEXT

Event Handler Guide Release 25.7

What's new

2 What's new
There have been no updates in this document since it was last released.

3HE 21405 AAAB TQZZA © 2025 Nokia.

Use subject to Terms available at: www.nokia.com/terms.
6

SPACER TEXT

Event Handler Guide Release 25.7

Event handler overview

3 Event handler overview
Event handler is a framework that enables SR Linux to react to specific system events, using
programmable logic to define the actions taken in response to the events.
The event handler framework allows you to write custom scripts that are invoked when specific events
occur, such as when a port goes operationally down. The scripts can generate a list of actions for the
SR Linux device to execute. The actions can include updating the SR Linux configuration, changing the
operational state of a group of ports, executing a tools command, or running another script.

SR Linux supports event handler via the event_mgr process, which operates as the srlinux user. The
following diagram shows the interaction between the SR Linux management server, event handler (via the
event_mgr process), and the script.

Figure 1: Event handler framework

The event handler framework operates in the following sequence:
1. Event handler is configured to subscribe to a set of YANG paths, for example the operational state of a

set of interfaces.

3HE 21405 AAAB TQZZA © 2025 Nokia.

Use subject to Terms available at: www.nokia.com/terms.
7

SPACER TEXT

Event Handler Guide Release 25.7

Event handler overview

2. The SR Linux management server publishes the state of the paths to which event handler is
subscribed.

3. In response to the state change, event handler invokes a MicroPython script, supplying path information
and configured options for the script to use as input.

4. The script processes the information supplied by event handler.
5. The script returns a list of actions that is passed to event handler. Possible actions include setting an

interface operationally down, running a tools command, or executing another script.
6. Event handler processes the list of actions returned by the script.
7. Event handler executes the actions on the SR Linux device, or runs another script if an action specifies

to do so.
To configure event handler, you configure an event handler instance, which specifies the paths to monitor,
the name of the script to run, and options to supply to the script. See Event handler configuration.
Event handler supplies input to a script as a JSON string. See Event handler scripts for details about how
the script input is formatted, how it is processed by a script, and the actions that a script can return to event
handler.
One possible use for event handler is the ability to change the operational state of one group of ports
based on the state of another group of ports. This type of usage is known as operational groups.
Operational groups overview describes this use case. Configuring event handler for operational groups
provides an example configuration.

3HE 21405 AAAB TQZZA © 2025 Nokia.

Use subject to Terms available at: www.nokia.com/terms.
8

SPACER TEXT

Event Handler Guide Release 25.7

Event handler configuration

4 Event handler configuration
To configure an event handler instance, you specify the paths to monitor, the name of the MicroPython
script to invoke, and object-value pairs to be used as options in the script. When a state change occurs for
the monitored paths, event handler invokes the script, passing the state information and options in a JSON
string as input to the script.

Example
The following is an example configuration for an event handler instance:

--{ candidate shared default }--[]--
info with-context system event-handler instance opergrp
 system {
 event-handler {
 instance opergrp {
 admin-state enable
 upython-script oper-group.py
 paths [
 "interface ethernet-1/55 oper-state"
 "interface ethernet-1/56 oper-state"
]
 options {
 object down-links {
 values [
 ethernet-1/1
]
 }
 object required-num-up-links {
 value 2
 }
 }
 }
 }
 }

In this example, the event handler monitors the operational state of the uplinks defined in the paths
statement, ethernet-1/55 and ethernet-1/56. If the oper-state for either uplink changes to
down, then the oper-state of the downstream link in the down-links options list, ethernet-1/
1, is set to down.

To do this, event handler invokes the MicroPython script defined in the upython-script statement,
oper-group.py. Event handler supplies the state of the uplinks, the number of uplinks required to
be up, and the associated downlinks as input to the script; this input is supplied in the form of a JSON
string; for example:

{
 "paths": [
 {
 "path": "interface ethernet-1/55 oper-state",
 "value": "down"
 },
 {
 "path": "interface ethernet-1/56 oper-state",
 "value": "down"

3HE 21405 AAAB TQZZA © 2025 Nokia.

Use subject to Terms available at: www.nokia.com/terms.
9

SPACER TEXT

Event Handler Guide Release 25.7

Event handler configuration

 }
],
 "options": {
 "required-num-up-links": "2",
 "down-links": [
 "ethernet-1/1",
]
 }
}

The logic for counting the number of operationally up uplinks and setting downlinks to operationally
down is kept within the oper-group.py script. After processing the input, the script returns a list of
actions to event handler for execution on the SR Linux device. See Event handler scripts for more
information.

Specifying paths to monitor
The paths statement specifies the objects for the event handler instance to monitor. Paths are configured
in CLI notation and specify any leaf or leaf-list available in the state datastore. You can use ranges and
wildcards in the path.

The following examples show possible paths configurations in an event handler instance:

• "interface ethernet-1/1 oper-state"
Monitors changes in the oper-state for interface ethernet-1/1

• "interface ethernet-1/{1..12} oper-state"
Monitors changes in the oper-state for interface ethernet-1/1 through ethernet-1/12

• "interface ethernet-1/* oper-state"
Monitors changes in the oper-state for all interfaces on a line card

• "interface * oper-state"
Monitors changes in the oper-state for all interfaces on the SR Linux device

Specifying options
The options statement contains a set of user-defined objects and associates either a single value or
list of values to them. The object-value pairs are carried as input to the MicroPython script, allowing you
to potentially pass configuration. Event handler passes the options to the script as JSON strings; the
objects do not need to follow any particular schema.

The following example defines object-value pairs in the options statement of an event handler instance:

--{ candidate shared default }--[]--
info with-context system event-handler instance opergrp options
 system {
 event-handler {
 instance opergrp {
 options {
 object down-links {
 values [
 ethernet-1/1
 ethernet-1/2
]
 }
 object required-num-up-links {
 value 1
 }
 }

3HE 21405 AAAB TQZZA © 2025 Nokia.

Use subject to Terms available at: www.nokia.com/terms.
10

SPACER TEXT

Event Handler Guide Release 25.7

Event handler configuration

 }
 }
 }

In the example, the interfaces in the down-links object are specified as a list of values, and the number
in the required-num-up-links object is specified as a single value.

Specifying a MicroPython script
To specify the MicroPython script, use the upython-script statement. This statement refers to a
MicroPython script in one of the following locations:
• /etc/opt/srlinux/eventmgr for user-provided scripts

• /opt/srlinux/eventmgr for Nokia-provided scripts

No other directories can be used for event handler scripts. See Event handler scripts for information about
how event handler supplies input to a script and how the script processes the input and returns a list of
actions to the event handler for execution.

4.1 Configuring the user for event handler operations
Procedure
By default, event handler configuration operations executed via the set-cfg-path and delete-cfg-
path actions, scripts executed via the run-script action, and tools commands executed via the set-
tools-path action are all performed by the SR Linux admin user. You can change the user that performs
these operations.
The user must be a local user; that is, a user configured within the SR Linux CLI. Linux users and remote
users cannot be configured to execute event handler operations. See "User types" in the SR Linux
Configuration Basics Guide for information about each user type.

The user's role must have the appropriate privileges to perform the set-cfg-path, delete-cfg-path,
and set-tools-path actions required for the event handler operations. See "Authorization using role-
based access control" in the SR Linux Configuration Basics Guide for information about configuring roles.
The configured user executes operations for all event handler instances. If a user is not configured to
execute event handler operations, they are executed by local SR Linux user admin.

Example: Configure an SR Linux local user to execute event handler operations
The following example creates a local SR Linux user and configures the user to execute operations
for event handler instances.

--{ * candidate shared default }--[]--
system aaa authentication user EHexec password sr1l234

--{ * candidate shared default }--[]--
info with-context system event-handler
 system {
 event-handler {
 run-as-user EHexec
 }
 }

3HE 21405 AAAB TQZZA © 2025 Nokia.

Use subject to Terms available at: www.nokia.com/terms.
11

SPACER TEXT

Event Handler Guide Release 25.7

Event handler configuration

Example: Configure the user's role to allow execution of event handler operations
The following example configures a role that gives write privileges to all paths (/) and assigns that
role to the user configured to execute event handler operations.

--{ candidate shared default }--[]--
info with-context system aaa authorization
 system {
 aaa {
 authorization {
 role EHexecRole {
 }
 }
 }
 }

--{ * candidate shared default }--[]--
info with-context system configuration role EHexecRole
 system {
 configuration {
 role EHexecRole {
 rule / {
 action write
 }
 }
 }
 }

--{ * candidate shared default }--[]--
info with-context system aaa authentication
 system {
 aaa {
 authentication {
 authentication-method [
 local
]
 user EHexec {
 password $ar2$kYDzvtHbUuc=$VINLYMbZ8f8u4gMtuPnSVQ==
 role [
 EHexecRole
]
 }
 }
 }
 }

4.2 Displaying event handler information
Procedure
Use the info from state command to display information about an event handler instance, including any
errors.

Example

--{ running }--[]--
info with-context from state system event-handler instance opergrp

3HE 21405 AAAB TQZZA © 2025 Nokia.

Use subject to Terms available at: www.nokia.com/terms.
12

SPACER TEXT

Event Handler Guide Release 25.7

Event handler configuration

 system {
 event-handler {
 instance opergrp {
 admin-state enable
 upython-script oper-group.py
 oper-state up
 paths [
 "interface ethernet-1/1 oper-state"
 "interface ethernet-1/4 oper-state"
]
 options {
 object down-links {
 values [
 ethernet-1/3
 ethernet-1/8
]
 }
 object required-num-up-links {
 value 2
 }
 }
 last-execution {
 start-time now
 end-time now
 upython-duration 1
 input "{\"paths\":[{\"path\":\"interface ethernet-1/1 oper-state\",
\"value\":\"up\"},{\"path\":\"interface ethernet-1/4 oper-state\",\"value\":\"up\"}],\
"options\":{\"down-links\":[\"ethernet-1/3\",\"ethernet-1/8\"],\"required-num-up-links\":\
"2\"},\"persistent-data\":{\"last-state\":\"up\"}}"
 output "{\"actions\": [{\"set-ephemeral-path\": {\"path\": \"interface
 ethernet-1/3 oper-state\", \"value\": \"up\"}}, {\"set-ephemeral-path\": {\"path\": \
"interface ethernet-1/8 oper-state\", \"value\": \"up\"}}], \"persistent-data\": {\"last-
state\": \"up\"}}"
 stdout-stderr ""
 }
 last-errored-execution {
 oper-down-reason admin-disabled
 oper-down-reason-detail ""
 start-time "26 seconds ago"
 end-time "25 seconds ago"
 upython-duration 0
 input "{\"paths\":[{\"path\":\"interface ethernet-1/1 oper-state\",\
"value\":\"up\"},{\"path\":\"interface ethernet-1/4 oper-state\",\"value\":\"down\"}],\
"options\":{\"down-links\":[\"ethernet-1/3\",\"ethernet-1/8\"],\"required-num-up-links\":\
"2\"},\"persistent-data\":{\"last-state\":\"down\"}}"
 output "{\"actions\": [{\"set-ephemeral-path\": {\"path\": \"interface
 ethernet-1/3 oper-state\", \"value\": \"up\"}}, {\"set-ephemeral-path\": {\"path\": \
"interface ethernet-1/8 oper-state\", \"value\": \"up\"}}], \"persistent-data\": {\"last-
state\": \"up\"}}"
 stdout-stderr ""
 }
 statistics {
 upython-duration 516
 execution-count 1643
 execution-successes 1642
 execution-errors 1
 }
 }
 }
 }

3HE 21405 AAAB TQZZA © 2025 Nokia.

Use subject to Terms available at: www.nokia.com/terms.
13

SPACER TEXT

Event Handler Guide Release 25.7

Event handler configuration

Example
You can clear the statistics for the event handler instance using a tools command. For example:

--{ running }--[]--
tools system event-handler instance opergrp statistics clear

4.3 Error handling for event handler
Whenever calling the event_handler_main() function for a script results in an error, the event handler
instance oper-state is set to down, and the oper-down-reason under last-errored-execution
indicates the reason for the failure. The oper-down-reason-detail is populated from stderr and
displays any additional details. The relevant error counters execution-timeouts and execution-
errors are incremented.

Whenever a script exceeds the 10-second execution timer (the amount of time it takes for a call to event_
handler_main() to return a list of actions, and for event_mgr to execute the actions) the function call is
terminated, and the execution-timeouts error counter is incremented.

Any time an instance experiences a failure, any pre-existing set-ephemeral-path actions are cleared,
resulting in the modified objects reverting back to their original state.

If a script fails, it is automatically retried after a 10-second delay. During the 10-second delay, the oper-
reason reflects the most recent oper-state down transition. After the 10-second delay, the instance
moves to oper-state starting, before moving to oper-state down or oper-state up depending
on the execution of the event_handler_main() function.

The 10-second delay and retry continues until the script execution is successful. For the following oper-
reason errors, the instance stays at oper-state down until a user intervenes, with no retry:

• failed-to-compile
• script-unavailable
• system-error
• missing-function

3HE 21405 AAAB TQZZA © 2025 Nokia.

Use subject to Terms available at: www.nokia.com/terms.
14

SPACER TEXT

Event Handler Guide Release 25.7

Event handler scripts

5 Event handler scripts
An event handler script contains the logic that operates on the input JSON string passed to it by the
event_mgr process each time a state change is detected for the paths monitored by the event handler
instance.
Event handler scripts are executed by a MicroPython interpreter, and therefore have a limited set of
modules available in the standard libraries compared to Python. You can use a regular Python interpreter
to write the scripts for the event handler as long as you use standard libraries available for MicroPython.

Script input
Whenever a state change is detected for any of the monitored paths defined in the event handler instance,
event handler calls the MicroPython script referenced in the event handler instance configuration. Event
handler calls the event_handler_main() function in the script, passing it a JSON string indicating the
current values of the monitored paths, as well as any other configured options.

Using the example in Event handler configuration, when the oper-state for the two links defined in
paths changes to down, the event_mgr process generates the following JSON string and passes it to a
script (named oper-group.py in the example) as input:

{
 "paths": [
 {
 "path": "interface ethernet-1/55 oper-state",
 "value": "down"
 },
 {
 "path": "interface ethernet-1/56 oper-state",
 "value": "down"
 }
],
 "options": {
 "required-num-up-links": "1",
 "down-links": [
 "ethernet-1/1",
 "ethernet-1/2",
]
 }
}

Script processing
The JSON string generated by the event handler is processed by a MicroPython script. In the following
example, the script takes the state of the links in the supplied paths objects, and based on the
required-num-up-links option:value pair, decides whether the links in the down-links option:value
pair should be up or down. The script then generates a response consisting of actions for the SR Linux
device to execute.

import sys
import json

count_up_uplinks returns the number of monitored uplinks that have oper-state=up
def count_up_uplinks(paths):

3HE 21405 AAAB TQZZA © 2025 Nokia.

Use subject to Terms available at: www.nokia.com/terms.
15

SPACER TEXT

Event Handler Guide Release 25.7

Event handler scripts

 up_cnt = 0
 for path in paths:
 if path.get("value", "down") == "up":
 up_cnt = up_cnt + 1
 return up_cnt

required_up_uplinks returns the value of the `required-up-uplinks` option
def required_up_uplinks(options):
 return int(options.get("required-up-uplinks", 1))

main entry function for event handler
def event_handler_main(in_json_str):
 # parse input json string passed by event handler
 in_json = json.loads(in_json_str)
 paths = in_json["paths"]
 options = in_json["options"]
 num_up_uplinks = count_up_uplinks(paths)
 downlinks_new_state = (
 "down" if num_up_uplinks < required_up_uplinks(options) else "up"
)

 # add `debug="true"` option to event-handler configuration to output parsed parameters
 if options.get("debug") == "true":
 print(
 f"num of required up uplinks = {required_up_uplinks(options)}\n\
detected num of up uplinks = {num_up_uplinks}\n\
downlinks new state = {downlinks_new_state}"
)

 response_actions = []

 for downlink in options.get("down-links", []):
 response_actions.append(
 {
 "set-ephemeral-path": {
 "path": "interface {downlink} oper-state",
 "value": downlinks_new_state,
 }
 }
)

 response = {"actions": response_actions}
 return json.dumps(response)

This script is an example of using event handler with the SR Linux operational groups feature. See Script
processing for details about how each function of this script is processed.

Persistent-data object
The persistent-data object allows a script to maintain state between executions; for example, to count
the number of times a particular action has been taken. The persistent-data object may be included in
the JSON string returned by the script when invoked by event handler.
For example, if a script needs to count the number of times it has taken an action, it can return the
following counter:

{
-- snip --
 "persistent-data": {
 "action-count": 5
 }
}

3HE 21405 AAAB TQZZA © 2025 Nokia.

Use subject to Terms available at: www.nokia.com/terms.
16

SPACER TEXT

Event Handler Guide Release 25.7

Event handler scripts

The next time event handler invokes the script, it includes the following as part of the input supplied to the
script:

{
-- snip --
 "persistent-data": {
 "action-count": 5
 }
}

If configured to do so, the script can read this input and increment the counter, potentially returning the
following:

{
-- snip --
 "persistent-data": {
 "action-count": 6
 }
}

Script output
The MicroPython script returns a single parameter, which is a JSON string with a structure expected by
event handler. The script output contains a list of actions and persistent-data objects (if configured),
which are passed to event_mgr for processing. See Actions for descriptions of the supported actions.

Using the example from Event handler configuration, if the script determines that the link in the down-
links option must be brought down, it sends the following output JSON string to the Event Handler:

{
 "actions": [
 {
 "set-ephemeral-path": {
 "path": "/interface ethernet-1/1 oper-state",
 "value": "down",
 }
 }
]
}

Reloading the script
Whenever the configuration for an Event Handler instance changes, or the Event Handler instance is
administratively disabled and re-enabled, any running calls to the previous main function are terminated,
and the script is reloaded, losing any state information in the process. You can also reload the script
manually using a tools command.

For example, the following command reloads the oper-group.py script:

--{ running }--[]--
tools system event-handler instance oper-group.py reload

5.1 Actions
You can specify the following actions in a MicroPython script used with event handler:

3HE 21405 AAAB TQZZA © 2025 Nokia.

Use subject to Terms available at: www.nokia.com/terms.
17

SPACER TEXT

Event Handler Guide Release 25.7

Event handler scripts

• set-ephemeral-path
Make an ephemeral change to a state leaf

• set-cfg-path
Make a persistent change to the SR Linux configuration

• delete-cfg-path
Delete a path in the SR Linux configuration

• set-tools-path
Execute an SR Linux tools command

• run-script
Issue a command to execute another script

• reinvoke-with-delay
Re-invoke the script following a specified delay time

• always-execute
Always process an action, regardless of whether the same action was processed previously

The event_mgr process expects the structure of the output JSON string from the script to adhere to the
following schema:

{
 "actions": [
 {
 "set-ephemeral-path": {
 "path": "",
 "value": "",
 "always-execute": false
 }
 },
 {
 "set-cfg-path": {
 "path": "",
 "value": {},
 "always-execute": false
 }
 },
 {
 "delete-cfg-path": {
 "path": "",
 "always-execute": false
 }
 },
 {
 "set-tools-path": {
 "path": "",
 "value": {},
 "always-execute": false
 }
 },
 {
 "run-script": {
 "cmdline": "",
 "always-execute": false
 }
 },
 {
 "reinvoke-with-delay": 5000
 }
],

3HE 21405 AAAB TQZZA © 2025 Nokia.

Use subject to Terms available at: www.nokia.com/terms.
18

SPACER TEXT

Event Handler Guide Release 25.7

Event handler scripts

 "persistent-data": {
 "last-state-up": false
 }
}

Actions are processed in the order they are defined above, in that set-ephemeral-path is processed
first, and reinvoke-with-delay last. The only exceptions are for set-cfg-path and delete-cfg-
path, which are processed in the order they are received.

set-ephemeral-path
Makes an ephemeral change to a state leaf.

This action can be used to ephemerally change the oper-state for a set of interfaces based on some
criteria (for example, the number of uplinks in up state).

• path is a leaf list in CLI notation that refers to the oper-state setting for a set of interfaces.
Wildcards are not supported; ranges are supported.

• value can be either down or up.

The following example changes the oper-state for a set of four interfaces to down:

{
 "actions": [
 {
 "set-ephemeral-path": {
 "path": "interface ethernet-1/{1..4} oper-state",
 "value": "down"
 }
 }
]
}

If more than one event handler instance sets oper-state for the same interface, actions changing the
oper-state to down override actions changing the oper-state to up.

Note:
In the current release, only the interface oper-state is valid as a path used with set-
ephemeral-path.

set-cfg-path
Makes a persistent change to the SR Linux configuration.
The change is applied to the running configuration, but it is not saved to the startup configuration unless an
explicit save startup command is executed.
• path is a leaf or leaf-list in CLI notation. Wildcards are not supported; ranges are supported

• value is a configuration setting relevant to the path.

The following example uses the set-cfg-path action to configure the admin-state for an interface.
The path contains the CLI command to set the admin-state, and the value contains the setting to
apply to the interface.

{
 "actions": [
 {
 "set-cfg-path": {

3HE 21405 AAAB TQZZA © 2025 Nokia.

Use subject to Terms available at: www.nokia.com/terms.
19

SPACER TEXT

Event Handler Guide Release 25.7

Event handler scripts

 "path": "interface ethernet-1/3 admin-state",
 "value": "disable"
 }
 },
]
}

delete-cfg-path
Deletes a path in the SR Linux configuration.
The change is applied to the running configuration, but it is not saved to the startup configuration unless an
explicit save startup command is executed.
• path is a leaf or leaf-list in full, expanded CLI notation. No wildcards or ranges are supported. Deleted

settings are reset to their default values where applicable.
The following example deletes the configuration for an interface:

{
 "actions": [
 {
 "delete-cfg-path": {
 "path": "interface ethernet-1/3"
 }
 }
]
}

set-tools-path
Executes an SR Linux tools command.
• path is the CLI notation for a tools command (without the tools keyword). Wildcards are not

supported; ranges are supported.
• value specifies a required value for the tools command in the path. If the tools command does not

require a value, the value must still be included, but left empty.

The following example uses the set-tools-path action to clear statistics for an interface. This action is
equivalent to the tools interface ethernet-1/1 statistics clear CLI command.

{
 "actions": [
 {
 "set-tools-path": {
 "path": "interface ethernet-1/1 statistics clear",
 "value": ""
 }
 },
]
}

run-script
Issues a command to execute a script.
The command can chain into another Python or bash script, execute a binary, or execute a script in any
language for which the system has an interpreter installed.

3HE 21405 AAAB TQZZA © 2025 Nokia.

Use subject to Terms available at: www.nokia.com/terms.
20

SPACER TEXT

Event Handler Guide Release 25.7

Event handler scripts

The script is executed as the user configured to execute event handler operations (see Configuring the
user for event handler operations). If a user is not configured to execute event handler operations, they are
executed by local SR Linux user admin. The working context of the script is the home directory of the user
executing the script.
• cmdline is the full command to execute the script, including any options. The command is executed in

a bash shell. Specify the command as if it were entered at a shell prompt.
The following action executes a script:

{
 "actions": [
 {
 "run-script": {
 "cmdline": "/my-script.sh --arg1=val1 -t"
 }
 }
]
}

reinvoke-with-delay
Re-invokes the script following a specified delay time.

When the actions returned by a script include a value for reinvoke-with-delay, the script is
automatically re-invoked following the number of milliseconds specified in the value. When the script is re-
invoked, it uses the then-current value of all paths.

Format: reinvoke-with-delay : <delay-time>

<delay-time> can be from 1,000 - 300,000 milliseconds (5 minutes).
The following action causes the script to be re-invoked after 5,000 milliseconds:

{
 "actions": [
 {
 "reinvoke-with-delay": 5000
 }
]
}

always-execute
When set to true for an action, causes event handler to always process the action, regardless of whether
the same action was processed previously.
By default, when a list of actions is processed, event handler checks the list against actions that have been
processed previously. If an action is identical to one that was processed previously, event handler does
not re-run the duplicate action. For example, if a script returns an action setting an interface oper-state
to down, and a subsequent action sets the oper-state for the same interface to down, event handler
ignores the duplicate action.
If you want to disable this default behavior and run the action regardless of whether the same action has
been run previously, set always-execute for the action to true.

3HE 21405 AAAB TQZZA © 2025 Nokia.

Use subject to Terms available at: www.nokia.com/terms.
21

SPACER TEXT

Event Handler Guide Release 25.7

Event handler scripts

The following action runs a tools command that clears statistics for an interface. The always-execute
setting for the action is true, so the command is run each time the action is received from a script.

{
 "actions": [
 {
 "set-tools-path": {
 "path": "interface ethernet-1/1 statistics clear",
 "value": "",
 "always-execute": true
 }
]
}

If always-execute is not set to true, then the interface statistics are cleared the first time the action is
processed, but not if the same action is received again.

3HE 21405 AAAB TQZZA © 2025 Nokia.

Use subject to Terms available at: www.nokia.com/terms.
22

SPACER TEXT

Event Handler Guide Release 25.7

Operational groups overview

6 Operational groups overview
A potential use for the event handler framework is for operational groups (oper-group for short). The oper-
group feature creates a relationship between logical elements of a network node so that they become
aware of each other, forming a logical group.
For example, an oper-group can involve a set of downlink ports whose operational state, either up or down,
should be configured depending on the operational state of a set of uplink ports. The two sets of ports
constitute the oper-group. Event handler can manage the relationship between the sets of ports in the
oper-group, changing the operational state of the ports as necessary.
The oper-group feature can address the issue of traffic black-holing when leaves lose all connectivity to the
spine layer. Consider the following simplified Clos topology where clients are multi-homed to leaves:

Figure 2: Clos topology with multi-homed clients

With EVPN all-active multihoming enabled in a fabric, traffic from Client 1 is load-balanced over the links
attached to the upstream leaves and is propagated via the fabric to its destination.
Because all links of the client's bond interface are active, traffic is hashed to each of the constituent links
and therefore uses all available bandwidth. A problem occurs when a leaf loses connectivity to all upstream
spines, as illustrated below:

3HE 21405 AAAB TQZZA © 2025 Nokia.

Use subject to Terms available at: www.nokia.com/terms.
23

SPACER TEXT

Event Handler Guide Release 25.7

Operational groups overview

Figure 3: Traffic disruption when a leaf loses connectivity to upstream spines

When Leaf 1 loses its uplinks, traffic from Client 1 still flows to Leaf 1 because the client is not aware of any
link loss problems happening on the leaf. This results in traffic black-holing on Leaf 1.
An oper-group can remedy this failure scenario by establishing a logical grouping between specific uplink
and downlink interfaces on the leaves so that the operational state of the downlinks is tied to the state of
the uplinks.
For this example, an oper-group is configured so that leaves shut down their downlink interfaces if they
detect that the uplinks are down. This process is shown in the following diagram:

Figure 4: Using an oper-group to prevent traffic black-holing

In this example, the oper-group feature works as follows:
1. When Leaf 1 loses its uplinks, the oper-group is notified and reacts by operationally disabling the

access link toward the client.
2. When Leaf 1's downlink transitions to down state, Client 1's bond interface stops using that interface for

hashing, and traffic moves over to the healthy links. Client 1 stops sending to Leaf 1, and all traffic flows
to Leaf 2.

Configuring event handler for operational groups shows how to configure the event handler framework to
enable the oper-group feature.

3HE 21405 AAAB TQZZA © 2025 Nokia.

Use subject to Terms available at: www.nokia.com/terms.
24

SPACER TEXT

Event Handler Guide Release 25.7

Configuring event handler for operational groups

7 Configuring event handler for operational groups
The key to preventing traffic from being black-holed is to not allow it to be forwarded to a leaf that has no
active uplinks; for example, by disabling access links as soon as uplinks become operationally disabled.
The following sections provide an example of configuring event handler for an operational group (oper-
group):
• Configuring the event handler instance
• MicroPython script for oper-group
• Displaying oper-group information

7.1 Configuring the event handler instance
To configure an event handler instance for the oper-group feature:
1. Define a set of uplinks to monitor in the paths statement.

2. Specify downlinks (access links) and other parameters in the options statement.

3. Provide the name of a MicroPython script in the upython-script statement.

Defining uplinks to monitor in the paths statement
In the paths statement of an event handler instance used with an oper-group, you define the set of uplinks
that are necessary to provide service for a set of downlinks. The oper-group feature works by monitoring
the operational state of the uplinks, and uses the state information to determine whether the operational
state of the access links must be changed.

In this example, the operational state of two uplink interfaces ethernet-1/49 and ethernet-1/50 on
Leaf 1 are being monitored. If the operational state of the uplink interfaces changes to down, the oper-
group feature changes the state of the access interface to down to avoid black-holing of traffic from the
client.

Figure 5: Disabling downlink based on uplink state

To monitor the operational state for a set of interfaces, configure the paths statement in an event handler
instance. For example:

--{ candidate shared default }--[]--

3HE 21405 AAAB TQZZA © 2025 Nokia.

Use subject to Terms available at: www.nokia.com/terms.
25

SPACER TEXT

Event Handler Guide Release 25.7

Configuring event handler for operational groups

info with-context system event-handler instance opergroup path
 system {
 event-handler {
 instance opergroup {
 paths [
 "interface ethernet-1/{49..50} oper-state"
]
 }
 }
 }

Specify the contents of the paths statement in SR Linux CLI format. In the example above, the paths
statement is equivalent to the following CLI command:

--{ running }--[]--
info with-context from state interface ethernet-1/{49..50} oper-state

Specifying downlinks and other parameters in the options statement
The options statement in the event handler instance allows you to define objects that are passed to the
script to be used as input parameters.

For an oper-group configuration, you can use the options statement to indicate the relationship between
the monitored uplinks and the access links.
In the following example, the options define objects that specify the following:
• The access links that react to state changes of the uplinks
• The number of operationally up uplinks required for the access links to stay up

--{ candidate shared default }--[]--
info with-context system event-handler instance opergroup options
 system {
 event-handler {
 instance opergroup {
 options {
 object down-links {
 values [
 ethernet-1/1
]
 }
 object required-up-uplinks {
 value 1
 }
 object debug {
 value true
 }
 }
 }
 }
 }

In this example, the down-links object specifies an interface name. When the object is passed to
the script, it can be used as a parameter indicating the access link associated with the uplinks. For this
oper-group configuration, the down-links object indicates the interface for which the operational state
depends on the state of the uplinks defined in the paths statement.

The required-up-uplinks object specifies the number of uplinks that need to be operationally up
before the access link is brought down. For this oper-group configuration, the value is 1, which means that

3HE 21405 AAAB TQZZA © 2025 Nokia.

Use subject to Terms available at: www.nokia.com/terms.
26

SPACER TEXT

Event Handler Guide Release 25.7

Configuring event handler for operational groups

at least one uplink must be up. The script calculates the number of uplinks that are operationally up, and
compares that number to the value in the required-up-uplinks object.

The debug object is set to true, which directs the script to print the values of certain script variables.

Specifying script name in the upython-script statement
The upython-script statement in the event handler instance specifies the name of the MicroPython
script to be invoked when SR Linux detects a change in the interfaces defined in the paths statement.

The MicroPython script must reside in one of the following locations:
• /etc/opt/srlinux/eventmgr for user-provided scripts

• /opt/srlinux/eventmgr for Nokia-provided scripts

--{ candidate shared default }--[]--
info with-context system event-handler instance opergroup upython-script
 system {
 event-handler {
 instance opergroup {
 upython-script oper-group.py
 }
 }
 }

For this oper-group configuration, whenever a change occurs to the oper-state of the interfaces defined
in the paths statement, event handler invokes the oper-group.py script.

Event handler oper-group configuration
When administratively enabled, the full configuration for this event handler instance looks like the following:

--{ candidate shared default }--[]--
info with-context system event-handler instance oper-group
 system {
 event-handler {
 instance oper-group {
 admin-state enable
 upython-script oper-group.py
 paths [
 "interface ethernet-1/{1,2} oper-state"
]
 options {
 object down-links {
 values [
 ethernet-1/{20,22}
]
 }
 object hold-down-time {
 value 5000
 }
 object required-up-uplinks {
 value 2
 }
 }
 }
 }
 }

3HE 21405 AAAB TQZZA © 2025 Nokia.

Use subject to Terms available at: www.nokia.com/terms.
27

SPACER TEXT

Event Handler Guide Release 25.7

Configuring event handler for operational groups

7.2 MicroPython script for oper-group
When there is a state change in any of the paths defined in the paths statement of the event handler
instance, the script defined in the upython-script statement is invoked. Event handler calls the function
event_handler_main() in the script, passing it a JSON string indicating the current state of the
monitored paths, as well as the object:value pairs defined in the options statement.

The script receives this input, processes it, and returns a list of actions.

Script input
For the example in Event handler oper-group configuration, the input JSON string consists of the current
state of the two uplinks and the provided options. The following JSON string is passed to the oper-
group.py script if the operational state of interface ethernet-1/49 changes to down:

{
 "paths": [
 {
 "path": "interface ethernet-1/49 oper-state",
 "value": "down"
 },
 {
 "path": "interface ethernet-1/50 oper-state",
 "value": "up"
 }
],
 "options": {
 "debug": "true",
 "required-up-uplinks": "1",
 "down-links": [
 "ethernet-1/1"
]
 }
}

Script processing
The following is the oper-group.py script referenced in the event handler instance.

import sys
import json

def count_up_uplinks(paths):
 up_cnt = 0
 for path in paths:
 if path.get('value','down') == 'up':
 up_cnt = up_cnt+1
 return up_cnt

def required_up_uplinks(options):
 return int(options.get('required-up-uplinks', '1'))

def hold_time(options):
 return int(options.get('hold-down-time', '0'))

def bool_to_oper_state(val):
 return ('down','up')[bool(val)]

3HE 21405 AAAB TQZZA © 2025 Nokia.

Use subject to Terms available at: www.nokia.com/terms.
28

SPACER TEXT

Event Handler Guide Release 25.7

Configuring event handler for operational groups

def event_handler_main(in_json_str):
 in_json = json.loads(in_json_str)
 paths = in_json['paths']
 options = in_json['options']
 persist = in_json.get('persistent-data', {})

 num_up_uplinks = count_up_uplinks(paths)
 downlink_should_be_up = required_up_uplinks(options) <= num_up_uplinks
 needs_hold_down = False

 # down->up transition will be held for optional hold-time
 if (hold_time(options) > 0) and downlink_should_be_up:
 needs_hold_down = persist.get("last-state", "up") == "down"

 if options.get("debug") == "true":
 print(
 f"hold down time = {hold_time(options)}ms\n\
num of required up uplinks = {required_up_uplinks(options)}\n\
detected num of up uplinks = {num_up_uplinks}\n\
downlinks new state = {bool_to_oper_state(downlink_should_be_up)}\n\
needs_hold_down = {str(needs_hold_down)}"
)

 response_actions = []

 oper_state_str = bool_to_oper_state(not needs_hold_down and downlink_should_be_up)
 for downlink in options.get('down-links'):
 response_actions.append({'set-ephemeral-path' : {'path':'interface {0} oper-
state'.format(downlink),'value':oper_state_str}})

 if needs_hold_down:
 response_actions.append({'reinvoke-with-delay' : hold_time(options)})
 response_persistent_data = {'last-state':bool_to_oper_state(downlink_should_be_up)}

 response = {'actions':response_actions,'persistent-data':response_persistent_data}
 return json.dumps(response)

The following sections describe how each part the script processes the input for this oper-group example.

Parsing input JSON
Starting with the event_handler_main function, the incoming JSON string is parsed and the relevant
portions are extracted.

def event_handler_main(in_json_str):
 in_json = json.loads(in_json_str)
 paths = in_json['paths']
 options = in_json['options']
 persist = in_json.get('persistent-data', {})

The paths and options are objects defined in the incoming JSON string, and they are saved in their
respective like-named variables.

Determing the state for the downlink
With the input parsed, the script determines the required state of the downlink, based on the received
input.

 num_up_uplinks = count_up_uplinks(paths)
 downlink_should_be_up = required_up_uplinks(options) <= num_up_uplinks

3HE 21405 AAAB TQZZA © 2025 Nokia.

Use subject to Terms available at: www.nokia.com/terms.
29

SPACER TEXT

Event Handler Guide Release 25.7

Configuring event handler for operational groups

 needs_hold_down = False

First, the script counts the number of uplinks in oper-state up using the count_up_uplinks()
function, which simply walks through the current state of the uplinks passed into the script by event
handler.

def count_up_uplinks(paths):
 up_cnt = 0
 for path in paths:
 if path.get('value','down') == 'up':
 up_cnt = up_cnt+1
 return up_cnt

After calculating how many uplinks are operationally up, the script determines the required state for the
downlinks. To make this decision, it compares the number of operational uplinks to the required number of
uplinks (from the required-up-uplinks option):

If the required number of operationally up uplinks is less than the required number, the downlink is set
operationally down to prevent traffic black-holing. On the other hand, if the number of operational uplinks is
greater than or equal to the required number of uplinks, the downlink is set operationally up.

The calculated state of the downlink is saved in the downlinks_new_state variable.

Populating the debug log
The debug option causes the script variables to appear in the debug log.

 if options.get("debug") == "true":
 print(
 f"hold down time = {hold_time(options)}ms\n\
num of required up uplinks = {required_up_uplinks(options)}\n\
detected num of up uplinks = {num_up_uplinks}\n\
downlinks new state = {bool_to_oper_state(downlink_should_be_up)}\n\
needs_hold_down = {str(needs_hold_down)}"
)

The debug log is present only if the debug option is set to "true" in the event handler instance
configuration.
You can display the debug log by using the following CLI command:

--{ running }--[]--
info from state system event-handler instance opergroup last-stdout-stderr

Composing output
At this point, the script is able to define the correct state for the downlinks, based on the state of the
monitored uplinks and the required number of healthy uplinks. For the event handler to take action, the
script needs to output a JSON string following the format defined in Actions.

 response_actions = []

 oper_state_str = bool_to_oper_state(not needs_hold_down and downlink_should_be_up)
 for downlink in options.get('down-links'):
 response_actions.append({'set-ephemeral-path' : {'path':'interface {0} oper-
state'.format(downlink),'value':oper_state_str}})

 if needs_hold_down:

3HE 21405 AAAB TQZZA © 2025 Nokia.

Use subject to Terms available at: www.nokia.com/terms.
30

SPACER TEXT

Event Handler Guide Release 25.7

Configuring event handler for operational groups

 response_actions.append({'reinvoke-with-delay' : hold_time(options)})
 response_persistent_data = {'last-state':bool_to_oper_state(downlink_should_be_up)}

 response = {'actions':response_actions,'persistent-data':response_persistent_data}
 return json.dumps(response)

This example shows an output JSON string, using the calculated downlinks_new_state and the list of
downlinks provided from the down-links option.

The output JSON string contains the set-ephemeral-path action, which sets the oper-state of the
downlink to the correct value (up or down).

The output is provided via the response dictionary, and is JSON-encoded before returning from the
function. This routine provides a JSON string back to the event handler, which processes and executes the
actions passed to it.
The result of this processing shows the implementation of the oper-group feature: the event handler
executes actions to set the state of a downlink based on the state of a group of uplinks.

7.3 Displaying oper-group information
When an event handler instance is configured and administratively enabled, an initial sync of the monitored
paths state is performed. As a result of this initial sync, event handler immediately attempts to execute a
script when it receives the state for the monitored paths.
You can display the status of an event handler instance by querying the state datastore. For example:

--{ running }--[]--
info with-context from state system event-handler instance opergrp
 system {
 event-handler {
 instance opergrp {
 admin-state enable
 upython-script oper-group.py
 oper-state up
 paths [
 "interface ethernet-1/1 oper-state"
 "interface ethernet-1/4 oper-state"
]
 options {
 object down-links {
 values [
 ethernet-1/3
 ethernet-1/8
]
 }
 object required-num-up-links {
 value 2
 }
 }
 last-execution {
 start-time now
 end-time now
 upython-duration 1
 input "{\"paths\":[{\"path\":\"interface ethernet-1/1 oper-state\",\
"value\":\"up\"},{\"path\":\"interface ethernet-1/4 oper-state\",\"value\":\"up\"}],\"options
\":{\"down-links\":[\"ethernet-1/3\",\"ethernet-1/8\"],\"required-num-up-links\":\"2\"},\
"persistent-data\":{\"last-state\":\"up\"}}"

3HE 21405 AAAB TQZZA © 2025 Nokia.

Use subject to Terms available at: www.nokia.com/terms.
31

SPACER TEXT

Event Handler Guide Release 25.7

Configuring event handler for operational groups

 output "{\"actions\": [{\"set-ephemeral-path\": {\"path\": \"interface
 ethernet-1/3 oper-state\", \"value\": \"up\"}}, {\"set-ephemeral-path\": {\"path\": \
"interface ethernet-1/8 oper-state\", \"value\": \"up\"}}], \"persistent-data\": {\"last-state\
": \"up\"}}"
 stdout-stderr ""
 }
 last-errored-execution {
 oper-down-reason admin-disabled
 oper-down-reason-detail ""
 start-time "26 seconds ago"
 end-time "25 seconds ago"
 upython-duration 0
 input "{\"paths\":[{\"path\":\"interface ethernet-1/1 oper-state\",\"value
\":\"up\"},{\"path\":\"interface ethernet-1/4 oper-state\",\"value\":\"down\"}],\"options
\":{\"down-links\":[\"ethernet-1/3\",\"ethernet-1/8\"],\"required-num-up-links\":\"2\"},\
"persistent-data\":{\"last-state\":\"down\"}}"
 output "{\"actions\": [{\"set-ephemeral-path\": {\"path\": \"interface
 ethernet-1/3 oper-state\", \"value\": \"up\"}}, {\"set-ephemeral-path\": {\"path\": \
"interface ethernet-1/8 oper-state\", \"value\": \"up\"}}], \"persistent-data\": {\"last-state\
": \"up\"}}"
 stdout-stderr ""
 }
 statistics {
 upython-duration 516
 execution-count 1643
 execution-successes 1642
 execution-errors 1
 }
 }
 }
 }

This command displays the following information:
• oper-state

The operational state of the event handler instance. In case of any errors in the script and, or
configuration the state is down.

• last-execution
Information about the most recent time the script was executed.

• last-errored-execution
Information about the last time the script was executed with an error result. This includes the oper-
down-reason, oper-down-reason-detail the input and output JSON strings, and the output print
statements and log messages sent to stdout-stderr by the script.

• statistics
Statistics related to the execution process.

For the oper-group example, the following output is displayed if one of the uplinks goes down:

--{ running }--[]--
info with-context from state system event-handler instance opergrp
 system {
 event-handler {
 instance opergrp {
 admin-state enable
 upython-script oper-group.py
 oper-state up
 last-execution {
 start-time now
 end-time now

3HE 21405 AAAB TQZZA © 2025 Nokia.

Use subject to Terms available at: www.nokia.com/terms.
32

SPACER TEXT

Event Handler Guide Release 25.7

Configuring event handler for operational groups

 upython-duration 1
 input "{\"paths\":[{\"path\":\"interface ethernet-1/1 oper-state\",\
"value\":\"up\"},{\"path\":\"interface ethernet-1/4 oper-state\",\"value\":\"up\"}],\"options
\":{\"down-links\":[\"ethernet-1/3\",\"ethernet-1/8\"],\"required-num-up-links\":\"2\"},\
"persistent-data\":{\"last-state\":\"up\"}}"
 output "{\"actions\": [{\"set-ephemeral-path\": {\"path\": \"interface
 ethernet-1/3 oper-state\", \"value\": \"up\"}}, {\"set-ephemeral-path\": {\"path\": \
"interface ethernet-1/8 oper-state\", \"value\": \"up\"}}], \"persistent-data\": {\"last-state\
": \"up\"}}"
 stdout-stderr ""num of required up uplinks = 1
detected num of up uplinks = 1
downlinks new state = up"
 }
 }
 }
 }

The setting for downlinks new state is up because the detected num of up uplinks did not
drop below the required number of 1. The downlink interface therefore remains operationally up.
If both of the uplinks go down, the following is displayed:

--{ running }--[]--
info with-context from state system event-handler instance opergrp
info from state system event-handler instance opergrp
 system {
 event-handler {
 instance opergrp {
 admin-state enable
 upython-script oper-group.py
 oper-state up
 last-execution {
 start-time now
 end-time now
 upython-duration 1
 input "{\"paths\":[{\"path\":\"interface ethernet-1/1 oper-state\",\
"value\":\"up\"},{\"path\":\"interface ethernet-1/4 oper-state\",\"value\":\"up\"}],\"options
\":{\"down-links\":[\"ethernet-1/3\",\"ethernet-1/8\"],\"required-num-up-links\":\"2\"},\
"persistent-data\":{\"last-state\":\"up\"}}"
 output "{\"actions\": [{\"set-ephemeral-path\": {\"path\": \"interface
 ethernet-1/3 oper-state\", \"value\": \"up\"}}, {\"set-ephemeral-path\": {\"path\": \
"interface ethernet-1/8 oper-state\", \"value\": \"up\"}}], \"persistent-data\": {\"last-state\
": \"up\"}}"
 stdout-stderr ""num of required up uplinks = 1
detected num of up uplinks = 0
downlinks new state = down"
 }
 }
 }
 }

The detected num of up uplinks is 0, which is below the required number of 1. This causes event
handler to set the downlink interface to operationally down.
In this way, event handler uses the oper-group feature to disable the access link when the uplink interfaces
go down, therefore preventing traffic from black-holing.

3HE 21405 AAAB TQZZA © 2025 Nokia.

Use subject to Terms available at: www.nokia.com/terms.
33

SPACER TEXT

Customer document and product support

Customer documentation
Customer documentation welcome page

Technical support
Product support portal

Documentation feedback
Customer documentation feedback

https://documentation.nokia.com
https://customer.nokia.com/support/s/
mailto:documentation.feedback@nokia.com

	Table of contents
	1 About this guide
	1.1 Precautionary and information messages
	1.2 Conventions

	2 What's new
	3 Event handler overview
	4 Event handler configuration
	4.1 Configuring the user for event handler operations
	4.2 Displaying event handler information
	4.3 Error handling for event handler

	5 Event handler scripts
	5.1 Actions

	6 Operational groups overview
	7 Configuring event handler for operational groups
	7.1 Configuring the event handler instance
	7.2 MicroPython script for oper-group
	7.3 Displaying oper-group information

