Installing software

This chapter describes software installation tasks. Software installation topics include:

Hardware overview

SR Linux can be installed on the 7250 IXR, 7220 IXR-D, 7220 IXR-DL, and 7220 IXR-H series systems. There are multiple chassis variants of each system type. In the sections that follow, installation procedures reference the system types collectively. Software installations can be performed on each chassis variant.

The following systems are referred to collectively as 7250 IXR systems:

  • 7250 IXR-6
  • 7250 IXR-6e
  • 7250 IXR-10
  • 7250 IXR-10e

The following systems are referred to collectively as 7220 IXR-D systems:

  • 7220 IXR-D1
  • 7220 IXR-D2
  • 7220 IXR-D3
  • 7220 IXR-D5

The following systems are referred to collectively as 7220 IXR-DL systems:

  • 7220 IXR-D2L
  • 7220 IXR-D3L

The following systems are referred to collectively as 7220 IXR-H systems:

  • 7220 IXR-H2
  • 7220 IXR-H3

For information about each chassis, see the SR Linux Product Overview.

Each router series also has a dedicated installation guide containing complete specifications, recommendations for preparing the installation site, and procedures to install and ground the routers. See the respective chassis installation guides listed in the SR Linux Product Overview for more information.

Installation overview

SR Linux can be installed on the 7250 IXR, 7220 IXR-D, 7220 IXR-DL, and 7220 IXR-H series systems.

Installations can be completed using the CLI. To perform either an initial imaging, reinstallation, or an upgrade or downgrade of a system, the operation requires pushing the new image to the device, changing the boot configuration, and rebooting.

In the installation procedure examples, commands preceded by $ require root privilege. Commands preceded by # should be executed from a bash shell.

The basic installation actions performed on the system do not change, regardless of the method used to install the SR Linux (either using the CLI or manually), but the CLI method is dependent on having a working system whereas the manual method is not.

Software image contents

The software image is a set of files provided as part of an SR Linux distribution. The files contained in an image are:

squashfs
Contains the SR Linux root file system, including any needed binaries for system operation.
initramfs (or initrd)
Contains an initial file system that is used to make the hardware operational before unpacking the SR Linux squashfs into memory, then switching the root file system to it.
kernel (or vmlinuz)
The Linux kernel is the initial program executed by the boot loader. The kernel handles all interactions between the OS and hardware.

To perform an installation, you must have an SR Linux image, which is a bin containing these files, along with some other files used for operations and maintenance (for example, YANG models and SNMP MIBs).

Installation concepts

On a 7250 IXR system, SR Linux boots from an internal SD card. On a 7220 IXR-D, 7220 IXR-DL, or 7220 IXR-H system, SR Linux boots from a the internal SSD. No other boot devices may be used with the system. The internal SD or SSD contains:

  • an MBR (containing the Grub2 boot loader)
  • a partition used for SR Linux images
  • two overlay partitions used for persistent storage

Installations can be performed manually without using the CLI. The process may also require partitioning an SD card external to the system, installing Grub into the MBR of the card, and copying the SR Linux image to the device. Use of the manual method requires advanced knowledge of Linux commands, including disk formatting, copying files, unpacking compressed images, and editing of text files. Basic knowledge of editing text files in Linux is mandatory. The manual method requires a Linux server, with an empty SD card mounted (or use of a USB-SD card adapter).

Performing software upgrades

This section describes methods to upgrade the software using the CLI. They require a working system, with SR Linux operational and the CLI available.

Software upgrade options include:

  • Software upgrade using a tools command

    Upgrades and deploys the software using the tools system deploy-image command. This method is supported on all 7250 IXR, 7220 IXR-D, 7220 IXR-DL, and 7220 IXR-H systems.

  • Software upgrade from the bash shell

    Upgrades the software from the bash shell using the CLI. This method is supported on all 7250 IXR, 7220 IXR-D, 7220 IXR-DL, and 7220 IXR-H systems.

  • In-service software upgrade

    Upgrades software across maintenance releases within the same major release (in conjunction with a warm reboot). This method is supported on 7220 IXR-D2 and D3 systems and 7220 IXR-D2L and D3L systems only.

Software upgrade using a tools command

You can upgrade and deploy a new software image using the tools system deploy-image command in the CLI. With this command, there are two methods you can use to deploy an image. You can choose to deploy using an HTTP/HTTPS link to the software, or you can copy the image bin file onto the system, then deploy it.

Run the tools system deploy-image command with or without a reboot option. The reboot option deploys the image and reboots the system automatically to bring up the specified image. If the reboot option is not added, the image is only deployed. To then perform the upgrade, the system must be rebooted separately using the tools platform chassis reboot command.

Software upgrade using a HTTP/HTTPS link

Deploy the image using an HTTP/HTTPS link to the software image.

The image download is insecure by default with cert verification disabled. Use the tools system deploy-image <http link to bin file> reboot command, where the <http link to bin file> links to the image.

Following the upgrade, the upgraded configuration is not saved automatically to be the startup configuration. See the "Configuration upgrades" section in the SR Linux Configuration Basics Guide for information about how to persist the upgraded configuration to disk.

Upgrade using a HTTP/HTTPS link

In the following example, the reboot option is not used. After the image is deployed, the system must be rebooted separately.

# tools system deploy-image https://username:password@example.com/repository/srlinux-os/21.3.0/srlinux-21.3.0-384.bin
Downloading with the srbase-mgmt namespace. Connection timeout: 5 seconds
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100  782M    0  782M    0     0  99.9M      0 --:--:--  0:00:07 --:--:--  101M
Deploying SRL image version 21.3.0-384
2021:03:15 21:51:46:10 | EVENT | Version of new image 21.3.0-384
2021:03:15 21:51:46:10 | EVENT | Current version: 21.3.0-377, New version: 21.3.0-384
2021:03:15 21:52:21:10 | EVENT | Invoked sync call. It may take few seconds to complete.
2021:03:15 21:52:30:15 | EVENT | Syncing image with standby
Successfully deployed SRL image version 21.3.0-384

Software upgrade using the image bin file

Copy the image bin file onto the system, then use the deploy-image command after the bin file is uploaded.

Use the tools system deploy-image <absolute path to bin file> reboot command, where <absolute path to bin file> specifies the location of the bin.

Following the upgrade, the upgraded configuration is not saved automatically to be the startup configuration. See the "Configuration upgrades" section in the SR Linux Configuration Basics Guide for information about how to persist the upgraded configuration to disk.

Upgrade using a bin file location

In the following example, the reboot option is used. After the image is deployed, the system reboots automatically to bring up the image.

# tools system deploy-image /tmp/srlinux-21.3.0-382.bin reboot
Deploying SRL image version 21.3.0-382
2021:03:16 21:08:17:57 | EVENT | Version of new image 21.3.0-382
2021:03:16 21:08:17:58 | EVENT | Current version: 21.3.0-388, New version: 21.3.0-382
2021:03:16 21:08:53:77 | EVENT | Invoked sync call. It may take few seconds to complete.
2021:03:16 21:09:01:73 | EVENT | Syncing image with standby
Successfully deployed SRL image version 21.3.0-382
--{ candidate shared default }--[  ]--
# 2021:03:16 21:10:27:17 | EVENT | Linux sync call executing
2021:03:16 21:10:27:21 | EVENT | Umount /dev/sdb1
2021:03:16 21:10:27:23 | EVENT | Umount /dev/sdb2
2021:03:16 21:10:27:26 | EVENT | sr_cli chassis reboot force requested.
21-03-16 14:10:28.472 sr_device_mgr: Chassis reboot force requested - rebooting
21-03-16 14:10:36.079 sr_device_mgr: Rebooting - chassis reboot requested

Software upgrade from the bash shell

This procedure upgrades the software from the bash shell using the CLI.

  1. Copy the SR Linux image to a location that the system being installed has access to, either to a USB or SD card, or somewhere on the network (assuming that the system being installed has access to the server). Enter:
    # cp <path-to-srlinux-image-bin> <destination-directory>
    # cp SRLinux-21.3.0-459.bin /mnt/removable
    
  2. Log in to the system being upgraded:
    # ssh <user>@<address>
    # ssh linuxadmin@192.168.0.1
    
  3. Enter the login credentials (when prompted by the system):
    • username: linuxadmin
    • password: NokiaSrl1!
  4. Copy the image to the system. Do either of the following:
    • If not using removable media (USB or SD card), copy the image to the system across the network:

      # sudo ns_exec srbase-mgmt bash

      # sudo scp <user>@<server-with-srlinux-image>:<path-to-srlinux-image-bin> <local-destination>

      Example:

      # sudo ns_exec srbase-mgmt bash
      # sudo scp serveruser@192.168.0.2:srlinux-21.3.0-459.bin /local-destination
      
    • If using removable media (USB or SD card), insert either the USB or SD card into the system and mount it to a temporary directory:

      # sudo mkdir -p /mnt/removable

      # sudo mount <path-to-disk> /mnt/removable

      Example:

      # sudo mkdir -p /mnt/removable
      # sudo mount /dev/sdc1 /mnt/removable
      
  5. Unpack the SR Linux image to a location that the system being installed has access to, either across the network, or to a USB or SD card that may be inserted into the active control plane module:

    # sudo mkdir -p /mnt/nokiaos/<version>

    # sudo cp <local-destination>/<srlinux-image-file.bin> /tmp/<srlinux-image-file.bin>

    # sudo chmod +x /<tmp>/<srlinux-image-file.bin>

    # sudo /tmp/<srlinux-image-file.bin> --target /mnt/nokiaos/<version> --noexec

    # sudo mkdir -p /mnt/nokiaos/21.3.0-459
    # sudo cp /mnt/removable/srlinux-21.3.0-459.bin /tmp/srlinux-21.3.0-459.bin
    # sudo chmod +x /tmp/srlinux-21.3.0-459.bin
    # sudo /tmp/srlinux-21.3.0-459.bin --target /mnt/nokiaos/21.3.0-459 --noexec
    
  6. Start an SR Linux CLI session, and retrieve the current version of the software. Multiple images can be shown.

    # info from state system boot image

    # sr_cli
    # info from state system boot image
        system {
             boot {
                image [
                   21.3.0-449 
                   20.6.1-10 
                      ]
                  }
               }
    
    Note: The info from state system boot image output only lists images present in the grub.cfg file. The tools system boot available-images output lists all of the images present in the system.
  7. Print the list of images in the /mnt/nokiaos directory.

    # tools system boot available-images

    # sr_cli
    # tools system boot available-images
    ['21.3.0-449*', 20.6.1-10', '21.3.0-459']
    
  8. Update the boot image list by reordering the current version behind the new version:

    # tools system boot image [ <version> <old-version> ]

    # tools system boot image [ 21.3.0-459 21.3.0-449 20.6.1-10 ] 
    Boot order is updated with ['21.3.0-459', '21.3.0-449', '20.6.1-10'] 
  9. Reboot the chassis:
    # tools platform chassis reboot
  10. Wait ten minutes, then log in to the device via SSH or console, and confirm the new version.
  11. Following the upgrade, the upgraded configuration is not saved automatically to be the startup configuration. Enter the save startup command to save the configuration as the startup configuration.
    Note: See the "Configuration upgrades" section in the SR Linux Configuration Basics Guide for information about how to save new configuration upgrades.
  12. To avoid stale images in the /tmp location, Nokia recommends that you remove the .bin file manually after the system has successfully rebooted. The following example removes the /tmp/srlinux-21.3.0-459.bin file.
    # rm -rf /tmp/srlinux-21.3.0-459.bin

In-service software upgrade

This section describes the In-Service Software Upgrade (ISSU) procedures you can use to upgrade the following systems:

  • 7220 IXR-D2
  • 7220 IXR-D3
  • 7220 IXR-D2L
  • 7220 IXR-D3L
Note: An ISSU cannot be used to perform a software downgrade.

Depending on the release version, you can perform either a minor ISSU or major ISSU. A minor ISSU updates software across maintenance releases within the same major release. A major ISSU updates software across major releases within the same release year.

To perform an ISSU, the new target software image is identified, then the upgrade is performed in conjunction with a warm reboot to restart the system. During an ISSU upgrade, SR Linux maintains non-stop forwarding. A warm reboot brings down the control and management planes while the NOS reboots, and graceful restart helpers assist with maintaining the forwarding state in peers. Any control plane or management plane functions are unavailable during a warm reboot, including the refreshing of neighbors, responding to ARP/ND, and any other slow path functions.

Warm reboot leverages control plane functionality to allow remote peers to continue forwarding based on the previously learned state. This process is known as graceful restart, where the remote system is the graceful restart helper, and SR Linux, when undergoing warm reboot, is being helped. For more information about graceful restart, see to the SR Linux Configuration Basics Guide.

At a high level, the ISSU process requires the following steps. For a detailed ISSU procedure, see Performing an ISSU.

  1. (Recommended) Back up the existing configuration.
  2. Deploy the supported ISSU image using the tools system deploy-image command.
  3. Update the first image in the leaf-list with a supported ISSU image by setting the tools model: tools system boot image.
  4. Ensure the running configuration is saved as the startup configuration.
  5. Perform a reboot warm (with or without force).

Minor ISSU

Beginning in Release R21.6.1, you can perform a minor ISSU to update software across maintenance releases within the same major release. The upgrade does not require a datapath outage. For example, you can perform a minor ISSU in the following minor release versions. The upgrade can only be to a later version of the same minor release (when the later release becomes available).

Table 1. Minor ISSU
Minor release Upgrade to Examples
R21.6.1 R21.6.x R21.6.2, R21.6.3, and so on
R21.11.1 R21.11.x R21.11.2, R21.11.3, and so on
R22.3.1 R22.3.x R22.3.2, R22.3.3, and so on
R22.6.1 R22.6.x R22.6.2, R22.6.3, and so on

Configuration state support

Before performing a warm reboot as the final step of an ISSU, you can first confirm if the current SR Linux configuration and state supports warm reboot (including any destination image checks for ISSU). Use the tools platform chassis reboot warm validate command.

--{ running }--[  ]--
A:# tools platform chassis reboot warm validate
/platform:
    Warm reboot validate requested
 
/:
    Success

If the validation is successful, proceed with the warm reboot.

If a validation is unsuccessful, or if an attempt to perform a warm reboot fails, you can force the warm reboot using the additional force option. A warm reboot may not be successful if, for example, a peer does not support graceful restart. Force the warm reboot using the tools platform chassis reboot warm force command.

An unsuccessful validation or a failed warm reboot attempt cannot be forced using the additional force option in the following cases:

  • The running configuration contains configuration paths that are not supported in ISSU. To complete the ISSU, invalid configuration paths must be removed from the running configuration. See YANG path support.
  • The running configuration has not been saved as startup configuration.
Caution: Forcing a warm reboot may result in a service outage. The force option overrides any warnings, such as peers that are not configured, or peers that do not support graceful restart.
--{ running }--[  ]--
A:# tools platform chassis reboot warm force
/platform:
    Warm reboot force requested
 
/:
    Success

YANG path support

The following YANG paths must exist in your configuration or via inheritance (if their context is present) for a warm reboot to succeed without an outage:

network-instance protocols bgp graceful-restart warm-reboot admin-state enable
network-instance protocols bgp group graceful-restart warm-reboot admin-state enable
network-instance protocols bgp neighbor graceful-restart warm-reboot admin-state enable

The following YANG paths must not exist in a configuration for a warm reboot to succeed without an outage:

interface hold-time
interface lag
interface sflow
interface subinterface local-mirror-destination
interface subinterface ipv4 arp evpn
interface subinterface ipv6 neighbor-discovery evpn
interface subinterface type local-mirror-dest
network-instance next-hop-groups group nexthop failure-detection enable-bfd
network-instance protocols bgp evpn
network-instance protocols bgp group evpn
network-instance protocols bgp neighbor evpn
network-instance protocols bgp-evpn
network-instance protocols isis
network-instance protocols ospf
network-instance vxlan-interface
platform resource-management unified-forwarding-resources
system mirroring
system network-instance protocols evpn
system sflow
tunnel-interface

Performing an ISSU

You can perform an ISSU on 7220 IXR-D2 or D3 systems only. Instead of rebooting the chassis to bring up the new software image, you will perform a warm reboot to conclude the upgrade. During the warm reboot, the system maintains non-stop forwarding.

The warm reboot process requires a minimum 100 MB of free disk space in the file system under /etc/opt/srlinux, excluding the files under the warmboot/ directory. If the disk space is unavailable, the warm reboot will fail.

The examples in this section show an ISSU from SR Linux R21.6.1 to the next available maintenance release.

Note: When the control plane goes down during an ISSU, all SSH sessions are disconnected. Nokia recommends that you perform ISSU via a console session.
Note: Before you perform an ISSU, Nokia recommends you back up your existing configuration.

You can perform an ISSU upgrade in conjunction with the tools system deploy-image command. With this command, you can choose between two methods to deploy an image; you can choose to deploy using an HTTP/HTTPS link to the software, or you can copy the image bin file onto the system, then deploy it.

  1. Using one of the methods described in Software upgrade using a tools command, deploy the new software image with the deploy-image command.
  2. Warm reboot the chassis to begin the upgrade. During the ISSU, the system maintains non-stop forwarding. The control plane goes down.
    # tools platform chassis reboot warm
    --{ running }--[  ]--
    A:# tools platform chassis reboot warm
    /platform:
        Warm reboot requested
     
    /:
        Success
    
    --{ running }--[  ]--
    A:# 
    --{ [WARM BOOT] [FACTORY] running }--[  ]-- 
    
  3. The control plane comes back up and the SR Linux CLI is available again. Note the [WARM BOOT] indicator is still present in the banner as the upgrade is not yet complete.
    A:#
    --{ [WARM BOOT] [FACTORY] running }--[  ]-- 
    
  4. When the warm reboot finishes, the ISSU is complete. The system will accept new configurations. The [WARM BOOT] indicator is no longer present in the banner.
    A:# 
    --{ running }--[  ]--
    A:#
    Current mode: running
    
  5. Optionally, you can use the show version command to confirm the new software image is running.
    A:# show version
    Hostname          : 
    Chassis Type      : 7220 IXR-D2
    Part Number       : Sim Part No.
    Serial Number     : Sim Serial No.
    System MAC Address: 00:01:01:FF:00:00
    Software Version  : v21.6.2-384
    Build Number      : 28570-g51d538796f
    Architecture      : x86_64
    Last Booted       : 2021-06-22T09:08:58.762Z
    Total Memory      : 64151761 kB
    Free Memory       : 52237679 kB
    

Performing recovery procedures

This section describes recovery procedures applicable to 7250 IXR systems.

Creating a bootable SD card

Installing the software requires a working Linux system running CentOS 7, with access to an SD card (preferably 16 GB). A USB adapter may be used, as most servers do not have SD card slots. The SD card should be formatted and have no important data present on it. Any data on the card is wiped during the procedure. Installing the software manually requires downloading a script. In the following examples, /dev/sdb is used as the SD card device, and all steps should be completed as a user with root privileges.

This section describes methods to create a bootable SD card containing the SR Linux software image to use on a 7250 IXR system.

SD card flash script

Using a Linux machine (running CentOS 7), you can install the SR Linux image on a 7250 IXR system using a flash script.

WARNING: If used incorrectly, this procedure could be destructive and may render the system creating the SD card inoperable. Verify the correct drive is being used before completing the installation.
  1. Copy the SR Linux image and SR Linux rescue image to either an SD card or USB drive and insert it into the system. Alternatively, copy the images to the server being used to prepare the SD card. Use the following commands:
    # cp <path-to-srlinux-image.bin> <destination-directory>
    # cp /mnt/removable/SRLinux-21.3.0-459.bin /tmp 
    
  2. Wipe the SD card and ensure that you correctly identify the SD card, as this action is destructive.
  3. Download and install the following packages on the system.
    # sudo yum install e4fsprogs
    # sudo yum install grub2
    # sudo yum install grub2-efi-x64.x86_64
    # sudo yum install grub2-efi-x64-modules
    
  4. Upgrade mkfs.fat to version 4.1 or later.
    # wget https://vault.centos.org/centos/8/BaseOS/x86_64/os/Packages/dosfstools-4.1-6.el8.x86_64.rpm
    # sudo yum localinstall dosfstools-4.1-6.el8.x86_64.rpm 
  5. Download the sdcardflash.sh script.
  6. Run the script.
    # /tmp/sdcardflash.sh -v -e 21.3.0-459 -i srlinux-21.3.0-459.bin -s /dev/sdb -g  "autoboot nosinstall" -m 
    
  7. Physically remove the SD card from the system.
  8. Repeat steps 2 to 7 with another SD card for the standby control plane module (if applicable).
  9. Remove both control plane modules from the system (see either the SR Linux 7250 IXR-6 and IXR-10 Chassis Installation Guide or SR Linux 7250 IXR-6e and IXR-10e Chassis Installation Guide for a procedure), then insert the SD cards into the internal SD slot for each module.
  10. Insert the control plane modules into the chassis, and power the chassis on.

Image copy

Using a Linux machine (running CentOS 7), you can copy an SR Linux image from one SD card to another SD card. You can then use this second SD card to install the SR Linux software image onto a 7250 IXR system.

  1. Insert an SD card containing an SR Linux image into any Linux machine with a supporting SD slot.
    In this procedure example, the SD card device is detected as /dev/sdb.
  2. When the SD card is detected, copy the SR Linux image to the Linux machine:
    sudo dd if=/dev/sdb of=sd.img
  3. Remove the SD card from the Linux machine.
  4. Insert the second SD card (to which the image is copied) into the Linux machine.
  5. Copy the SR Linux image from the Linux machine to the second SD card:
    sudo dd if=sd.img of=/dev/sdb
  6. Remove the second SD card from the Linux machine.
    Insert this SD card into the internal SD card slot of a 7250 IXR system's control plane module. The system powers on with the image.

Local rescue image

From a 7250 IXR system running SR Linux, you can create a bootable SD card locally on the DUT, which can then be transferred and used in another system.

  1. Log in to the system running SR Linux via a console connection.
  2. Reboot the system and select srlinux-rescue from the image boot menu.
  3. Copy the srlinux-xxx.bin file using SCP.

    To allow this, one of the ports on the system in the rescue image should have management connectivity. If there is no IP assigned to any of the ports automatically, you can add an IP manually using the ifconfig command:

    ifconfig <port> <ip address> netmask <ip address>

    ifconfig eth4 192.168.255.254 netmask 255.255.255.0
    
  4. Find the target SD card device.
    In this procedure example, the SD card device is detected as /dev/sdb.
  5. Find the current internal SD card device.
    In this procedure example, the SD card device partition is detected as /dev/sdc1.
  6. Run the following command to flash the SD card device with the srlinux-xxx.bin file:
    bash <srlinux-xxx.bin> -- --dev <target SD device> --no-onie --source-efi <internal SD device>
    bash srlinux-21.3.0-459.bin -- --dev /dev/sdb --no-onie --source-efi /dev/sdc1
    
  7. Remove the SD card from the system. Insert it into the internal SD card slot on the control plane module of the system where the software image is to be installed.
  8. Power on the system with the new image.

Bootstrapping using ONIE

This section describes ONIE installation procedures applicable to 7220 IXR-D, 7220 IXR-DL, and 7220 IXR-H systems.

Image upgrade from ONIE prompt

If you do not host the SR Linux images from a ZTP server, you must perform a manual bootstrapping to retrieve the image.

Note: ZTP install is not supported when SR Linux services are enabled on the system. If you change back to the ZTP installation method from manual bootstrapping, you must perform the following commands:

systemctl enable ztp /opt/srlinux/systemd/ztp.service

systemctl disable /opt/srlinux/systemd/srlinux.service

  1. In the GRUB selection screen, select ONIE.
  2. From the list of ONIE boot options, select ONIE: OS Install mode.
  3. After the ONIE image boots, the service discovery starts automatically. To stop the service discovery, execute:
    ONIE:/ # onie-stop
  4. Configure the management IP address and the default route to copy the SR Linux image to the 7220 IXR-D, 7220 IXR-DL, or 7220 IXR-H:
    ONIE:/ #
    ONIE:/ # ifconfig eth0 135.227.251.182 netmask 255.255.255.0
    ONIE:/ # ip route add 0.0.0.0/0 via 135.227.248.1
    IP: RTNETLINK answers: Network is unreachable
    ONIE:/ #
    
  5. Using the SCP command, copy the SR Linux image <version>.bin to the root folder. The "root" user password field is blank.
  6. To install SR Linux, execute the following command:

    onie-nos-install <bin>

    ONIE:/ # onie-nos-install /root/srlinux-20.6.1-21398.bin
    discover: installed mode detected.
    Stopping: discover... done.
    ONIE: Executing installer: /root/srlinux-20.6.1-21398.bin
    /dev/console
    Verifying archive integrity... 100%   MD5 checksums are OK. All good.
    Uncompressing srlinux-20.6.1-21398  100%
    Files used: srlinux-20.6.1-21398.squashfs, initramfs-4.18.39-2.x86_64-02.img, vmlinuz-4.19.39-2.x86_64
    Found ONIE-BOOT on /dev/sda2
    Will use /dev/sda as install dev
    Parts used: old_part_start[4], efi_part[4], nos_part[5], etc_part[6], opt_part[7], data_part[8]
    Remove existing partitions from /dev/sda
    /dev/sda4 is not mounted
    Warning: The kernel is still using the old partition table.
    The new table will be used at the next reboot.
    The operation has completed successfully.
    
  7. After the image is installed, the 7220 IXR-D, 7220 IXR-DL, or 7220 IXR-H reboots with the SR Linux image:
             Starting Wait for Plymouth Boot Screen to Quit...
             Starting Terminate Plymouth Boot Screen...
    [  OK  ] Started Login Service.
    
    SRLINUX 20.6.1-21398
    Kernel 4.19.39-2.x86_64 on an x86_64
    
    Localhost login: linuxadmin
    Password: 2020:06:21 19:52:54:54 | EVENT | Starting ZTP process
    
    [linuxadmin@localhost ~}$ system2020:06:21 19:52:58:64 | EVENT | Set link mgmt0 up
    ctl disable z2020:06:21 19:53:03:82 | EVENT | ZTP Perform DHCP_V4. attempt[1]
    t2020:06:21 19:53:04:14 | EVENT | Received dhcp lease on mgmt0 for 135.227.251.182/21
    2020:06:21 19:53:04:23 | EVENT | option 66 provided by dhcp: http://135.277.248.118
    2020:06:21 19:53:04:23 | EVENT | option 67 provided by dhcp: duts/SD-RD2-126/ztp-config.yml
    
  8. Enter the login credentials:
    • username: linuxadmin
    • password: NokiaSrl1!
  9. Disable watchdog reboot using the following command:
    sr_wdc noreboot
  10. Permanently disable the ZTP service using the following command:
    systemctl disable ztp
  11. Enable SR Linux as a service with the systemctl command:
    systemctl enable /opt/srlinux/systemd/srlinux.service
  12. Configure the network IP address and enable network as service by performing the following steps.
    1. Enter sudo bash -c 'echo "NETWORKING=yes" >/etc/sysconfig/network'
    2. Enter sudo systemctl enable NetworkManager
    3. Edit and include the /etc/sysconfig/network-scripts/ifcfg-mgmt0 with the appropriate IP address, netmask, and gateway information. If this file is not present, you must create it, then add the contents.
      sudo /etc/sysconfig/network-scripts/ifcfg-mgmt0

      DEVICE=mgmt0

      IPADDR=<IP_ADDR>

      BOOTPROTO=static

      NETMASK=<NET_MASK>

      GATEWAY=<GATEWAY>

      ONBOOT=yes

      IPV6INIT=NO

  13. After a reboot, the networking and SR Linux service is started automatically.

Installing an ONIE image

Installing an ONIE image on a 7220 IXR-D, 7220 IXR-DL, or 7220 IXR-H system requires a working Linux system and a USB device. Installation also requires the ONIE boot loader install environment.

WARNING: Installing the ONIE from the USB wipes out all SSD partitions.
  1. Download the ONIE recovery .iso image for the respective 7220 IXR-D, 7220 IXR-DL, or 7220 IXR-H system from OLCS.
  2. Copy the ONIE recovery .iso image file to a USB using the following command:
    dd if=<machine>.iso of=/dev/sdX bs=10M

    where machine = the image name for the device and sdX = the USB device name.

  3. After the ONIE recovery .iso image is copied, unmount the USB device and remove it from the Linux machine.
  4. Insert the USB into the 7220 IXR-D, 7220 IXR-DL, or 7220 IXR-H system and power the system on.
  5. When the setup message comes up, press either the DEL or ESC key to enter the BIOS interface:
    Version 2.19.1266. Copyright (C) 2019 American Megatrends. Inc.
    BIOS Date: 11/01/2019 15:48:23 Ver: OACHI037 Minor_Ver: V1.03
    Press <DEL> or <ESC> to enter setup.
    Entering Setup...
    
  6. In the BIOS prompt, select Boot Device as USB, then Save & Exit.
  7. Install the ONIE from the USB. Select ONIE: Embed ONIE in the GNU Grub screen.
  8. After the ONIE installation is complete, remove the USB to boot the ONIE from the SSD.
  9. After the device boots the ONIE from the SSD, select ONIE: Install OS in the GNU Grub screen.
  10. Verify the platform, version, and build date of the installed ONIE image:
    GRUB loading.
    Welcome to GRUB!
    
    Platform  : x86_64-nokia_ixr7220_d3-r0
    Version   : 2019.02-onie_version-v1.5
    Build Date: 2020-02-13T15:05+08:00
    
    telnet>
    
  11. The device boots and enters the ONIE:/ # prompt.

    The ONIE service discovery automatically gets a device IP address from a ZTP server, and the SR Linux image is downloaded.

    Note: If you do not host the SR Linux images from a ZTP server, you must perform a manual bootstrap procedure to complete the installation. See the Image upgrade from ONIE prompt procedure to continue.
  12. After the SR Linux software installation completes, the 7220 IXR-D, 7220 IXR-DL, or 7220 IXR-H reboots with the updated SR Linux image. The SR Linux services and applications are automatically started.